Striking observations in low-energy fission and what they tell us

Karl-Heinz Schmidt

Program INT 13-3 Quantitative Large Amplitude Shape Dynamics: fission and heavy-ion fusion September 23 – November 15, 2013

Work performed in collaboration with Beatriz Jurado. Supported by the NEA of the OECD ([http://www.oecd-nea.org/\)](http://www.oecd-nea.org/) and by the EFNUDAT (http://www.efnudat.eu/) and by the ERINDA (http://www.erinda.org/) projects of the European Union.

Traditional knowledge

Recent experimental progress

Specific results and interpretation

Conclusion and outlook

Conventional experimental techniques

Off-line gamma spectroscopy

No short-lived fragments, uncertainties from spectroscopic data.

Double ToF – double Energy

Pre- and post-neutron masses, limited resolution.

Spectrograph LOHENGRIN

A of all fragments, Z of light fragments for thermal-neutron-induced fission.

Position of the heavy fragment

Unik et al., 1973

Fission-fragment mass distribution from Z=90 to Z=99.

The position of the heavy fragment is constant at $A \approx 140$.

Fission modes

Fission-fragment distributions (A or A-TKE) can be described as the sum of fission modes, associated to valleys in the potential-energy surface. GEF calculation (www.khs-erzhausen.de).

Global results of conventional experiments

 even at $E^* = 7$ MeV above Bf! (Itkis et al., 1985-1991)

Global even-odd effect in fission-fragment Z distributions

Bocquet, Brissot, NPA 502 (1989) 213c Systematic variation of even-odd effect with the Coulomb parameter.

Prompt-neutron multiplicities

Zeynalov et al., 2012 / Naqvi et al., PRC 34 (1986) 218

Sawtooth behaviour in the actinides

Recent experimental progress 1 Extended choice of fissioning systems

Beta-delayed fission A. Andreyev et al.

Transfer-induced fission K. Nishio et al.

←

Transfer-induced fission (GANIL, F. Farget et al.)

←

Electromagneticinduced fission (GSI, J. Taieb et al.)

Recent experimental progress 2

Unambiguous identification of Z and A in experiments in inverse kinematics

Relativistic heavy beams (~1 A GeV): Projectile fragments from fragmentation reactions (A <= Aproj) @ GSI Darmstadt, Germany

Fast heavy beams (> 6 A MeV): Transfer reactions, fusion reactions (A in some distance to the projectiles, also A > Aproj) @ GANIL Caen, France

Specific results and interpretation

1. Fission-fragment mass distributions

- **2. Energetics**
- **3. Charge polarization / evaporation**

Extended systematics of fission-fragment distributions

Position of heavy fragment for the actinides

 $<\!\!A\!\!>\approx 140$

Böckstiegel et al., NPA 802 (2008) 12

Position is constant at *Z* ≈ 54 and varies strongly in *A* and *N*. **→ General systematics of PES.**

Competition of mac. and mic. effects

Asymmetric component is caused by shell effect in heavy fragment.

Explains transition from single-humped to double-humped distributions around $A = 226$.

Qualitative idea of M. Itkis et al. Z. Phys. A 320 (1985) 433

Potential energy landscape 2-dim. calculation by A. Karpov, JPG 35 (2008) 035104

Property of the CN Shells behind outer saddle: Property of the nascent fragments

→ Separability principle

Shells

50

Two-centre shell model developed by: Holzer, Mosel, Greiner (Nucl. Phys. A138 (1969) 241)

Continuous treatment from ground state to separated fragments.

Early manifestation of fragment shells.

U. MOSEL AND H. W. SCHMITT

Quantum oscillators of normal modes

Assumption: Properties and populations of oscillator states (mass asymmetry, *N/Z* ratio etc.) in the nuclear heat bath determine the distributions of observables.

Hidden simplicity of fission !

Variety of mass (*Z*) distributions very well described with the same fragment shells (*Z*≈51, *Z*≈55, *Z*≈59, *Z*≈42)! (All distributions obtained with the same parameter set: position, depth and width of shells.)

GEF code: www.khs-erzhausen.de or www.cenbg.in2p3.fr/GEF

Thermal washing out of shell effects

Low fission probability: **First-chance fission dominates** in 201Tl.

