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Talk Outline 

n  Introduction: a “Renaissance” of Nuclear Fission Research at LANL 
•  New theoretical efforts, new experimental devices, why? 
•  Both fundamental and applied science is being carried out 

n  Goals 
•  From phenomenological and adjusted to more fundamental and predictive 
•  “Putting it together” 

n  Topics of research 
•  Fission cross-sections 
•  Fission fragment yields 
•  Post-scission: prompt fission neutrons and γ rays; β-delayed n and γ rays. 
•  Fission recycling in nuclear astrophysics 
•  UQ associated with all data to be delivered 
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“Renaissance” of Nuclear Fission Research at LANL 

n  Los Alamos Neutron Science Center: 
•  Time-Projection Chamber, DANCE, Chi-Nu, SPIDER 

n  T-2 Theory & Modeling efforts 
•  Fission cross sections, fission fragment yields, prompt 

fission neutrons and γ rays, β-delayed neutrons and γ 
rays, astrophysics reaction networks 

n  X-CP Transport Calculations 

n  Uncertainty Quantification 
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Why? 

n  We don’t know everything yet!... Duh… 
•  Not such a trivial statement 
•  Quality of evaluated nuclear data– oversold  
•  Compensating errors in integral benchmarks (e.g., keff in Jezebel) 
•  Lack of predictive power 

n  New applications and new requirements for existing applications 
•  Future reactors (new fuel compositions, new geometries, etc.) 
•  Existing fuel cycle (safety, waste management, etc.) 
•  Non-proliferation, attribution, etc. 
•  Astrophysics (reaction networks) 
•  Uncertainty Quantification 

n  New capabilities: Experimental & Computing 

n  Fundamental & Applied Research 
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Two overarching goals 

From  
Phenomenological and Adjusted 

 to 
 more Fundamental and Predictive 

 

“Putting it all together” 
Fission cross sections 
Fission fragment yields 

Fission fragment angular distributions 
Prompt fission neutrons 
Prompt fission photons 

(β-delayed neutrons and photons) 

(right now, a different model for each fission data type) 
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FISSION CROSS SECTIONS 
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Fission Cross Sections 
Status of Evaluated Models & Data 

n  Fission Cross Sections 
•  Compound nucleus (Hauser-Feshbach) reaction theory 
•  Non-statistical corrections (pre-equilibrium, width fluctuation corrections, …) 
•  Multi-modal fission 
•  Approximate treatments of class-II states 
•  Fission barrier heights and widths, level densities, etc., fitted to measured cross 

sections 

Slide 8 M.Herman et al., Nuclear Data Sheets 108, 2655 (2007) 

Limitations? 
§  One-dimension 

§  Fitted barrier heights, widths, 
transition states, level densities, … 

§  Not predictive 

§  Lack of consistency between 
different isotopes and entrance 
channels, e.g., (γ,f), (t,pf) 
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Fission Transition States 

n  Original idea of A. Bohr (1959) following the experimental observation of 
strong anisotropies in fission fragment angular distributions 
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Anisotropy with increasing E* 
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R-Matrix Approach to Fission Cross Section Modeling 

n  S.Bjørnholm and J.E.Lynn, Rev. Mod. Phys. 52, 725 (1980) 

n   Presence of 2nd well à Coupling between class-I and class-II states 

Slide 11 

 0

 5

 10

 15

 20

 500  1000  1500  2000  2500  3000

Fi
ss

io
n 

C
ro

ss
 S

ec
tio

ns
 (b

)

Incident Neutron Energy (eV)

n+240Pu
Weston, 1984

Migneco, 1968

 0
 1
 2
 3
 4
 5

 1380  1390  1400  1410  1420  1430  1440



Operated by Los Alamos National Security, LLC for NNSA 

U N C L A S S I F I E D 

INT 13-3, Oct. 1, 2013, Seattle, WA 

R-Matrix (cont’d) 

n  Hauser-Feshbach formula has to be modified 
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Width Fluctuation 
Correction Factor 

