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Collective mass parameters in Skyrme EDF



Key ingredients for spontaneous fission in nuclear EDF

Collective Hamiltonian describing the fission dynamics

Dynamical variables

Collective potential

Inertia functions for the collective mode

H =
1

2

∑

kl

Mkl(s)ṡkṡl + Vcoll(s) (1)

s = (s1, s2, · · · ) = (β, γ, β3, · · · ) (2)

Vcoll(s) (3)

Mkl(s) (4)

infinitesimal displacement of the collective coordinates brings about a corresponding change
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collective kinetic energy
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s = (s1, s2, · · · ) = (β, γ, β3, · · · )
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Mkl(s)



Collective potential
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Fock-Bogoliubov solver HFODD [23,24] capable of treating
simultaneously all the possible collective degrees of freedom
that might appear on the way to fission. Based on this DFT
framework, we calculated the total energy along the fission
pathways, corresponding collective inertia (collective masses)
and zero point energy (ZPE) corrections to account for
quantum fluctuations.

In the particle-hole channel, we use the SkM∗ energy
density functional [25] that has been optimized at large defor-
mations; hence it is often used for fission barrier predictions. In
the pairing channel, we adopted a seniority pairing force with
the strength parameters fitted to reproduce the experimental
gaps in 252Fm [26]. Because the nuclei considered are all well
bound, pairing could be treated within the BCS approximation.
The single-particle basis consisted of the lowest 1140 stretched
states originating from the lowest 31 major oscillator shells.

In the analysis of fission pathways, we explored multi-
dimensional collective space. To separate fission pathways,
we computed energy surfaces in the deformation spaces
{Q20,Q30} and {Q20,Q40}. The calculations were not limited
to axial shapes; triaxial deformations appear if energetically
favorable (e.g., within the inner barrier). At each deformation
point, defined by the set of constrained multipole moments,
fully self-consistent DFT equations have been solved, where-
upon the total energy of the system is always minimized with
respect to all remaining (i.e., unconstrained) shape parameters.
The optimum 1D paths have been localized in the form of
multipole moments, Q30,Q22, and Q40, becoming functions
of the driving moment, Q20.

The vibrational and rotational ZPE corrections and the
cranking quadrupole mass parameter were calculated as
described in Ref. [27]. The spontaneous fission half-lives were
estimated from the WKB expression for the double-humped
potential barrier [28,29] assuming a 1D tunneling path along
Q20.

III. RESULTS

To demonstrate the validity and generality of our method,
we chose a case where several fission pathways were known to
coexist and all intrinsic symmetries of the nuclear mean field
were broken. In this respect, a phenomenon known as bimodal
fission, observed in several fermium and transfermium nuclei
[30–33], is a perfect testing ground. It manifests itself, for
example, in a sharp transition from an asymmetric mass
division in 256Fm and 256No to a symmetric mass split in 258Fm
and 258No. Furthermore, the total kinetic energy distributions
of the fission fragments appear to have two peaks centered
around 200 and 233 MeV. It has been suggested [32,34–38]
that the higher energy fission mode corresponds to a scission
configuration associated with two touching, nearly spherical,
fragments with the maximal Coulomb repulsion, whereas the
lower-energy mode can be associated with more elongated
fragments. Before this work, bimodal fission was studied
within the MMM [13,34–37] and nuclear DFT [19,22,39–42].
All those studies were symmetry-restricted (i.e., they did not
consider simultaneous inclusion of elongation, triaxiality, and
reflection-asymmetry).

A. Fission pathways of the fermium isotopes

To identify saddle points and fission pathways in a multidi-
mensional energy surface is not a simple task. As pointed out in
earlier studies [12,13,43,44], saddle points obtained in calcula-
tions constrained by only one collective variable are sometimes
incorrect; hence, special numerical techniques are required to
find them. To this end, we computed two-dimensional (2D)
energy surfaces in {Q20,Q30} and {Q20,Q40} planes. Based on
the initial 2D uniform grids, Q20 = 0(10)400 b, Q30 = 0(5)50
b3/2, and Q40 = 0(10)200 b2, we calculated the constrained
HF+BCS energy. In our HFODD calculations we employed
the standard method of quadratic constraint (the quadratic
penalty method) [45,46]. Within this approach, the moments
calculated from the converged densities differ slightly from the
requested values defining the constraints [46]. This implies that
the final mesh used for interpolation is nonuniform. Using the
self-consistent values of multipole moments, the nonuniform
interpolation was carried out to produce the final result.
Figure 1 shows 2D energy surfaces for 258Fm.

The 1D fission pathways shown in Fig. 1 were obtained by
finding the local energy minimum at a given value of Q20 and
following this solution when gradually increasing the driving
moment Q20. This method thus relies on local properties of
the Q20-constrained energy surface. In practice, one obtains
different energy surfaces locally valid around each fission
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FIG. 1. (Color online) Two-dimensional total energy surfaces for
258Fm in the plane of collective coordinates: Q20-Q30 (a) and Q20-Q40

(b). The fission pathways are marked: symmetric compact fragments
(sCF), symmetric elongated fragment (sEF), and asymmetric elon-
gated fragments (aEF) pathways. The difference between contour
lines is 5 MeV in (a) and 10 MeV in (b). The asymmetric trajectory
aEF bifurcates away near Q20 ≈ 150 b from Q30 = 0 while the
bifurcation between sEF and sCF occurs near Q20 ≈ 225 b. The
inset shows the multipole moments Qλ0 along sCF and sEF.
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in the different approaches, in the relevant parts the AS-RS
approach provides smaller masses followed by the AS-NRS
ones. This implies that not necessarily the smallest fission
barriers provide the shortest lifetimes [29]. Since the action
S in Eq. (2) can be seen as a line integral of the function
dS(Q2)/dQ2 = {2B(Q2)[V (Q2) − E0]}1/2, the area of the
surface delimited by this line and the x axis provides the
value of the action S. In panel (h) we display dS(Q2)/dQ2
in the three approaches. For the nucleus 274Hs we find that
though the NAS-RS fission path has a smaller fission barrier
than the AS-RS one, the actions S for both approaches are
very close. The actual values of S are 26.69 (AS-RS) and
26.49 (NAS-RS), while in the AS-NRS case we obtain a much
larger value, namely 41.66. In the nucleus 278Ds, the fission
paths alone would predict that the AS-NRS and the NAS-RS
approaches would provide much shorter lifetimes than the
AS-RS one. However, in panel (h) one finds that the three
areas look rather similar. Actually, the precise numbers 25.88
(AS-RS), 26.97 (AS-NRS), and 26.49 (NAS-RS) show this
to be the case. Lastly, for 282Cn, the prediction of the fission
paths is more or less in accordance with the one of panel (h)
and the actual numbers 23.34 (AS-RS), 18.32 (AS-NRS), and
22.52 (NAS-RS) corroborate that. We can conclude that the
restriction to axially symmetric paths is, in general, a good
approximation, though as we we will see later one can find
some exceptions.

The low and short non-reflection-symmetric barrier in
nuclei with N ! 170 makes the most probable fission through
octupole-deformed shapes. In these nuclei we expect to find
an asymmetric mass distribution of fission fragments [106].

