Fission properties of superheavy elements

P.-G. Reinhard¹

¹ Institut für Theoretische Physik, Friedrich-Alexander-Universität, Erlangen/Germany

Collaborators:

DKFZ Heidelberg	
ť	

Supported by the BMBF (contracts 06ER9063 & 06FY9086) and GSI F&E

Outline

Formal framework

- The Skyrme energy functional
- Optimization by least-squares fits
- Computation of fission barriers and lifetimes

2 Shell gap and magic numbers

Fission of SHE

- Systematics of barriers
- Fission lifetimes
- Competing decay channels

4 Least-squares optimization and covariance (correlation) analysis

Formal framework

P.-G. Reinhard et al (Univ. Erlangen)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ■ ■ ● ● ●

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{Skyrme}}(\rho, \tilde{\rho}, \tau, \tilde{\tau}, \mathbf{J}, \tilde{\mathbf{J}}, ...) + \int d^3 r \, \mathcal{E}_{\text{pair}}(\chi_{\rho}, \chi_{n}, \rho) + E_{\text{Coul}} - E_{\text{corr}}$$

P.-G. Reinhard et al (Univ. Erlangen)

11 DQC

・ロト ・回ト ・ヨト ・ヨト

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{Skyrme}}(\rho, \tilde{\rho}, \tau, \tilde{\tau}, \mathbf{J}, \tilde{\mathbf{J}}, ...) + \int d^3 r \, \mathcal{E}_{\text{pair}}(\chi_{\rho}, \chi_{n}, \rho) + E_{\text{Coul}} - E_{\text{corr}}$$
kinetic energy
pairing functional
correlations from
low energy modes:
c.m., rotation, vibrat.
effective potential energy
Coulomb en. (exchange = Slater appr.)

11 DQC

・ロト ・回ト ・ヨト ・ヨト

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{Skyrme}}(\rho, \tilde{\rho}, \tau, \tilde{\tau}, \mathbf{J}, \tilde{\mathbf{J}}, ...) + \int d^3 r \, \mathcal{E}_{\text{pair}}(\chi_{\rho}, \chi_{n}, \rho) + E_{\text{Coul}} - E_{\text{corr}}$$

The Skyrme energy functional can be quantified in terms of the following parameters: \mathcal{E}_{Skyrme} :

isoscalar

isovector

bulk:	equilibrium	$E/A, \rho_{0,equil}$		
	incompressibility	K	, symmetry energy	$a_{ m sym}$, $a_{ m sym}'$
	surface energy	a _{surf}	, surf.symm. energy	a _{surf,sym}
	effective mass	<i>m</i> */ <i>m</i>	, TRK sum rule	$\kappa_{ m TRK}$
s.p.:	spin-orbit	<i>b</i> ₄	, isovect. spin orbit	b'_4

 \mathcal{E}_{pair} :

proton and neutron pairing strenghts: $V_{\text{pair},p}$, $V_{\text{pair},n}$

ELE NOR

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{Skyrme}}(\rho, \tilde{\rho}, \tau, \tilde{\tau}, \mathbf{J}, \tilde{\mathbf{J}}, ...) + \int d^3 r \, \mathcal{E}_{\text{pair}}(\chi_{\mathcal{P}}, \chi_{\mathcal{n}}, \rho) + E_{\text{Coul}} - E_{\text{corr}}$$

The Skyrme energy functional can be quantified in terms of the following parameters: $\mathcal{E}_{Skyrme}:$

isovector

isoscalar

$E/A, \rho_{0,equil}$ bulk: bulk equilibrium incompressibility K , symmetry energy $a_{\rm sym}$, $a'_{\rm sym}$, surf.symm. energy surface energy **a**_{surf} **a**_{surf,sym} effective mass m^*/m . TRK sum rule KTRK b_4 s.p.: spin-orbit b₄′ , isovect. spin orbit \mathcal{E}_{pair} : proton and neutron pairing strenghts: $V_{\text{pair},p}, V_{\text{pair},n}$