�nf =
X

J⇡

�J⇡

c ⇥ TfP
c Tc

⇥Wcf ⇥WII

Correction Factor 
due to 2nd well 

n  Many approximate solutions exist 

n  Most accurate approach:  
Monte Carlo sampling of Class-I and 
Class-II states characteristics, and of 
their coupling matrix elements 

n  Consistent approach throughout a 
suite of Pu isotopes: O.Bouland, J.E.Lynn, 
P.Talou, to appear in Phys. Rev. C (2013) 
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FISSION FRAGMENT YIELDS 
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See talks by Arnie Sierk, Jørgen Randrup, Peter Möller, 
Noël Dubray, Nicolas Schunck, etc. 
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SPectrometer for Ion DEtermination  in fission Research 
(SPIDER) at LANSCE- F.Tovesson et al. 

n  2E-2v method 

n  Time-of-Flight 

n  Ionization chambers to measure E of FF  
(0.5-1% energy resolution); dE/E to 
estimate Z 

n  Multiple detectors to increase efficiency 
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PROMPT FISSION NEUTRONS 
AND PHOTONS 
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Prompt Fission Neutrons and Photons 
Status of Evaluated Models & Data 

n  Prompt fission neutrons 
•  “Los Alamos” or “Madland-Nix” model 

D.G.Madland and J.R.Nix, Nucl. Sci. Eng. 81, 213 (1982) 
•  Fits with Watt spectra 

n  Prompt fission photons 
•  Experimental data only 

n  Recent review of existing experimental data 
•  Neudecker et al., LA-UR-13-24743, revealed many problems with past experiments 

n  International efforts underway 
•  IAEA Coordinated Research Project on “Prompt fission neutron spectra of 

actinides”, IAEA Secretary: R.Capote-Noy. 
•  CIELO International Evaluation Project 
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Prompt Fission Neutron Spectrum (PFNS) 

n  Chi-Nu experimental efforts to measure 
low- and high-energy tails of the PFNS 
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v  n+239Pu PFNS for En from 0.5 to 30 MeV 

v  5% uncertainty between 50 keV and 12 
MeV emitted neutron energy 

v   Double ToF experiment + angular info 

v   ~ 60 Liquid scintillators + 6Li-glass 
detectors 
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Theoretical & Evaluation Work on PFNS  
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n  Original and extended versions 
D.G.Madland and J.R.Nix, Nucl. Sci. Eng. 81, 213 (1982) 
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n  Bayesian statistical technique to 
combine experimental data and model 
calculations 
M.E.Rising, P.Talou, T.Kawano and A.K.Prinja, 
Nucl. Sci. & Eng. 175, 81-93 (2013). 

n  Very successful model used in most 
evaluated libraries 

n  Limitations: 
•  Only average spectrum and multiplicity 
•  Strong physical assumptions 
•  Difficult to extend to other quantities 
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Monte Carlo Hauser-Feshbach Simulations 

n  Each fission fragment = Compound nucleus with E*~10-15 MeV 

n  Hauser-Feshbach statistical theory 
•  Two main open emission channels: neutrons and photons 

Light charged particle emissions are negligible due to Coulomb barrier 

n  LANL Code: CGM/F 
•  Deterministic and Monte Carlo modes 
•  Written in C++, MPI-parallel instructions 
•  Similar to DICEBOX at lowest excitation energies 
•  Other similar codes: FREYA (LBNL-LLNL), FIFRELIN (CEA), GEF (Schmidt), … 

n  Calculated Quantities: 
•  Deterministic: Average γ-ray spectrum and multiplicity 
•  Monte Carlo: Set of histories with exact decay path à distributions, correlations, 

etc. 
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CGMF: The Mechanics 
n  Hauser-Feshbach Statistical Theory 
n  Calculate neutron and photon emission probabilities 
n  Sample probability distributions at each step of the decay 
n  Record Monte Carlo histories of fission events 
n  Perform statistical analyses of results 

Slide 21 

²  CGMF –i 98252 –e 0.0 –n 100000 è output: history file: 

Z, A, Ui, Ji, πi, KEi, Nν, Nγ, …  
Neutrons: ε1

cm, θ1
cm, E1

lab, θ1
lab, ε2

cm, θ2
cm, E2

lab, θ2
lab,… 

Gammas: ε1
cm, θ1

cm, E1
lab, θ1

lab, ε2
cm, θ2

cm, E2
lab, θ2

lab, … 

times 100,000 times 2, in this case 
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Prompt Neutron and Photon Emissions 

n  Gamma emission: 
•  Gamma-ray strength function  
•  Transmission coefficients:  

 
 