In the one-dimensional fission paths plotted in Fig. 7 we
find crossings between the two paths, giving the impression
that one could switch from one path to the other without further
problem. However, if we look at a higher dimensional plot one
can see that this is not the case. To illustrate this point we have
drawn in Fig. 8 potential energy contour lines versus the quad-
rupole moment, Q2, and the octupole moment, Q3, for the
nuclei 274Hs and 282Cn. In this figure we can follow the AS-RS
and the AS-NRS paths of Fig. 7 for the respective nucleus. The
AS-RS path corresponds to Q3 = 0 and goes along the x axis
and the AS-NRS one goes along the bullets. It is interesting
to see how the self-consistent path goes along a valley in both
nuclei. We can also see that no alternative paths are present.
In the 274Hs case we find that, at Q2 = 50 b where both paths
seem to cross in Fig. 7(d), in reality both paths are separated
by a 4- to 5-MeV-high barrier.

B. Fission barriers in the axially symmetric approaches

In the following to perform a systematic description of the
fission barriers of the 160 SHEs, we restrict ourselves to the
axial approximation in which we have performed two kinds
of calculations, namely, the reflection-symmetric, AS-RS, and
the non-reflection-symmetric, AS-NRS. All the fission barriers
are presented in Figs. 9–13.

In Fig. 9 we present the fission barriers for the isotopes of the
elements Fm, No, and Rf for quadrupole values from −20 to
80 b (continuous line for AS-RS and dashed line for AS-NRS).
We first discuss the AS-RS results. In panel (a) we present the
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FIG. 8. (Color online) The PES as a function of quadrupole and
octupole moments for (a) 274Hs and (b) 282Cn. The energy origin has
been set at the energy minimum.

Fm results for neutron number 150 up to 166. All isotopes
present a well-prolate-deformed minimum around 15 b. In
addition in the lighter isotopes a shallow superdeformed (SD)
minimum appears around 50 b, at N = 156 we find a very
flat minimum, and for the heavier isotopes no SD minimum
is found. The common characteristic of these nuclei is the
presence of a big broad barrier. For N = 150 the barrier is
centered at Q2 = 30 b, has a height of about 12 MeV, and
has a width of 18 b. With increasing neutron number the
center of the barrier shifts to larger deformations and the height
diminishes. For N = 166 the center is around Q2 = 38 b and
the height is about 8 MeV. In the heavier isotopes we find
some structure in the first barrier, namely, the development of
a shoulder around Q2 = 27 b with increasing neutron number.
The presence of a SD minimum in the lighter isotopes drives
the existence of a second barrier. Since the minima are rather
shallow the second barriers are broad but not high. These
properties will contribute in general to a tendency of shorter
lifetimes with increasing neutron number, though the particular
behavior must be analyzed case by case.

The fission paths for the No isotopes are shown in panel (b)
for the same neutron numbers as the Fm case. The structures of
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mainly in two regions in Fig. 2. One region starts from the first
saddle point and extends roughly along the direction of the
β30 axis up to a very asymmetric shape with β30 ∼ 1.0. In this
region, the values of β22 are about 0.06∼0.12, corresponding
to γ ∼ 10◦. The energy, especially the inner barrier height, is
lowered by about 2 MeV. The other region is around the outer
barrier and the β22 values are about 0.02∼0.03, corresponding
to γ ∼ 2◦. About 1 MeV is gained for the binding energy at
the second saddle point due to the triaxiality. In other regions,
e.g., in the ground state and fission isomer valleys, only axially
symmetric solutions are obtained.

Next, we examine the full 3D PES of 240Pu obtained from
the newly developed multidimensional constrained CDFT. For
simplicity, in Fig. 3 are shown only five typical sections of the
3D PES of 240Pu in the (β22,β30) plane calculated at β20 = 0.3
(around the ground state), 0.6 (around the first saddle point),
0.9 (around the fission isomer), 1.3 (around the second saddle
point), and 1.6 (beyond the outer barrier), respectively. Many
conclusions can be drawn by examining these 3D PES’s. First,
the ground state and the fission isomer are both axially and
reflection symmetric as what is shown in the 1D PEC and
the 2D PES. But, with the 3D PES, one can investigate the
stability of 240Pu against the β22 and β30 deformations. One
finds that the stiffness of the fission isomer is much larger
than that of the ground state against both the β22 and β30

FIG. 3. (Color online) Sections of the three-dimensional PES of
240Pu in the (β22, β30) plane calculated at β20= 0.3 (around the ground
state), 0.6 (around the first saddle point), 0.9 (around the fission
isomer), 1.3 (around the second saddle point), and 1.6 (beyond the
outer barrier), respectively. The energy is normalized with respect
to the binding energy of the ground state. The contour interval is
0.5 MeV. Local minima are denoted by crosses.

deformations. Second, while around the inner barrier, the shape
of 240Pu is triaxial and reflection symmetric, the second saddle
point, which is close to β20 = 1.3, appears as both a triaxial
and reflection-asymmetric shape. Third, the triaxial distortion
appears only on the top of the fission barriers.

It has been pointed out that one may obtain spurious saddle
points if only a small number of shape degrees of freedom
are constrained (see, e.g., Ref. [5]). That is, the calculated
fission path may jump from one valley to another and results
in discontinuities in the lower-dimensional PES’s; in some
cases, a continuous path may even cross a higher saddle point.
Although the spurious saddle points may not be excluded
completely, most of them can be avoided if (i) the obtained
fission path keeps to be continuous in the energy as well
as the most important shape degrees of freedom and (ii) the
results are examined by higher-dimensional calculations. We
have carefully checked the full 3D PES and found that the
fission path enters and exits the triaxial configuration rather
smoothly, which tells that no sudden jump is found and
the 1D (with the β20 deformation constrained and β22,β30
deformations imposed) and 2D (with β20,β30 deformations
constrained and the β22 deformation imposed) calculations
of the fission barriers may be well justified for 240Pu. It
is clear that the continuity of the fission path found in a
lower-dimensional constraint calculation is a necessary but
not sufficient condition for locating the correct saddle point.
In order to have a strictly definite conclusion, one certainly
should carry out multidimensional constrained calculations
with even higher-multipolarity deformations included.

For the RS calculations, the triaxiality also lowers the fission
path by a few MeV beyond the second saddle point. This point
is illustrated by the dotted line in Fig. 1 and the local minima
with β30 = 0.0 in the β20 = 1.6 subfigures of Fig. 3. However,
it is relatively unimportant because the RA fission is still the
most favored one even when triaxiality is included.

Guided by the features found in the 1D, 2D, and 3D
PES’s of 240Pu, the fission barrier heights are extracted for
even-even actinide nuclei, the empirical values of which are
recommended in RIPL-3 (see Table XI in Ref. [45]). The
emphasis is put on the influence of the triaxial deformation on
the two fission barriers.

