Calculation of Antineutrino Fluxes Using ENDF/B-VII.1

Alejandro Sonzogni, Libby Mc Cutchan, Tim Johnson National Nuclear Data Center

a passion for discovery

β- decay from Level *i* to level *k*

Z+1,N-1Nucleus

Spectrum for each transition: $S(Q-Ek, J_i\pi_i, J_k\pi_k)$

Spectrum for decay $\sum I_k S(Q-Ek, J_i \pi_i, J_k \pi_k)$

All nuclear decay data from ENDF/B-VII.1 (December 2011)

Example, 137Cs

Brookhaven Science Associates

Antineutrinos #3 - Alejandro Sonzogni

Fission of an actinide nuclide can produce a large number of fission products

236U has Z/N=92/144=0.64, around Z=50, the valley of stability has Z/N=50/70=0.71 as a result, most fission products are neutron rich and undergo beta-minus decay

Antineutrinos #4 - Alejandro Sonzogni

How to calculate anti-neutrino rates

The nuclei in the core form a decay/processing network:

 $\frac{dN_i}{dt} = r(t)FY_i - \lambda_i N_i + \sum \lambda_{ik} N_k - \Phi_n(t)\sigma_i N_i + \Phi_n(t)\sum \sigma_{ik} N_k$

Neglect processing as $\Phi_n \sigma \ll \lambda$ and consider an equilibrium situation:

Then the anti-neutrino rate per fission is:

$$S(E) = \sum \lambda_i N_i S_i(E) / r = \sum CFY_i S_i(E)$$

Used by Vogel *et al*, 1981, ENDF/B-V

NNDC

We'll repeat the calculations using the fission yields from the JEFF library

Pandemonium effect in β**- decay**

Incomplete decay schemes lead to more energetic βand anti-neutrino spectra

TAGS (Total Absorption Gamma Spectrometers) experiments, large efficiency, poor energy resolution.

104Tc Beta feeding TAGS vs Ge high resolution data

Tengblad's data

Rudstam *et al.*, At.Data Nucl.Data Tables 45, 239 (1990)

Measured beta and gamma single spectra for the decay of 80+ fission products

Gammas measured in a NaI(TI) crystal.

Electrons measured in a Plastic (ΔE) plus HPGe(E) and Si(Li) with Plastic (veto) telescopes

The obtained mean energies are very useful for decay heat calculations

Brookhaven Science Associates

Use of theory for incomplete decay data

We have used results from the CGM code, T. Kawano, LANL

- Beta strength functions from QRPA calculations by P. Moller (allowed transitions only)
- Hauser-Fesbach calculations to model gamma vs neutron competition
- Q-values from the 2012 Atomic Mass Evaluation

Results for 235-U at thermal energies

Results for 235-U at thermal energies

Intensity

ENDF/B-VII.1 vs JEFF-3.1 Fission Yields effect

Results for 239-Pu at thermal energies

Results for 239-Pu at thermal energies

Results for 241-Pu at thermal energies

Results for 241-Pu at thermal energies

Antineutrino flux ratios for 235-U at thermal energies

Brookhaver science Associates

Antineutrino flux ratios for 239-Pu at thermal energies

Antineutrino flux ratios for 241-Pu at thermal energies

Anti-neutrino Signal, neutrino spectrum x cross section

Antineutrinos #22 - Alejandro Sonzogni

NNDC calculations on the Daya-Bay signal shape = spectrum x cross section

Brookhaven Science Associates

Summary

There is a close link between basic nuclear structure research and the calculation of antineutrino spectra.

We think there is a strong need of higher-quality decay data from neutron-rich nuclides to fully understand the anti-neutrino spectra from nuclear reactors.

238U(n,f) beta spectrum is the missing piece to understand the anomaly issue.