Direct information on thermal washing out of shell effects in fission-fragment mass distributions (PES).

 $U =$ energy above Bf M. Itkis et al., SJNP 41 (1985) 544

Thermal shift of fission channels

 $En = thermal$ En = 14 MeV

Increasing influence of macroscopic potential with E*: Shift towards symmetry →

Calculations with the GEF code www.khs-erzhausen,de

Specific results and interpretation

1. Fission-fragment mass distributions

2. Energetics

3. Charge polarization / evaporation

Fragment deformation → prompt neutrons

Naqvi et al, 1986 / Zeynalova et al., 2012

Wilkins et al., Phys. Rev. C 14 (1976) 1832

General systematics of deformed shells: Correlation particle number \leftrightarrow deformation (Additional influence of mac. potential.)

Saw-tooth behaviour reflects fragment deformation at scission.

Prompt-neutron yields

Experiment: Naqvi et al., 1986

All additional energy of the neutron ends up in the heavy fragment.

New results on level densities suggests energy sorting in fission

Nascent fragments:

Two thermostats in contact. \rightarrow Energy sorting

Schmidt, Jurado, PRL 104 (2010) 212501

Guttormsen et al. 2012

Constant nuclear temperature at low E*.

Influence of asymmetry on even-odd effect

Schmidt et al., 2000

GSI-experiment: Z distribution measured over the whole range.

Caamano et al., 2011

Systematics: Even-odd effect strongly enhanced in asymmetric splits. **→ even-even light fragments = end products of energy sorting**

Specific results and interpretation

1. Fission-fragment mass distributions

2. Energetics

3. Charge polarization / evaporation

Nuclide distribution

GEF calculation More than 500 nuclides produced. Deviation from UCD: shift and fluctuations.

Information on charge polarization

235U(nth,f)

Moments of isobaric Z distributions.

 \leftarrow

Influence of macroscopic potential, shell effects and

GEF code and experiment. The evaporation. \rightarrow Full resolution in A and Z required!

Even-odd effect in ff neutron number

Even-odd effect in neutron number of fragments (post-neutron) is created by evaporation. (Does not depend on E*!) Influence of pairing on binding energies and level densities. M. V. Ricciardi et al., Nucl. Phys. A 733 (2004) 299

Energy spectra of prompt neutrons

Clue: Modified composite Gilbert-Cameron nuclear level density. (Increased condensation energy, collective enhancement) K.-H. Schmidt, B. Jurado, Phys. Rev. C 86 (2012) 044322

Multiplicities of prompt neutrons

experimental data

GEF code

Multiplicity distribution mostly reflects the fluctuations in nuclear deformation at scission.

Correlations: nu-bar - angle

Neutron multiplicity versus neutron direction relative to LF ---

Searching for signatures of scission neutrons ...

Correlations: nu-bar - TKE

Fragment angular momentum

GEF calculations

in good agreement with measured isomeric ratios

Theory: "Pumping" from q.m. uncertainty of orbital angular momentum (Kadmensky) + l of unpaired nucleons.

Fragment angular momentum

- stores collective energy at scission (less TKE)
- feeds contributions of rotational transitions to prompt gamma spectrum

Uncertainties of the model

Mass yields from GEF with estimated uncertainties.

GEF calculations with perturbed parameters.

Covariance matrix

 1.5

1.31

 1.13

0.75

0.375

 Ω

 $9.38E - 0$

 $5.63E - 0$

 $1.88E - 01$

 $-1.88E - 0$

 -0.375

 -0.75

 $-5.63E-$

240Pu(nth,f)

Post-neutron masses.

Covariances defined by the model dependences.

A tool for improving evaluations.

Conclusion and outlook

- Fission is a large-amplitude shape evolution with a tremendous variety of final configurations.
- Fission experiments need to specify these configurations by as many observables with an as good resolution as possible.
- Inverse kinematics is a major clue for the revival of fission studies $(\rightarrow$ variety of systems, isotopic resolution). Extending the data base considerably.
- A global view on experimental results reveals a surprising simplicity and systematics.
- Fission is governed to a great extent by general laws of quantum and statistical mechanics.

Further info: JEF/DOC 1423 (from www.khs-erzhausen.de)