As it has been shown previously, around the inner barrier,
an actinide nucleus assumes triaxial and reflection-symmetric
shapes. Thus, in order to obtain the inner fission barrier
height, we can safely make a one-dimensional constrained
calculation with the triaxial deformation allowed and the re-
flection symmetry imposed. In Fig. 4(a), we present the
calculated inner barrier heights B i

f and compare them with the
empirical values. It is seen that the triaxiality lowers the inner
barrier heights of these actinide nuclei by 1 ∼ 4 MeV as what
has been shown in Ref. [15]. In general, the agreement of our
calculation results with the empirical ones is very good with
exceptions in the two thorium isotopes and 238U. For 230Th
and 232Th, the calculated inner barrier heights are smaller by
about 2 or 1 MeV than the empirical values depending on
whether the triaxial deformation is allowed or not. In these two
nuclei, the outer barrier is higher than the inner one. This may
result in some uncertainties when determining empirically the
height of the inner barrier, which is not the primary one [12].
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by

K = 1
2

Tr(W0R2) + 1
4

Tr(W1R1)

= i

4
Tr

(
Ṙ0[R0,R1]

)
− 1

2
([R2,R0][W0,R0]) . (16)

In the usual ATDHFB treatment, the second term involving
R2 is neglected, and, in the case of one collective coordinate
q, the kinetic energy can be written in the familiar form:

K = 1
2 q̇2M, (17)

where the collective mass is given by

M = i

2q̇2
Tr(Ṙ0[R0,R1]) (18)

= i

2q̇
Tr

(
∂R0

∂q
[R0,R1]

)
. (19)

The trace in the above expression can easily be evaluated in the
quasiparticle basis. To this end, one can utilize the ATDHFB
equation [4–7]:

iṘ0 = [W0,R1] + [W1,R0]. (20)

In the quasiparticle basis, the matrices R0, W0, W1, R1, and
Ṙ0 are represented by the matrices G, E0, E1, Z , and F ,
respectively:

R0 = AGA†, (21)

W0 = AE0A†, (22)

W1 = AE1A†, (23)

R1 = AZA†, (24)

Ṙ0 = AFA†, (25)

where

A =
(

A B∗

B A∗

)
(26)

is the matrix of the Bogolyubov transformation, and

G =
(

0 0
0 1

)
, E0 =

(
E 0
0 −E

)
. (27)

ATDHFB equation (20) can now be written in the quasiparticle
basis as

iF = [E0,Z] + [E1 ,G]. (28)

This 2 × 2 matrix equation is, in fact, equivalent [7] to the
following equation:

iF = EZ + ZE + E1, (29)

where the antisymmetric matrices F , Z, and E1 are related to
F , Z , and E1:

F =
(

0 F

−F ∗ 0

)
, Z =

(
0 Z

−Z∗ 0

)
, (30)

[E1 ,G] =
(

0 E1

−E∗
1 0

)
. (31)

In the case of several collective coordinates {qi}, the
ATDHFB equation (20) must be solved for each coordinate:

iq̇i

∂R0

∂qi

=
[
W0,Ri

1

]
+

[
W i

1,R0
]
, (32)

and the collective mass tensor becomes

Mij = i

2q̇j

Tr
(

∂R0

∂qi

[
R0,Rj

1

])
. (33)

Then, in terms of the corresponding matrices F i and Zj , the
collective mass tensor is given by

Mij = i

2q̇i q̇j

Tr(F i∗Zj − F iZj∗). (34)

The expression (34) for the mass tensor contains the matrix Zi ,
which is associated with time-odd density matrix Ri

1 and can,
in principle, be obtained by solving the HFB equations with
time-odd fields. The time-odd fields have been incorporated
in mass-tensor calculations only in a limited number of cases.
For instance, in Ref. [11], time-odd fields have been included
in the HF study with a constraint of cylindrical symmetry. The
time-odd fields have also been incorporated in the HFB study
in an approximate iterative scheme with the collective path
based on the Woods-Saxon potential [7].

III. APPROXIMATIONS TO ATDHFB

This section contains the summary of various commonly
used approximations to the exact ATDHFB expression (34).

A. Cranking approximation

In most of the studies, the time-odd interaction matrix E1
appearing in Eq. (29) is neglected. In the following, this ap-
proximation will be referred to as the cranking approximation
(ATDHFB-C). In the absence of the term involving E1, the Z
matrix can be easily obtained in the quasiparticle basis from
the equation

− iF i
αβ = (Eα + Eβ)Zi

αβ , (35)

and the collective cranking mass tensor is given by

MC
ij = 1

2q̇i q̇j

∑

αβ

(
F i∗

αβF
j
αβ + F i

αβF
j∗
αβ

)

Eα + Eβ

. (36)

It should be noted that Eq. (35) is diagonal in the quasiparticle
basis |α〉 and not in the canonical basis |µ〉. The essential
input to the ATDHFB-C mass tensor (36) is the matrix F .
In the following, F is evaluated in both the canonical and
quasiparticle basis.

1. Canonical basis

To begin with, Eq. (25) can be written explicitly in terms
of the HFB eigenvectors:

Ṙ0 = q̇
∂

∂q

(
ρ0 κ0

−κ∗
0 1 − ρ∗

0

)

=
(

AFBT − B∗F ∗A† AFAT − B∗F ∗B†

BFBT − A∗F ∗A† BFAT − A∗F ∗B†

)

. (37)
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Since F is antisymmetric, we have obviously FT
+ = −F−,

which is fulfilled explicitly provided κT
+ = −κ−.

3. Calculation of derivatives

The collective mass involves either derivatives of the
density matrices or the mean-field potentials. It should be
stressed that these derivatives must be calculated in the original
single-particle basis |n〉, as the canonical basis (5) varies with
{qi}. In the following, we show how to evaluate the collective
derivatives in the one-dimensional case of a single collective
coordinate, the quadrupole deformation q. To this end, we
approximate the derivative of the density operator ρ or κ
at a deformation point q = q0 by means of the Lagrange
three-point formula for unequally spaced points q0 − δq, q0,
and q0 + δq ′ [11,12,19]:

(
∂ρ

∂q

)

q=q0

≈ −δq ′

δq(δq + δq ′)
ρ(q0 − δq) + δq − δq ′

δq δq ′ ρ(q0)

+ δq

δq ′(δq + δq ′)
ρ(q0 + δq ′). (54)

The corresponding matrix element in the canonical basis
can be expressed through the matrices Dnν of the canonical
transformation (5):
(

∂ρ

∂q

)

µν

≈ −δq ′

δq(δq + δq ′)

∑

n1n2

D∗
n1µ

[ρ(q0 − δq)]n1n2Dn2ν

+ δq − δq ′

δq δq ′ v2
µδµν

+ δq

δq ′(δq + δq ′)

∑

n1n2

D∗
n1µ

[ρ(q0 + δq ′)]n1n2Dn2ν .

(55)

It should be noted that the canonical matrix Dnν in the above
expression corresponds to the deformation point, q0, at which
the mass is evaluated. Furthermore, as mentioned above, the
density matrices at the three deformation points in Eq. (54)
need to be calculated using the single-particle basis |n〉 with
the same basis deformation.

B. Perturbative cranking approximation

The perturbative cranking approximation (ATDHFB-Cp)
has been widely used for the evaluation of the collective
mass tensor. In this approximation, apart from neglecting
the time-odd interaction terms in the ATDHFB equation and
off-diagonal matrix elements of the HFB energy matrix (42),
the derivatives are not explicitly evaluated. Instead, they are
obtained by using a perturbative approach, in which the
collective derivatives of the particle-hole potential, h,i , are
approximated by terms proportional to generator operators
Q̂i , rearrangement terms of the mean field are neglected [3],
and derivatives &,i and λ,i are neglected too [20]. A complete
description of the perturbative cranking model as applied to
the nuclear fission process can be found in Refs. [20–24].