The parameters are adjusted to empirical data \leftrightarrow least squares fits. Fit to large pool of ground state properties of finite nuclei (= SV-min): \implies well fixed parameters \leftrightarrow _____; loosely determined \leftrightarrow _____

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{Skyrme}}(\rho, \tilde{\rho}, \tau, \tilde{\tau}, \mathbf{J}, \tilde{\mathbf{J}}, ...) + \int d^3 r \, \mathcal{E}_{\text{pair}}(\chi_{\mathcal{P}}, \chi_{n}, \rho) + E_{\text{Coul}} - E_{\text{corr}}$$

The Skyrme energy functional can be quantified in terms of the following parameters: \mathcal{E}_{Skyrme} :

isoscalar

isovector $E/A, \rho_{0,equil}$ bulk: bulk equilibrium incompressibility K , symmetry energy $a_{\rm sym}$, $a'_{\rm sym}$, surf.symm. energy surface energy **a**surf **a**_{surf,sym} effective mass m^*/m . TRK sum rule KTRK b_4 s.p.: spin-orbit b₄′ , isovect. spin orbit \mathcal{E}_{pair} : proton and neutron pairing strenghts: $V_{\text{pair},p}, V_{\text{pair},n}$ The parameters are adjusted to empirical data \leftrightarrow least squares fits. Fit to large pool of ground state properties of finite nuclei (= SV-min): \implies well fixed parameters \leftrightarrow ; loosely determined \leftrightarrow the can be turned to by fitting also giant resonances (= SV-bas)

P.-G. Reinhard et al (Univ. Erlangen)

Optimization by least-squares fits

extrapolation to observables:

quality measure:
$$\chi^2(\mathbf{p}) = \sum_{\nu \in \{\text{data}\}} \frac{\mathcal{O}_{\nu}(\mathbf{p}) - \mathcal{O}_{\nu}^{(\text{exp})}}{\Delta \mathcal{O}_{\nu}}$$
, **p**=SHF-params., \mathcal{O}_{ν} =observable

11 DQC

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

quality measure:

$$\begin{split} \chi^{2}(\mathbf{p}) &= \sum_{\nu \in \{\text{data}\}} \frac{\mathcal{O}_{\nu}(\mathbf{p}) - \mathcal{O}_{\nu}^{(\text{exp})}}{\Delta \mathcal{O}_{\nu}}, \, \mathbf{p} = \text{SHF-params.}, \, \mathcal{O}_{\nu} = \text{observable} \\ \chi^{2}(\mathbf{p}) &\approx \chi^{2}(\mathbf{p}_{0}) + \frac{1}{2}(\mathbf{p} - \mathbf{p}_{0}) \hat{\mathcal{M}}(\mathbf{p} - \mathbf{p}_{0}), \, \mathbf{p}_{0} = \text{optimal params.} \end{split}$$

(arm)

minimization:

11 DQC

イロト イヨト イヨト イヨト

quality measure:

$$\chi^{2}(\mathbf{p}) = \sum_{\nu \in \{\text{data}\}} \frac{\mathcal{O}_{\nu}(\mathbf{p}) - \mathcal{O}_{\nu}^{(\text{exp})}}{\Delta \mathcal{O}_{\nu}}, \ \mathbf{p} = \text{SHF-params.}, \ \mathcal{O}_{\nu} = \text{observable}$$
$$\chi^{2}(\mathbf{p}) \approx \chi^{2}(\mathbf{p}_{0}) + \frac{1}{2}(\mathbf{p} - \mathbf{p}_{0})\hat{\mathcal{M}}(\mathbf{p} - \mathbf{p}_{0}), \ \mathbf{p}_{0} = \text{optimal params.}$$

minimization:

reasonable range: mir

minimum $\chi_0^2 = \chi^2(\mathbf{p}_0) \leftrightarrow \text{optimal}$ vicinity $\chi^2(\mathbf{p}) \le \chi_0^2 + 1 \leftrightarrow \text{area of "reasonable" model parameters}$

