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Fission: our strategy

Stability of the heaviest nuclei, r-process, advanced fuel cycle

Dynamics
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Plan

O Hetree-Fock-Bogoliubov (HFB) method - Potential Energy Surface (PES)

O Adiabetic Time Dependent HFB formalism - Collective Inertia (M)

Dynamic Programing Method (DPM)
@ Action minimization techniques <
Ritz Method (RM)

i
b & RM
TN

/ SF path

 Results: Spontaneous Fission (SF) paths and Half-lives (T,,)
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HFB formalism
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980)

Single particle Routhian
l Pairing potential

HEB equation Generalized density

B 0 K [ h—=A *
[WvR]ZO R_<—/<;* l—p*) W_<—A* —h*—F?)

Chemical potential

A A
— E : -
equation 144 ( B ) ( B ) E-> D_|ago!f1al matrix of
quasiparticle energies

A, B are quasiparticle wavefunctions
Particle density p = B*B’ h=T+4T,nlp] + constraint(< @ >)
Pairing density x = B* AT A=T,, k] = fk

—— Paring form factor

Calculation can be constraint at a particular value of quadrupole moment <Q>

orvergedc A ceVved ¢

Fiot(Q) =Tr(Lpo) +1Tr(Lpnlpolpo) + Tr(Lpplko]ko) + Coulomb
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F[p] - Skyrme functional with SkM™ parametrization optimized for fission barrier
J. Bartel et al. Nucl. Phys. A 386, 79 (1982)

flr) = V™" [1 -
J. Dobaczewski et al. Eur. Phys. J. A, 15, 21 (2002)

Calculated potential energy

1p(r)| p.=0.16fm"
2 pec

V= —268.9MeV fm?
VP = —-332.5MeV fm?

‘n’ & ‘p’ pairing gaps of >2Fm

Adjusted to reproduce the

A. Staszczak et al. Phys. Rev. C 87, 024320 (2013)

] Vibrational Zero
N Point Energy (GOA)
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ATDHFB formalism

...... talk by J. Dobaczewski
Introducing dynamics :-

—

| DHFB
iR(t) = W, R(?)]

Adiabatic approximation :- M. Baranger M. Veneroni, Ann. Phys. 114, 123
R(t) = W MXO R (1) Mx(1)  Ryg, x time-even

(dynamics is quasi-stationary) time-even odd  even
Expansion in powers of R=Rog+Ri+Ra+...

collective momentum x W=Wo+ W1 +Ws+...
ATDHFB

. 1. ’LR = [WO,Rl] + [WlaRO]a
2. 1R = [WQ,R()] -+ [WO,R2] + [leRl] T [W%RO}
l J. Dobaczewski J. Skalski, Nucl. Phys. A 369, 123 (1981)

Comparing with the classical expression of KE

7 OR
Collective Inertia:- M;; = —1'r ( 0 [RO,R1]>
2, dq;
A. Baran et al. Phys. Rev. C 84, 054321 (2011)
q;s are collective coordinates, quadrupole moment () for the present purpose
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After a few steps:-

. é)f)o é)/
_F’L* _ BT A BT 1
( dq; " 0

A, B are quasipart

Derivatives of densitie
using Lagrange thre

Cranking Approxim

more simplified way (pe
Derivatives calculat

M =rP M)
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Calculated Inertia

A. Baran et al. Phys. Rev. C 84, 054321 (2011)
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Understanding calculated Inertia
|./\/l|1/2 = (M1 Moy — M%2)1/2 —> Invariant under rotation in 2D
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Large fluctuations of mass parameters are manifestations of crossings
of single-particle levels near the Fermi energy
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Numerical test

- 7
— 7 ds ds
s’ describes the path on 2D surface @
I T I
0024w y=60"orm_ —e—y=180" form_ -
- 0= -y=60"form. —o—y=180" form.)
0.020 + =
oM | B — ~ plane
Step 1:
0.016 - OQ/UD_“O*U\QS\ 1 Mg is calculated along v = 180"
L~ U T2 . Step 2: N
P ) '\\'\\'OD\D o Densities are rotated by
0.012 | v S Proper Eulerian angles
' ' ' ' ' Step 3:
0 10 20 30 . 0
Mg is calculated along v = 60
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Spontaneous fission half-life

A. Baran, Phys. Lett. B 76, 8 (1978)

In 2
Ty /)9 = —
/2= 5

n is the number of assaults on the fission barrier per unit time = 102038 -1

Penetration probability > P = (1 + exp QS(L))_l (WKB)