The perturbative cranking expression for the mass tensor
reads [3,25,26]

MCp = 1
4

[M (1)]−1M (3)[M (1)]−1, (56)

where the energy-weighted moment tensor

M
(K)
ij =

∑

αβ

〈0|Q̂i |αβ〉〈αβ|Q̂†
j |0〉

(Eα + Eβ)K
(57)

is written in the quasiparticle basis of HFB. In Eq. (57),
|αβ〉 is a two-quasiparticle wave function. In the canonical
approximation, one can express Eq. (57) by

M
(K)
ij ≈

∑

µν

〈µ|Q̂i |ν〉〈ν|Q̂†
j |µ〉

(Ĕµ + Ĕν)K
(η+

µν)2, (58)

where the sums run over the whole set of canonical states. This
expression resembles the standard BCS cranking expression
for the collective mass tensor [20–22,24], originally derived
for a phenomenological mean-field potential. In the following,
the corresponding mass tensor is denoted as MCpc

.
The above expressions for the mass tensor are valid for

one kind of fermions only. In the case of the cranking
approximation, the total mass tensor is a sum of neutron and
proton contributions:

MC
total = MC

n + MC
p . (59)

C. Gaussian overlap approximation

To compare cranking expressions with those obtained
within the GOA, it is convenient to introduce the S matrices
[27]:

S (K) = 1
4

[M (1)]−1M (K)[M (1)]−1. (60)

It is immediately seen that one has MCp = S (3). The GOA
mass tensor is given by [27,28]

MGOA = S (2)[S (1)]−1S (2). (61)

In the GOA, the total inverse inertia (MGOA
total )−1 for a

composite system is given as a sum of proton and neutron
inverse covariant inertia tensors [28]:

(
MGOA

total

)−1 =
(
MGOA

n

)−1 +
(
MGOA

p

)−1
. (62)

IV. THE MODEL

The calculations presented in this paper were performed by
using the SkM∗ energy density functional [29] in the particle-
hole channel. In the particle-particle channel we employed the
density-dependent pairing interaction in the mixed variant of
Refs. [30,31]:

Vτ ('r) = Vτ0[1 − ρ('r)/2ρ0]δ('r), (63)

where τ = n, p and ρ0 = 0.16 fm−1. To test the sensitivity
of results on pairing, we carried out both HF+BCS and HFB
calculations. The pairing interaction strengths were adjusted
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Since F is antisymmetric, we have obviously FT
+ = −F−,

which is fulfilled explicitly provided κT
+ = −κ−.

3. Calculation of derivatives

The collective mass involves either derivatives of the
density matrices or the mean-field potentials. It should be
stressed that these derivatives must be calculated in the original
single-particle basis |n〉, as the canonical basis (5) varies with
{qi}. In the following, we show how to evaluate the collective
derivatives in the one-dimensional case of a single collective
coordinate, the quadrupole deformation q. To this end, we
approximate the derivative of the density operator ρ or κ
at a deformation point q = q0 by means of the Lagrange
three-point formula for unequally spaced points q0 − δq, q0,
and q0 + δq ′ [11,12,19]:

(
∂ρ

∂q

)

q=q0

≈ −δq ′

δq(δq + δq ′)
ρ(q0 − δq) + δq − δq ′

δq δq ′ ρ(q0)

+ δq

δq ′(δq + δq ′)
ρ(q0 + δq ′). (54)

The corresponding matrix element in the canonical basis
can be expressed through the matrices Dnν of the canonical
transformation (5):
(

∂ρ

∂q

)

µν

≈ −δq ′

δq(δq + δq ′)

∑

n1n2

D∗
n1µ

[ρ(q0 − δq)]n1n2Dn2ν

+ δq − δq ′

δq δq ′ v2
µδµν

+ δq

δq ′(δq + δq ′)

∑

n1n2

D∗
n1µ

[ρ(q0 + δq ′)]n1n2Dn2ν .

(55)

It should be noted that the canonical matrix Dnν in the above
expression corresponds to the deformation point, q0, at which
the mass is evaluated. Furthermore, as mentioned above, the
density matrices at the three deformation points in Eq. (54)
need to be calculated using the single-particle basis |n〉 with
the same basis deformation.

B. Perturbative cranking approximation

The perturbative cranking approximation (ATDHFB-Cp)
has been widely used for the evaluation of the collective
mass tensor. In this approximation, apart from neglecting
the time-odd interaction terms in the ATDHFB equation and
off-diagonal matrix elements of the HFB energy matrix (42),
the derivatives are not explicitly evaluated. Instead, they are
obtained by using a perturbative approach, in which the
collective derivatives of the particle-hole potential, h,i , are
approximated by terms proportional to generator operators
Q̂i , rearrangement terms of the mean field are neglected [3],
and derivatives &,i and λ,i are neglected too [20]. A complete
description of the perturbative cranking model as applied to
the nuclear fission process can be found in Refs. [20–24].

The perturbative cranking expression for the mass tensor
reads [3,25,26]

MCp = 1
4

[M (1)]−1M (3)[M (1)]−1, (56)

where the energy-weighted moment tensor

M
(K)
ij =

∑

αβ

〈0|Q̂i |αβ〉〈αβ|Q̂†
j |0〉

(Eα + Eβ)K
(57)

is written in the quasiparticle basis of HFB. In Eq. (57),
|αβ〉 is a two-quasiparticle wave function. In the canonical
approximation, one can express Eq. (57) by

M
(K)
ij ≈

∑

µν

〈µ|Q̂i |ν〉〈ν|Q̂†
j |µ〉

(Ĕµ + Ĕν)K
(η+

µν)2, (58)

where the sums run over the whole set of canonical states. This
expression resembles the standard BCS cranking expression
for the collective mass tensor [20–22,24], originally derived
for a phenomenological mean-field potential. In the following,
the corresponding mass tensor is denoted as MCpc

.
The above expressions for the mass tensor are valid for

one kind of fermions only. In the case of the cranking
approximation, the total mass tensor is a sum of neutron and
proton contributions:

MC
total = MC

n + MC
p . (59)

C. Gaussian overlap approximation

To compare cranking expressions with those obtained
within the GOA, it is convenient to introduce the S matrices
[27]:

S (K) = 1
4

[M (1)]−1M (K)[M (1)]−1. (60)

It is immediately seen that one has MCp = S (3). The GOA
mass tensor is given by [27,28]

MGOA = S (2)[S (1)]−1S (2). (61)

In the GOA, the total inverse inertia (MGOA
total )−1 for a

composite system is given as a sum of proton and neutron
inverse covariant inertia tensors [28]:

(
MGOA

total

)−1 =
(
MGOA

n

)−1 +
(
MGOA

p

)−1
. (62)

IV. THE MODEL

The calculations presented in this paper were performed by
using the SkM∗ energy density functional [29] in the particle-
hole channel. In the particle-particle channel we employed the
density-dependent pairing interaction in the mixed variant of
Refs. [30,31]:

Vτ ('r) = Vτ0[1 − ρ('r)/2ρ0]δ('r), (63)

where τ = n, p and ρ0 = 0.16 fm−1. To test the sensitivity
of results on pairing, we carried out both HF+BCS and HFB
calculations. The pairing interaction strengths were adjusted
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FIG. 2. (Color online) Quadrupole mass parameter B(Q20) in
ATDHFB-C (triangles) along the static fission pathway of 256Fm
calculated in SkM∗+HFB as a function of the mass quadrupole
moment. The ATDHFB-C values are compared with those obtained
in the (a) perturbative cranking approximation ATDHFB-Cp and
perturbative-canonical cranking approximation ATDHFB-Cpc, (b)
canonical cranking approximation ATDHFB-Cc, and (c) Gaussian
overlap approximation ATDHFBGOA. The sEF-aEF bifurcation point
is marked by a vertical dashed line. The diabatic jumps between
various energy sheets around this point have been disregarded when
computing the collective inertia.