•  E1, M1, E2 only 

n  Neutrons: 
•  Optical model calculations 
•  Koning-Delaroche (spherical) OMP, 2003 
•  Transmission coefficients: 

n  Emission Probabilities:  
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Level Density & Low-Lying Nuclear Structure 

n  Gilbert-Cameron-Ignatyuk 
•  Constant-temperature at low E* 
•  Fermi-gas at higher E* 
 

n  Poorly known low-lying levels 
for many isotopes of interest 
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Most probable fission 
fragment for A=115 

Stable isotope 105Rh ? 
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Primary Fission Fragment Yields 

n  Theoretical Predictions: 
•  FRLDM + random walk (Randrup-Möller) +  

Langevin (Sierk), … 
•  HFB: Younes et al. (LLNL), Dubray et al.  

(CEA-BRC), … 

n  For now, use of experimental data 
•  Y(A,TKE) often inferred from post-neutron emission fragment yields 
•  Very limited data available, mostly for thermal neutrons and spontaneous fission 
•  Questionable results at higher excitation energies (lack of <ν>(A,TKE) knowledge) 

n  Initial conditions:  
•  ρi(U,J,π) 
•  Excitation energy partitioning between the two fragments 
•  Production of fragment angular momentum 

Slide 24 

nth+235U 
(Romano, Danon et al., 2010) 
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Fission Fragment Initial Conditions 
in Excitation Energy and Angular Momentum 

n  Initial Excitation Energies 
•  For a given fragment pair 

 
•  Sharing of TXE between light and heavy fragments à 

  

n  Initial Angular Momentum Distributions 
•  Total angular momentum conservation 
•  Initial distribution in fragments: 

 
 
 
with  
 
Ι0 is the moment of inertia of the fragment (A,Z) in its ground-state. 
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Prompt Neutron Multiplicity <ν>(A) and P(ν) 
Example of 252Cf (sf) 
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<ν>calc=3.78 vs. <ν>std=3.7606 
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Average Prompt Fission Neutron Spectrum 

n  252Cf (sf) PFNS is a “standard” (Mannhart, 1989) 

n  Difficulty to reproduce low-outgoing energy tail 

n  CGMF calculations better at low-energy but too soft at high energies 
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Prompt Photon Spectrum 
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Impact of α (<Ji>)  

n  The α-parameter impacts directly 
the spin-dependent initial 
population of the fragments. 
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Isomeric Ratios 

n  Using measured 
ratios of isomer to 
ground-state to infer 
initial Jrms 

n  Very mixed results 

n  Very sensitive to 
(often unknown) 
detailed nuclear 
structure 
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to appear in Phys. Rev. C (2013) 
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Prompt Gamma Rays in DANCE 

J.Ullmann et al.,  
“Prompt Gamma-Ray Production in Neutron-Induced 
Fission of 239Pu”, Phys. Rev. C 87, 044607 (2013). 
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239Pu (n,f) 

M.Jandel et al.,  
“Prompt Gamma-Ray Emission in Neutron-Induced 
Fission of 235U,” to be submitted to PRC. 

235U (n,f) 
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Final Remarks 

n  A lot of research work on nuclear fission being performed 

n  For both fundamental research and applied needs 

n  Some examples: 
•  Fission Cross Sections 

—  Fundamental: determine fission probabilities from robust determination of 
fission paths characteristics (level densities, transition states, K-mixing, etc.) 

—  Applied: need predictive, consistent, and accurate capabilities (strong impact 
on integral benchmarks) 

•  Fission Fragment Yields 
—  Fundamental: stringent tests for static and dynamic fission models 
—  Applied: fission product yields as a diagnostic for Pu burnup 

•  Prompt Fission Neutrons and Photons 
—  Fundamental: compound nucleus physics, dynamic vs. evaporation, scission 

neutrons? 
—  Applied: strong impact on benchmarks (part of the compensating error picture) 
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LANL Collaborators 
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u  T-2:   
T.Kawano, I.Stetcu, P.Möller, A.J.Sierk, A.C.Hayes, J.E.Lynn*, 
D.G.Madland* 

u  X-CP: 
M.B.Chadwick, M.C.White, J.Lestone, M.E.Rising 

u  LANSCE-NS:  
F.Tovesson, A.Laptev, R.Meharchand, R.C.Haight, H-Y. Lee, 
A.Couture, S. Mosby 

u  C-NR:  
M.Jandel, J.Wilhelmy* *LANL Consultants 