. . S2 1
Action integral along N S(L) _ / [2M6H<5) (Veff(s) B Eo)]1/2 ds

the fission path L(S) 1 i
t Vb S Verr(s) =V along L(s)
Q2 S L(s) Mg(s) = effective M along L(s)
/, N Ey = ground state vibrational energy
Q
V — EO 20
Most probable fission path = Minimum action path
10/4/2013 Quantitative LASD: Fission & Heavy-ion .
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Action minimization techniques
A. Baran et al. Nucl. Phys. A 361, 83 (1981)

Ritz method (RM)

Two numerical methods

Dynamic programing method (DPM)

Ritz method (RM):-
. r — I
L) = k——— b.c.
y(L) gk aksm(ﬂ $2—$1)+ C

b.c. decided by s1(x1,y1) and so(x2,ys2)

S() = [ 5 2Mans) (Vnls) — o))"/ ds

1

> <

> X

S(L) — S(al,ag, ce CLn)
path is decided by varying a; s

For the present calculation a,,a, and a, are sufficient

10/4/2013 Fusion, INT Seattle
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Action minimization techniques
A. Baran et al. Nucl. Phys. A 361, 83 (1981)

Dynamic programing method (DPM) :- Colect < &
elects,; & s,

A Surface between s, & s,
is divided into 2D mesh

Q2

. S is calculated between s,
0 & each point in 1%t column

V' = Eos s calculated for each point
—- - s, in 2" column with all points
in 15t column

/ &

*  Minimum action path

Q20 is retained

Repeated for all points in column 2:- minimum action paths up to column 2

Repeated for all columns

Finally we get the minimum action path betweens; & s,

Quantitative LASD: Fission & Heavy-ion
10/4/2013 Fusion, INT Seattle =



Results(existing)
R. A. Gherghescu et. al. Nucl. Phys. A 651, 237 (1999)

242 R.A. Gherghescu et al./Nuclear Physics A 651 (1999) 237-249
04 Z=108 N=174 Z=114 N=184
1 ] 3 Macroscopic-microscopic
0.3 - -
£ ﬂ ' 00 X7 N / calculation

5. Conclusions

Non-axial quadrupole shapes seem to play a minor role in the spontaneous fission of
the SHE nuclei around ?*!114, in spite of the fact that they can considerably lower the
static fission barriers. Fission paths which exploit a non-axial saddle are rather long. The
probability of the occurrence of triaxial fission trajectories is reduced by the tendency
towards the minimal length of the fission path, following from the princtple of the least

action.

Fig. 1. The energy contour maps with drawn static (dashed) and dynamic (solid) fission trajectories for
selected systems. The minimization over (84 was performed at each (f3,v). Contour lines are 1 MeV apart.

Provided contour labels help to reveal topography. Quantitative LASD: Fission & Heavy—ion
10/4/2013 . ' 14
/4/ Fusion, INT Seattle



Results(existing)
J.-P. Delaroche 2, M. Girod ®*, H. Goutte?, J. Libert? Nuclear Physics A 771 (2006) 103—168
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Results(present calculation)
" E,= 1.0 MeV

Static path
(minimum potential path)

Dynamic path with cont. M
M = MSP at ground state
(DPM)
Dynamic path with M€
(DPM & RM)

Dynamic path with M©p
(DPM & RM)

40 60 80~ 100
Q20 (b)

—
Dynamical effects due to action minimization is not very prominent

With M€ :- dynamics is favoring triaxial saddle, similar to static path
With MCP :- Strong dynamical effects, triaxiality becomes unimportant

Quantitative LASD: Fission & Heavy-ion
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Results(present calculation)

m— | S ' [
| ——DPM+a{ = — DPM-+4.? 4

path S(L) log(T" /2/yr)

Static+ M 23.4 7T
Static+MSP 20.8 -10.0
DPM—kﬂgc 19.1 114
RM+M 18.9 11.6
DPM+MCP 16.8 134
RM+MCP 16.8 134

s (b)

Orders of magnitude difference in
T,/, calculated with M€ and M©p

Quantitative LASD: Fission & Heavy-ion
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Summary & conclusion

Spontaneous fission lifetimes have been studied within a dynamic approach based
on the minimization of the collective action in a two-dimensional collective space
of elongation and triaxiality.

A strong dynamical effect has been predicted. Although it offsets the static
reduction of the inner barrier by triaxiality when the approximate perturbative
cranking inertia is used, the strong effect of triaxiality is observed with the more
appropriate non-perturbative cranking inertia.

A more detailed study of dynamical effects due to triaxial and refection
asymmetric degrees of freedom is in progress.
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Collaborators:
W. Nazarewicz
J. Dobaczewski
A. Baran
K. Mazurek
J. A. Sheikh

Thank YoU..
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