(ATDHFB-C) with the perturbative cranking approximation
(ATDHFB-Cp), the perturbative-canonical cranking approx-
imation (ATDHFB-Cpc), the canonical cranking approxima-
tion (ATDHFB-Cc), and the Gaussian overlap approximation
(ATDHFBGOA).

As seen in Fig. 2, the total ATDHFB-C mass exhibits
several maxima. The most pronounced peaks can be traced
back to configuration changes along the fission pathway seen
in Fig. 1(c) in the regions of large local variations in pairing
and HF energies that are indicative of changes in the shell
structure with elongation. The high-frequency fluctuations of
collective ATDHFB-C mass can be traced back to the imperfect
numerical convergence of HFB calculations. In the present
work, we assumed the accuracy of 0.001 MeV for the total
energy. If required, the precision of these calculations can be
increased at the expense of an appreciably higher CPU time.

It is interesting to see that the collective mass in ATDHFB-C
is very close to that obtained in ATDHFB-Cc. The peak-
like structures are considerably suppressed in ATDHFB-Cp,
ATDHFB-Cpc, and ATDHFBGOA due to the very approximate
treatment of density-matrix derivatives, i.e., the collective
momentum. It can thus be concluded that the exact treatment of
derivatives gives rise to less adiabatic behavior of the collective
mass. We also note that ATDHFB-Cp, ATDHFB-Cpc, and
ATDHFBGOA results follow each other with the ATDHFB-Cp

mass being systematically larger than that in ATDHFB-Cpc

and the ATDHFB-Cpc mass being systematically larger than
that in ATDHFBGOA. Interestingly, the ATDHFB-Cp variant
yields collective masses that differ from ATDHFB-C primarily
around the ground-state minimum and the first barrier. At large
elongations, beyond the bifurcation point, both approaches
produce fairly similar collective inertias.

In Ref. [12], the quadrupole collective mass was evaluated
in the canonical basis and exhibited a singular behavior
at certain deformation points. The primary reason for this
singularity was due to the pairing collapse at certain defor-
mations that resulted in an unphysical phase transition and
the presence of diabatic level crossings. In our work, the peak
structures are present at nonzero pairing and—as discussed
above—are related to the shell structure changes along the
fission pathways.

In order to highlight the differences between HFB and
HF+BCS treatments, Fig. 3 shows the quadrupole mass
B(Q20) obtained in these approaches in the region of the
ground-state minimum and both the inner and outer fission

FIG. 3. (Color online) Comparison between HFB and HF+BCS
variants of calculations: (a) ATDHFB-C and ATDBCS-C and (b)
ATDHFB-Cp, ATDHFB-Cpc, and ATDBCS-Cp. The sEF-aEF bifur-
cation point is marked by vertical dashed lines and arrows.
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(ATDHFBGOA).

As seen in Fig. 2, the total ATDHFB-C mass exhibits
several maxima. The most pronounced peaks can be traced
back to configuration changes along the fission pathway seen
in Fig. 1(c) in the regions of large local variations in pairing
and HF energies that are indicative of changes in the shell
structure with elongation. The high-frequency fluctuations of
collective ATDHFB-C mass can be traced back to the imperfect
numerical convergence of HFB calculations. In the present
work, we assumed the accuracy of 0.001 MeV for the total
energy. If required, the precision of these calculations can be
increased at the expense of an appreciably higher CPU time.

It is interesting to see that the collective mass in ATDHFB-C
is very close to that obtained in ATDHFB-Cc. The peak-
like structures are considerably suppressed in ATDHFB-Cp,
ATDHFB-Cpc, and ATDHFBGOA due to the very approximate
treatment of density-matrix derivatives, i.e., the collective
momentum. It can thus be concluded that the exact treatment of
derivatives gives rise to less adiabatic behavior of the collective
mass. We also note that ATDHFB-Cp, ATDHFB-Cpc, and
ATDHFBGOA results follow each other with the ATDHFB-Cp
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and the ATDHFB-Cpc mass being systematically larger than
that in ATDHFBGOA. Interestingly, the ATDHFB-Cp variant
yields collective masses that differ from ATDHFB-C primarily
around the ground-state minimum and the first barrier. At large
elongations, beyond the bifurcation point, both approaches
produce fairly similar collective inertias.

In Ref. [12], the quadrupole collective mass was evaluated
in the canonical basis and exhibited a singular behavior
at certain deformation points. The primary reason for this
singularity was due to the pairing collapse at certain defor-
mations that resulted in an unphysical phase transition and
the presence of diabatic level crossings. In our work, the peak
structures are present at nonzero pairing and—as discussed
above—are related to the shell structure changes along the
fission pathways.

In order to highlight the differences between HFB and
HF+BCS treatments, Fig. 3 shows the quadrupole mass
B(Q20) obtained in these approaches in the region of the
ground-state minimum and both the inner and outer fission
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imation (ATDHFB-Cpc), the canonical cranking approxima-
tion (ATDHFB-Cc), and the Gaussian overlap approximation
(ATDHFBGOA).

As seen in Fig. 2, the total ATDHFB-C mass exhibits
several maxima. The most pronounced peaks can be traced
back to configuration changes along the fission pathway seen
in Fig. 1(c) in the regions of large local variations in pairing
and HF energies that are indicative of changes in the shell
structure with elongation. The high-frequency fluctuations of
collective ATDHFB-C mass can be traced back to the imperfect
numerical convergence of HFB calculations. In the present
work, we assumed the accuracy of 0.001 MeV for the total
energy. If required, the precision of these calculations can be
increased at the expense of an appreciably higher CPU time.

It is interesting to see that the collective mass in ATDHFB-C
is very close to that obtained in ATDHFB-Cc. The peak-
like structures are considerably suppressed in ATDHFB-Cp,
ATDHFB-Cpc, and ATDHFBGOA due to the very approximate
treatment of density-matrix derivatives, i.e., the collective
momentum. It can thus be concluded that the exact treatment of
derivatives gives rise to less adiabatic behavior of the collective
mass. We also note that ATDHFB-Cp, ATDHFB-Cpc, and
ATDHFBGOA results follow each other with the ATDHFB-Cp
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and the ATDHFB-Cpc mass being systematically larger than
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around the ground-state minimum and the first barrier. At large
elongations, beyond the bifurcation point, both approaches
produce fairly similar collective inertias.
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in the canonical basis and exhibited a singular behavior
at certain deformation points. The primary reason for this
singularity was due to the pairing collapse at certain defor-
mations that resulted in an unphysical phase transition and
the presence of diabatic level crossings. In our work, the peak
structures are present at nonzero pairing and—as discussed
above—are related to the shell structure changes along the
fission pathways.
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HF+BCS treatments, Fig. 3 shows the quadrupole mass
B(Q20) obtained in these approaches in the region of the
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variants of calculations: (a) ATDHFB-C and ATDBCS-C and (b)
ATDHFB-Cp, ATDHFB-Cpc, and ATDBCS-Cp. The sEF-aEF bifur-
cation point is marked by vertical dashed lines and arrows.

