Microscopic Description of Induced Nuclear Fission: Static Aspects

INT Workshop on Large Amplitude Collective Motion Sep. 24th, 2013

Nicolas Schunck

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

NNSA Needs

- Predictive model of nuclear fission
 - Use where experimental data is missing
 - High accuracy, high precision, known error bars
- Fission fragment properties
 - Charge and mass of all fragments
 - Coulomb repulsion between the fragments = the total kinetic energy (TKE)
 - Excitation energy (TXE)
- Fission fragment distributions

 Important constraint: quantitative evolution as function of incident neutron energy

Theoretical Approach

- Compound nucleus at given excitation energy
 - Separation between intrinsic and collective degrees of freedom
 - Collective variables describe, e.g., nuclear shape
 - Time evolution gives fragment distributions
- Requirements for a predictive theory
 - Use many-body methods of quantum mechanics
 - Build upon best knowledge of nuclear forces
 - Keep number of free parameters to strict minimum
- Nuclear density functional theory
 - Effective nuclear forces between protons and neutrons
 - Various levels of approximations
 - Time-dependent extensions exist
 - Suitable for large-scale applications

Posing the problem

Some Details

- Basic Ingredients of nuclear DFT
 - An effective interaction / energy functional: Skyrme, Gogny
 - Form of the functional guided by theory of nuclear forces
 - Challenge of determining unknown parameters
 - Identification of suitable collective variables
 - Number of collective variables drives the scale of the computational challenge
 - Optimal set of collective variables may change
 - Need to introduce a scission point
 - Account for excitation energy
 - Low-energy: Intrinsic-collective couplings
 - High-energy: Finite-temperature description
- Fast and/or powerful DFT solvers
 - Take advantage of leadership class computers
 - Computational nuclear structure

Highlight 1 Potential Energy Surfaces

Managing the Scale

- Testbench: ²³⁹Pu(n,f)
- Relevant collective variables: q₂₀, q₂₂, q₃₀, q₄₀
 - Triaxiality near ground-state and first barrier
 - Octupole and hexadecapole beyond first barrier

Elongation and triaxiality

Lawrence Livermore National Laboratory

A Closer Look

Fission Barriers

- Calculations: J. McDonnell
- DFT methods better than semi-empirical models
- Small errors on fission barriers = orders of magnitude in lifetimes

Full Fission Pathways

Lawrence Livermore National Laboratory

Triaxiality at Scission

- Local PES in the (q₂₀,q₂₂) plane around least-energy fission path
- Shallow axial valley:
 - Distributions of fission fragments will be different
 - Dissipation of energy in "transverse" modes

Highlight 2 Validation of Nuclear Density Functional Theory at Finite Temperature

Dealing with Excitation Energy

- Question: how to describe highly-excited compound nucleus?
- Potential energy surfaces from finite-temperature DFT calculations
 - System in thermal equilibrium
 - Ground-state is statistical superposition of pure quantum mechanical states
- Attention: at given 0 < T ≤ 2.5 MeV (or 0 < E* ≤ 100 MeV excitation energy), there is still a barrier!
 - Temperature must be such that the system remains fissile
 - There is not a single good recipe here

Potential Energy Surface at T>0

Evolution of Fission Barriers

Highlight 3 Fission Fragment Properties at Finite Temperature

Approaching Scission

- Discontinuities: poor man's way to define scission
- Need to introduce another collective variable: Q_N
- Discontinuities => smooth pathway to scission

- Impact of Q_N of the order of 10 MeV on prescission energy
- Where is scission?

Fragment Interaction Energy (T=0)

- After scission: independent fragments with nuclear interaction energy equal to 0: use as criterion for scission
- Disentangle the two fragments by unitary transformation of individual quasi-particles
- Does the method work at finite temperature?

Coupling to the Continuum

 Contribution to total density comes from localized and delocalized pieces at T>0

 $\rho = V^* (1 - f) V^T + \boldsymbol{U}^* \boldsymbol{f} \boldsymbol{U}^T$

- Can we localize the fragments?
- Delocalized contribution negligible until T≥1.5 MeV (E*~ 40 -50 MeV!)
- Localization should work

Fragment Interaction Energy (T>0)

- Localization works indeed
- At high temperatures, scission point moves to thicker necks: glass-like behavior

Conclusions

- Solving nuclear fission with microscopic methods and HPC capabilities
- Recent progress discussed in this talk
 - Mapping five-dimensional collective spaces including triaxiality
 - Assessing the sensitivity on the parametrization of the energy functional
 - Predicting evolution of fission barriers at finite temperature
 - Understanding the impact of finite temperature on fission fragment properties
- Open questions
 - Need better UQ to assess model dependence: model space (HO basis), parametrization of functionals, form of functionals, etc.
 - Dynamics of induced fission: dependence on scission point, on collective inertia
 - Finite-temperature caveats: statistical fluctuations, excitation energy of the fragments, collective mass

Lawrence Livermore National Laboratory

