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 Predictive model of nuclear fission
– Use where experimental data is missing
– High accuracy, high precision, known error bars

 Fission fragment properties
– Charge and mass of all fragments
– Coulomb repulsion between the                                            

fragments = the total kinetic energy                                            
(TKE)

– Excitation energy (TXE)

 Fission fragment distributions
 Fission spectrum: pre-, post-scission neutrons, 

gammas, etc.
 Important constraint: quantitative evolution as 

function of incident neutron energy

NNSA Needs
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 Compound nucleus at given excitation energy
– Separation between intrinsic and collective degrees of freedom
– Collective variables describe, e.g., nuclear shape
– Time evolution gives fragment distributions

 Requirements for a predictive theory
– Use many-body methods of quantum mechanics
– Build upon best knowledge of nuclear forces
– Keep number of free parameters to strict minimum

 Nuclear density functional theory
– Effective nuclear forces between protons and neutrons
– Various levels of approximations
– Time-dependent extensions exist
– Suitable for large-scale applications

Theoretical Approach
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Posing the problem
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 Basic Ingredients of nuclear DFT
– An effective interaction / energy functional: Skyrme, Gogny

● Form of the functional guided by theory of nuclear forces
● Challenge of determining unknown parameters

– Identification of suitable collective variables
● Number of collective variables drives the scale of the computational 

challenge
● Optimal set of collective variables may change 

– Need to introduce a scission point
– Account for excitation energy

● Low-energy: Intrinsic-collective couplings
● High-energy: Finite-temperature description

 Fast and/or powerful DFT solvers
– Take advantage of leadership class computers
– Computational nuclear structure

Some Details



Highlight 1
Potential Energy Surfaces
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Managing the Scale

Elongation and triaxiality

Fission and fusion valleys
Mass asymmetry and “cluster 
radioactivity”

 Testbench: 239Pu(n,f)
 Relevant collective 

variables: q
20

, q
22

, q
30

, q
40

– Triaxiality near ground-state 
and first barrier

– Octupole and hexadecapole 
beyond first barrier
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A Closer Look
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Fission Barriers

 Calculations: J. McDonnell
 DFT methods better than semi-empirical models
 Small errors on fission barriers  = orders of magnitude 

in lifetimes
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Full Fission Pathways
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Triaxiality at Scission

 Local PES in the (q20,q22) plane around least-energy 
fission path

 Shallow axial valley: 
– Distributions of fission fragments will be different
– Dissipation of energy in “transverse” modes



Highlight 2
Validation of Nuclear Density 
Functional Theory at Finite 

Temperature
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Dealing with Excitation Energy
 Question: how to describe 

highly-excited compound 
nucleus?

 Potential energy surfaces from 
finite-temperature DFT 
calculations

– System in thermal equilibrium
– Ground-state is statistical 

superposition of pure quantum 
mechanical states

 Attention: at given 0 < T ≲ 2.5 MeV 
(or 0 < E* ≲ 100 MeV excitation 
energy), there is still a barrier!

– Temperature must be such that 
the system remains fissile

– There is not a single good recipe 
here 
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Potential Energy Surface at T>0

Maxwell Relations of Thermodynamics
            F(Q

20
, T) = E(Q

20
, S)
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Evolution of Fission Barriers



Highlight 3
Fission Fragment Properties at 

Finite Temperature
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Approaching Scission

 Impact of QN of the order of 
10 MeV on prescission 
energy

 Where is scission?

 Discontinuities: poor man's way 
to define scission

 Need to introduce another 
collective variable: QN 

 Discontinuities => smooth 
pathway to scission



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
18

Fragment Interaction Energy (T=0)

 After scission: independent fragments with nuclear interaction 
energy equal to 0: use as criterion for scission

 Disentangle the two fragments by unitary transformation of 
individual quasi-particles

 Does the method work at finite temperature?
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Coupling to the Continuum
 Contribution to total density 

comes from localized and 
delocalized pieces at T>0

 Can we localize the fragments?
 Delocalized contribution 

negligible until T≳1.5 MeV (E*~ 
40 -50 MeV!)

 Localization should work
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Fragment Interaction Energy (T>0)

 Localization works indeed
 At high temperatures, scission 

point moves to thicker necks: 
glass-like behavior
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Conclusions
 Solving nuclear fission with microscopic methods and HPC 

capabilities 
 Recent progress discussed in this talk

– Mapping five-dimensional collective spaces including triaxiality
– Assessing the sensitivity on the parametrization of the energy 

functional
– Predicting evolution of fission barriers at finite temperature
– Understanding the impact of finite temperature on fission fragment 

properties

 Open questions
– Need better UQ to assess model dependence: model space (HO 

basis), parametrization of functionals, form of functionals, etc.
– Dynamics of induced fission: dependence on scission point, on 

collective inertia
– Finite-temperature caveats: statistical fluctuations, excitation 

energy of the fragments, collective mass
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