054321-7

time-odd fields neglected Baran, Sheikh, Dobaczewski, Nazarewicz, 
Staszczak, PRC85(2012)024314

QUADRUPOLE COLLECTIVE INERTIA IN NUCLEAR . . . PHYSICAL REVIEW C 84, 054321 (2011)

by

K = 1
2

Tr(W0R2) + 1
4

Tr(W1R1)

= i

4
Tr

(
Ṙ0[R0,R1]

)
− 1

2
([R2,R0][W0,R0]) . (16)

In the usual ATDHFB treatment, the second term involving
R2 is neglected, and, in the case of one collective coordinate
q, the kinetic energy can be written in the familiar form:

K = 1
2 q̇2M, (17)

where the collective mass is given by

M = i

2q̇2
Tr(Ṙ0[R0,R1]) (18)

= i

2q̇
Tr

(
∂R0

∂q
[R0,R1]

)
. (19)

The trace in the above expression can easily be evaluated in the
quasiparticle basis. To this end, one can utilize the ATDHFB
equation [4–7]:

iṘ0 = [W0,R1] + [W1,R0]. (20)

In the quasiparticle basis, the matrices R0, W0, W1, R1, and
Ṙ0 are represented by the matrices G, E0, E1, Z , and F ,
respectively:

R0 = AGA†, (21)

W0 = AE0A†, (22)

W1 = AE1A†, (23)

R1 = AZA†, (24)

Ṙ0 = AFA†, (25)

where

A =
(

A B∗

B A∗

)
(26)

is the matrix of the Bogolyubov transformation, and

G =
(

0 0
0 1

)
, E0 =

(
E 0
0 −E

)
. (27)

ATDHFB equation (20) can now be written in the quasiparticle
basis as

iF = [E0,Z] + [E1 ,G]. (28)

This 2 × 2 matrix equation is, in fact, equivalent [7] to the
following equation:

iF = EZ + ZE + E1, (29)

where the antisymmetric matrices F , Z, and E1 are related to
F , Z , and E1:

F =
(

0 F

−F ∗ 0

)
, Z =

(
0 Z

−Z∗ 0

)
, (30)

[E1 ,G] =
(

0 E1

−E∗
1 0

)
. (31)

In the case of several collective coordinates {qi}, the
ATDHFB equation (20) must be solved for each coordinate:

iq̇i

∂R0

∂qi

=
[
W0,Ri

1

]
+

[
W i

1,R0
]
, (32)

and the collective mass tensor becomes

Mij = i

2q̇j

Tr
(

∂R0

∂qi

[
R0,Rj

1

])
. (33)

Then, in terms of the corresponding matrices F i and Zj , the
collective mass tensor is given by

Mij = i

2q̇i q̇j

Tr(F i∗Zj − F iZj∗). (34)

The expression (34) for the mass tensor contains the matrix Zi ,
which is associated with time-odd density matrix Ri

1 and can,
in principle, be obtained by solving the HFB equations with
time-odd fields. The time-odd fields have been incorporated
in mass-tensor calculations only in a limited number of cases.
For instance, in Ref. [11], time-odd fields have been included
in the HF study with a constraint of cylindrical symmetry. The
time-odd fields have also been incorporated in the HFB study
in an approximate iterative scheme with the collective path
based on the Woods-Saxon potential [7].

III. APPROXIMATIONS TO ATDHFB

This section contains the summary of various commonly
used approximations to the exact ATDHFB expression (34).

A. Cranking approximation

In most of the studies, the time-odd interaction matrix E1
appearing in Eq. (29) is neglected. In the following, this ap-
proximation will be referred to as the cranking approximation
(ATDHFB-C). In the absence of the term involving E1, the Z
matrix can be easily obtained in the quasiparticle basis from
the equation

− iF i
αβ = (Eα + Eβ)Zi

αβ , (35)

and the collective cranking mass tensor is given by

MC
ij = 1

2q̇i q̇j

∑

αβ

(
F i∗

αβF
j
αβ + F i

αβF
j∗
αβ

)

Eα + Eβ

. (36)

It should be noted that Eq. (35) is diagonal in the quasiparticle
basis |α〉 and not in the canonical basis |µ〉. The essential
input to the ATDHFB-C mass tensor (36) is the matrix F .
In the following, F is evaluated in both the canonical and
quasiparticle basis.

1. Canonical basis

To begin with, Eq. (25) can be written explicitly in terms
of the HFB eigenvectors:

Ṙ0 = q̇
∂

∂q

(
ρ0 κ0

−κ∗
0 1 − ρ∗

0

)

=
(

AFBT − B∗F ∗A† AFAT − B∗F ∗B†

BFBT − A∗F ∗A† BFAT − A∗F ∗B†

)

. (37)
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Local QRPA method
Hinohara, Sato, Nakatsukasa, Matsuo, 
Matsuyanagi,  PRC82(2010)064313

CHFB eq.

Local harmonic approximation at each state

δ〈φ(s)|ĤCHFB|φ(s)〉 = 0

✦collective mode generated self-consistently
✦time-odd effects taken into account

|φ(s)〉

H =
1

2

∑

kl

Mkl(s)ṡkṡl + Vcoll(s) (1)

s = (s1, s2, · · · ) = (β, γ, β3, · · · ) (2)

Vcoll(s) (3)

Mkl(s) (4)

infinitesimal displacement of the collective coordinates brings about a corresponding change

dsk =
∑

i

∂sk
∂qi

dqi (5)

∂sk
∂qi

=
∂

∂qi
〈φ(s)|ŝk|φ(s)〉

= 〈φ(s)|
[
ŝk,

1

i
P̂i(s)

]
|φ(s)〉

collective kinetic energy

T =
1

2

∑

i

(q̇i)
2

=
1

2

∑

i

∑

kl

∂qi
∂sk

∂qi
∂sl

ṡkṡl ≡
1

2

∑

kl

Mkl(s)ṡkṡl

|φ(s)〉

δ〈φ(s)|ĤCHFB|φ(s)〉 = 0

Vcoll(s) = 〈φ(s)|ĤCHFB|φ(s)〉

ĤCHFB = ĤHFB −
∑

i

µiŝi

δ〈φ(s)|[ĤCHFB, Q̂µ(s)]−
1

i
P̂µ(s)|φ(s)〉 = 0

δ〈φ(s)|[ĤCHFB,
1

i
P̂µ(s)]− Cµ(s)Q̂µ(s)|φ(s)〉 = 0

Vcoll(s) = 〈φ(s)|ĤHFB|φ(s)〉



Collective kinetic energy

Note that the infinitesimal displacement of the collective coordinates brings about 
a corresponding change;

not in need of numerical derivative

derivative w.r.t. the collective coordinate 

T =
1

2

∑

i

(q̇i)
2

=
1

2

∑

i

∑

kl

∂qi
∂sk

∂qi
∂sl

ṡkṡl ≡
1

2

∑

kl

Mkl(s)ṡkṡl

dsk =
∑

i

∂sk
∂qi

dqi

H =
1

2

∑

kl

Mkl(s)ṡkṡl + Vcoll(s) (1)

s = (s1, s2, · · · ) = (β, γ, β3, · · · ) (2)

