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Background

45 years of research at LANL calculat-

ing nuclear potential energies and

dynamical models of fission has

matured to the level that we think a

quantitatively predictive fission

model is feasible. ‘



Background II

The Approach:

Solve Dynamical Equations for the

Fissioning Nucleus

1. The relevant degrees of freedom for

fission are the nuclear shape.

2. Use the Macroscopic-Microscopic

method to calculate the potential

energy of the nucleus as a function

of its shape.

3. Do Monte-Carlo modeling of the

trajectories of fissioning nuclei in a

multidimensional space of shape

coordinates.



4. Accumulate distributions of

dynamical properties of the fragments

before neutron evaporation starts.



Background III

Why not a microscopic model?

Self-consistent density functional

theory—DFT

1. DFT is still phenomenological, while

having the decided advantage of

allowing the effective one-body

potential to be defined self-consistently.

2. NR HFB models require an arbitrary

spin-orbit strength.

3. A competitive global reproduction

of nuclear masses, deformations, and

ground-state spins has not been

accomplished.



4. Nuclear surface properties are wrong

(large curvature energy); leads to

too high fission barriers for lighter

systems.

5. Essentially no novel predictions from

this approach (yet).

6. Difficult to calculate. A factor of

104–105 more computation time

than our methods.

7. No way is known to unambiguously

determine a fission saddle point.



Background IV

Why we are sanguine about a

predictive dynamical model of

primary fission-product properties.

1. Predictive success of the Los Alamos

global nuclear structure model,

2. Predictive success of the Los Alamos

nuclear dynamics model with

modified surface dissipation,

3. Predictive success of the semi-

dynamical fission model of

Randrup and Möller.



Los Alamos Global Nuclear

Structure Model

Nix and Möller ∼1970–2013

1. Parametrize the nuclear shape

(5–8 parameters),

2. Calculate the macroscopic energy,

3. Calculate the microscopic correction

energy,

4. Find the compact shape with a

local minimum in the energy

(ground-state mass and shape),

5. Vary parameters of the macroscopic

energy model to minimize deviations

from experimental masses,



6. Möller-Nix nuclear mass model;

2012 version has rms theory error

of 0.559 MeV for 2183 masses from

AME 2003; predicts 154 masses from

AME 2012 with rms error 0.569 MeV,

7. Comparable reproduction of fission-

barrier properties,

8. Predicts deformations of ground states,

shape isomers, and saddle points.
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Five Essential Fission Shape Coordinates

M1 M2

⇒  5 315 625 grid points − 306 300 unphysical points

⇒  5 009 325 physical grid points
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Mean Dissipative Dynamical

Trajectories

1. Potential energy vs. shape from

macroscopic part of LAGNS model,

2. Define an inertia tensor for

dynamical shape changes,

3. Define a dissipation tensor giving

the damping of shape motion into

internal excitations (heat),

4. Calculate dynamical trajectories of

the fission process,

5. Leads to average fragment TKE,

average fragment excitation energy

after separation,



6. TKE for symmetric fission reproduced

with chi-squared per point = 3.6

with NO fitting.
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Stochastic Dynamics

Something is missing.

The Fluctuation-Dissipation Theorem

implies that along with damping, a

stochastic force acts on a system.

The semi-dynamical model of Randrup

and Möller (2011):

Start near the saddle point and ran-

domly evolve over the potential-energy

surface with thermal weighting.

• Time has a direction, but not a

magnitude,

• Predict mass distributions,

• No information about energies of

fragments.
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Exp. 239Pu(n,f)        

Rsc = 2.5 fm 
(all panels) 

Calc. (6.84 MeV) 240Pu 
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Full Dynamical Model

Solve multi-dimensional Langevin

dynamical equations:

dqj
dt

= ∂H
∂pj

= ∂(T+V )
∂pj

=
∂(12M

−1
ik pipk)

∂pj

dp
dt

= −
∂V
∂q

+ 1
2
∂M
∂q

q̇q̇ − ηq̇ +
√

2ηT
∆t

Θ(t),

where Θ is a normally distributed

random number with variance 1.0.

1. Macroscopic-microscopic potential

energy from LAGNSM,

2. Irrotational fluid inertia,

3. Surface-plus-Window dissipation,

4. Monte-Carlo solution of dynamical

trajectories.



What Comes Out

Dynamical properties of fission

fragments calculated as a function of

initial E*

1. Fragments’ charge and mass (prior

to prompt neutrons),

2. Total fragment kinetic energies,

3. Fragment excitation energies—

give neutron multiplicities,

4. Distributions and correlations of all

these.

Use comparisons to data to inform

possible modifications of inertia

and dissipation models, level densities.
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Accomplished so far:

1. Two dynamical Langevin codes for

two different parametrizations of the

nuclear shape,

2. Defined grid appropriate for

dynamics with about 9M points,

3. Calculated macroscopic energy and

forces on grid,

4. Calculated microscopic energy on grid,

5. Developed cubic spline algorithim for

size 85 moving local grid for

interpolation of forces,



6. Wrote independent immersion

algorithm to locate local minima

to check results on new grid.



What remains

I have been unsuccessful so far in

debugging a Jacobian routine to

convert spline microscopic energy

derivatives (grid coordinates) to

dynamical coordinates. I am thus

resorting to the relatively inefficient

expedient of calculating numerical

derivatives. This process is about

half done. By the time I return from

this workshop, I can begin calculating

real Z, A, TKE distributions as

functions of excitation energy.