Vcoll(s) (3)

Mkl(s) (4)

infinitesimal displacement of the collective coordinates brings about a corresponding change

dsk =
∑

i

∂sk
∂qi

dqi (5)

qi (6)

∂sk
∂qi

=
∂

∂qi
〈φ(s)|ŝk|φ(s)〉

= 〈φ(s)|
[
ŝk,

1

i
P̂i(s)

]
|φ(s)〉

collective kinetic energy

T =
1

2

∑

i

(q̇i)
2

=
1

2

∑

i

∑

kl

∂qi
∂sk

∂qi
∂sl

ṡkṡl ≡
1

2

∑

kl

Mkl(s)ṡkṡl

|φ(s)〉

δ〈φ(s)|ĤCHFB|φ(s)〉 = 0

∂sk
∂qi

=
∂

∂qi
〈φ(s)|ŝk|φ(s)〉

= 〈φ(s)|
[
ŝk,

1

i
P̂i(s)

]
|φ(s)〉



Numerical implementation with use of Skyrme EDF

CHFB eq. in cylindrical coordinates assuming the axial, reflection symmetries

Mean field (ph) and pair field (pp):

LQRPA eq. in the matrix form (P-Q representation)

(A+B)(A−B)Qµ = ω2
µQµ

E[!(r), !̃(r)]

r = (ρ, z,φ)(
h(rσ)− λ h̃(rσ)

h̃(rσ) −h(rσ) + λ

)(
ϕ1,α(rσ)

ϕ2,α(rσ)

)
= Eα

(
ϕ1,α(rσ)

ϕ2,α(rσ)

)

h =
δE

δ"
− µq20, h̃ =

δE

δ"̃

(A− B)Qµ =
1

i
Pµ

(A+B)
1

i
Pµ = ω2

µQµ

applicable to the situation where the 
eigen-frequencies of the local normal 
modes are imaginary

β constraint

KY, Hinohara, PRC83(2011)061302(R)

Skyrme + pairing EDF:



Quadrupole collective mass                in the LQRPA

•choose “the most collective mode” out of numerous eigenmodes

practically, the mode possessing the smallest quadrupole mass 
in the low-frequency region of ω2

i < 15 MeV2

•calculate the quadrupole collective mass

ω2
i < 15 MeV2

M−1
Q20Q20

(β) =

∣∣∣∣〈φ(β)|[Q̂20,
1

i
P̂i(β)|φ(β)〉

∣∣∣∣
2

=

[
2

i

∑

αα′

q20,αα′Pi,αα′(β)
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CHFB calculation: MPI parallelization

use of N processors

proc.
N/2+1

proc.
N

proc.
N/2

proc.
2

proc.
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neutrons protons

densities, hamiltonians

proc.
N/2+1

proc.
N

proc.
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proc.
2

proc.
1

proc.
1

iterations: Broyden
Baran et al., 
PRC78(2008)014318

diagonalization w/ lapack: dgeev



2D-block cyclic distribution for load balancing
ScaLAPACK

function: indxl2g for distribution
subroutine: pdsyev for diagonalization

QRPA: use of N processors
matrix elements of the QRPA eq.:

QRPA calculation on parallel computer: MPI and BLACS

Ex. dim. : 50,000 for K=0 in 240Pu

matrix element: 14,000 secs          7,000 secs             3,600 secs  
diagonalization: 1,400 secs             740 secs                 680 secs
inversion           :  21 secs                   15 secs                   13 secs

w/ 512 cores      1024 cores            2048 cores  
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LQRPA and ATDHFB-Cranking masses in 256Fm
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using HFODD

A. BARAN et al. PHYSICAL REVIEW C 84, 054321 (2011)

to reproduce the neutron and proton ground-state pairing gaps
in 252Fm [32]. In HFB, to truncate the quasiparticle space,
we adopted the commonly used quasiparticle-cutoff value of
60 MeV in the equivalent energy spectrum [33]. As discussed
in Refs. [34,35], such a large value of cutoff together with
the appropriate renormalization of pairing strength guarantees
the stability of HFB results. The resulting pairing strengths
(in MeV fm3) are Vn0 = −268.9 and Vp0 = −332.5. In the
HF+BCS variant, we took the lowest Z (or N ) single-particle
HF levels in pairing calculations with Vn0 = −372.0 and
Vp0 = −438.0 [36].

The one-dimensional collective pathway, determined by the
axial mass quadrupole moment q = Q20, was obtained by
means of the self-consistent constrained calculations with the
symmetry-unrestricted HFB solver HFODD [37] capable of
treating simultaneously all the possible collective degrees of
freedom that might appear on the way to fission. We stress
here that the self-consistent method guarantees that all other
deformations Qλµ for λµ "= 20 correspond always to a mini-
mized total energy and take values depending on the shape of
the optimum collective path. The driving quadrupole moment
q = Q20 is used only as a suitable parameter enumerating
consecutive points of the one-dimensional collective path in a
multidimensional configuration space.

The single-particle basis consisted of the lowest 1140
stretched states originating from the lowest 26 major oscillator
shells. As discussed earlier [38], such a basis fully guarantees
the stability of HFODD results. All canonical states obtained
in HFB/HF+BCS were taken to compute the mass tensor, i.e.,
no further truncations were made.

The derivatives of the density matrices and the mean-field
potentials have been obtained using the Lagrange formula (54),
which requires the knowledge of self-consistent solutions in
several neighboring deformation points. We have evaluated the
density matrices for quadrupole deformations ranging from
Q20= 0 to 310 b in steps of 1 and 3 b. The derivatives
were obtained by using the three-point Lagrange formula (55)
and also the five-point Lagrange formula [19]. The results
for collective mass obtained with three-point and five-point
expressions differ only in the third significant place; hence,
in the following, we shall stick to the three-point Lagrange
formula.

It needs to be stressed that—to guarantee consistent
labeling of canonical states—the underlying single-particle
basis should be identical for all three or five points in-
volved in the derivative evaluation. This was achieved by
performing HF+BCS or HFB calculations using the same
basis deformation for all neighboring points; that is, three
or five paths have to be, in practice, determined. In order
to guarantee the high accuracy of numerical derivatives, the
constrained solutions were obtained on the Q20 mesh by using
either quadratic constraints or by applying the augmented
Lagrangian method (ALM) where both quadratic and linear
constraints are employed. Our implementation of ALM [18]
significantly improves the accuracy of computed derivatives
and is well adapted to supercomputer applications. (For other
implementations, see references cited in Ref. [18], in particular
Refs. [39,40], where a similar method was adopted in the
context of fission.)

V. RESULTS

This section contains examples of calculations illustrating
various approximations to the collective quadrupole inertia
B(Q20) = MQ20Q20 along the static fission path of 256Fm. The
general properties of the fission pathway of this nucleus were
studied in our previous work [32] using the SkM∗-HF+BCS
approach with the seniority pairing interaction. (For other
self-consistent fission calculations in the Fm region, see
Refs. [41–43].) It has been found that beyond the first barrier,
at Q20 ≈ 130 b, a reflection-asymmetric path corresponding
to asymmetric elongated fragments branches away from the
symmetric valley. Our HFB calculations displayed in Fig. 1
are consistent with this result. Except for the bifurcation
point, the one-dimensional total-energy curve along the path
to fission shown in Fig. 1(a) behaves fairly smoothly in spite
of the single-particle configuration changes clearly seen in
the particle-hole (HF) contribution to energy displayed in
Fig. 1(c). Because of pairing correlations, these changes are
adiabatic in character [14,44]. Indeed, as seen Fig. 1(b), the
pairing energy does compensate for the mean-field variations
by smoothing out single-particle crossings around the Fermi
level that result from intersections of close-lying energy sheets.

For the self-consistent solutions determined along the
fission pathway, we calculate the collective quadrupole mass
parameter B(Q20) using various approximations described in
Sec. III. First, we discuss results obtained within the HFB
formalism. Figure 2 compares the results of the nonper-
turbative cranking approach in the full quasiparticle basis

(a)

(b)

(c)

FIG. 1. (Color online) (a) Total SkM∗+HFB energy. (b) Neutron
(n), proton (p), and total (tot) pairing energies. (c) Particle-hole
energy calculated along the static fission pathway for 256Fm. At
Q20 ≈ 130 b, a reflection-asymmetric path (aEF) branches away from
the symmetric pathway (sEF). The bifurcation point is marked by a
vertical dashed line.
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to reproduce the neutron and proton ground-state pairing gaps
in 252Fm [32]. In HFB, to truncate the quasiparticle space,
we adopted the commonly used quasiparticle-cutoff value of
60 MeV in the equivalent energy spectrum [33]. As discussed
in Refs. [34,35], such a large value of cutoff together with
the appropriate renormalization of pairing strength guarantees
the stability of HFB results. The resulting pairing strengths
(in MeV fm3) are Vn0 = −268.9 and Vp0 = −332.5. In the
HF+BCS variant, we took the lowest Z (or N ) single-particle
HF levels in pairing calculations with Vn0 = −372.0 and
Vp0 = −438.0 [36].

The one-dimensional collective pathway, determined by the
axial mass quadrupole moment q = Q20, was obtained by
means of the self-consistent constrained calculations with the
symmetry-unrestricted HFB solver HFODD [37] capable of
treating simultaneously all the possible collective degrees of
freedom that might appear on the way to fission. We stress
here that the self-consistent method guarantees that all other
deformations Qλµ for λµ "= 20 correspond always to a mini-
mized total energy and take values depending on the shape of
the optimum collective path. The driving quadrupole moment
q = Q20 is used only as a suitable parameter enumerating
consecutive points of the one-dimensional collective path in a
multidimensional configuration space.

The single-particle basis consisted of the lowest 1140
stretched states originating from the lowest 26 major oscillator
shells. As discussed earlier [38], such a basis fully guarantees
the stability of HFODD results. All canonical states obtained
in HFB/HF+BCS were taken to compute the mass tensor, i.e.,
no further truncations were made.

The derivatives of the density matrices and the mean-field
potentials have been obtained using the Lagrange formula (54),
which requires the knowledge of self-consistent solutions in
several neighboring deformation points. We have evaluated the
density matrices for quadrupole deformations ranging from
Q20= 0 to 310 b in steps of 1 and 3 b. The derivatives
were obtained by using the three-point Lagrange formula (55)
and also the five-point Lagrange formula [19]. The results
for collective mass obtained with three-point and five-point
expressions differ only in the third significant place; hence,
in the following, we shall stick to the three-point Lagrange
formula.

It needs to be stressed that—to guarantee consistent
labeling of canonical states—the underlying single-particle
basis should be identical for all three or five points in-
volved in the derivative evaluation. This was achieved by
performing HF+BCS or HFB calculations using the same
basis deformation for all neighboring points; that is, three
or five paths have to be, in practice, determined. In order
to guarantee the high accuracy of numerical derivatives, the
constrained solutions were obtained on the Q20 mesh by using
either quadratic constraints or by applying the augmented
Lagrangian method (ALM) where both quadratic and linear
constraints are employed. Our implementation of ALM [18]
significantly improves the accuracy of computed derivatives
and is well adapted to supercomputer applications. (For other
implementations, see references cited in Ref. [18], in particular
Refs. [39,40], where a similar method was adopted in the
context of fission.)

V. RESULTS

This section contains examples of calculations illustrating
various approximations to the collective quadrupole inertia
B(Q20) = MQ20Q20 along the static fission path of 256Fm. The
general properties of the fission pathway of this nucleus were
studied in our previous work [32] using the SkM∗-HF+BCS
approach with the seniority pairing interaction. (For other
self-consistent fission calculations in the Fm region, see
Refs. [41–43].) It has been found that beyond the first barrier,
at Q20 ≈ 130 b, a reflection-asymmetric path corresponding
to asymmetric elongated fragments branches away from the
symmetric valley. Our HFB calculations displayed in Fig. 1
are consistent with this result. Except for the bifurcation
point, the one-dimensional total-energy curve along the path
to fission shown in Fig. 1(a) behaves fairly smoothly in spite
of the single-particle configuration changes clearly seen in
the particle-hole (HF) contribution to energy displayed in
Fig. 1(c). Because of pairing correlations, these changes are
adiabatic in character [14,44]. Indeed, as seen Fig. 1(b), the
pairing energy does compensate for the mean-field variations
by smoothing out single-particle crossings around the Fermi
level that result from intersections of close-lying energy sheets.

For the self-consistent solutions determined along the
fission pathway, we calculate the collective quadrupole mass
parameter B(Q20) using various approximations described in
Sec. III. First, we discuss results obtained within the HFB
formalism. Figure 2 compares the results of the nonper-
turbative cranking approach in the full quasiparticle basis

(a)

(b)

(c)

FIG. 1. (Color online) (a) Total SkM∗+HFB energy. (b) Neutron
(n), proton (p), and total (tot) pairing energies. (c) Particle-hole
energy calculated along the static fission pathway for 256Fm. At
Q20 ≈ 130 b, a reflection-asymmetric path (aEF) branches away from
the symmetric pathway (sEF). The bifurcation point is marked by a
vertical dashed line.
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Summary

Collective mass parameters for the quadrupole vib.
calculated by use of the LQPRA method w/Skyrme EDF

Time-odd components are included
strongly dependent on the structure of the vacua

more than twice at most as large as the perturbative-cranking mass

2qp excitation sensitive to the shell structure

M cr
Q20Q20

(β) =
1

2
[S(−1)]−1S(3)[S(−1)]−1

S(K) =
∑

αα′

|q20,αα′ |2

(Eα + Eα′)K

0!ω



Perspective

Application to spontaneous fission dynamics
LQRPA on top of the triaxial and octupole deformed states

3D-QRPA code is needed

Deeper understanding of the mass parameter microscopically
in terms of the quasiparticle excitation

HFODD + parallelized m-FAM may be a practical way for it(?)
m-FAM:
Avogadro, Nakatsukasa, PRC87(2013)014331

Benchmark is needed
among the LQRPA, ATDHFB(-Cranking), GCM-GOA masses
Quadrupole mass parameters on the symmetric path way