quality measure:

$$\chi^{2}(\mathbf{p}) = \sum_{\nu \in \{\text{data}\}} \frac{\mathcal{O}_{\nu}(\mathbf{p}) - \mathcal{O}_{\nu}^{(\text{exp})}}{\Delta \mathcal{O}_{\nu}}, \mathbf{p} = \text{SHF-params.}, \mathcal{O}_{\nu} = \text{observable}$$
$$\chi^{2}(\mathbf{p}) \approx \chi^{2}(\mathbf{p}_{0}) + \frac{1}{2}(\mathbf{p} - \mathbf{p}_{0})\hat{\mathcal{M}}(\mathbf{p} - \mathbf{p}_{0}), \mathbf{p}_{0} = \text{optimal params.}$$

minimization:

reasonable range: minimum $\chi_0^2 = \chi^2(\mathbf{p}_0) \leftrightarrow \text{optimal}$ vicinity $\chi^2(\mathbf{p}) \le \chi_0^2 + 1 \leftrightarrow \text{area of "reasonable" model parameters}$

extrapolation:

value =
$$A_0 = A(\mathbf{p}_0)$$
, error = $\Delta A = \sqrt{\frac{\partial A}{\partial \mathbf{p}}} \hat{\mathcal{M}}^{-1} \frac{\partial A}{\partial \mathbf{p}}$

Computation of fission barriers and lifetimes

P.-G. Reinhard et al (Univ. Erlangen)

三日 のへの

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1) Deformation path $|\Phi_q\rangle$ (CHF): $\delta_{\langle \Phi_q|} \langle \Phi_q | \hat{H} - \lambda \hat{Q}_{20} | \Phi_q \rangle = 0$ 2) Deformation energy \mathcal{V} : $\mathcal{V}(q) = \langle \Phi_q | \hat{H} | \Phi_q \rangle$

1) Deformation path $|\Phi_q\rangle$ (CHF): $\delta_{\langle \Phi_q|} \langle \Phi_q | \hat{H} - \lambda \hat{Q}_{20} | \Phi_q \rangle = 0$ 2) Deformation energy \mathcal{V} : $\mathcal{V}(q) = \langle \Phi_q | \hat{H} | \Phi_q \rangle$ 3) Collective mass \mathcal{M} (lin.resp.): $[\hat{H}, \hat{R}] | \Phi_q \rangle = i \partial_q | \Phi_q \rangle$ $\mathcal{M}^{-1} = \langle \Phi_q | [\hat{R}, [\hat{H}, \hat{R}]] | \Phi_q \rangle$ 4) Momentum of inertia $\Theta \leftrightarrow$ as \mathcal{M}

- E - - E

1) Deformation path $|\Phi_q\rangle$ (CHF): $\delta_{\langle \Phi_q|}\langle \Phi_q|\hat{H} - \lambda \hat{Q}_{20}|\Phi_q\rangle = 0$ 2) Deformation energy \mathcal{V} : $\mathcal{V}(q) = \langle \Phi_q|\hat{H}|\Phi_q\rangle$ 3) Collective mass \mathcal{M} (lin.resp.): $[\hat{H}, \hat{R}]|\Phi_q\rangle = i\partial_q|\Phi_q\rangle$ $\mathcal{M}^{-1} = \langle \Phi_q|[\hat{R}, [\hat{H}, \hat{R}]]|\Phi_q\rangle$ 4) Momentum of inertia $\Theta \leftrightarrow$ as \mathcal{M}

5) Quantum corrected energy V: $V = V - Z_{vib} - Z_{rot}$ $(Z \equiv zero-point energy)$

.

1) Deformation path $|\Phi_q\rangle$ (CHF): $\delta_{\langle \Phi_q |} \langle \Phi_q | \hat{H} - \lambda \hat{Q}_{20} | \Phi_q \rangle = 0$ 2) Deformation energy \mathcal{V} : $\mathcal{V}(q) = \langle \Phi_a | \hat{H} | \Phi_a \rangle$ 3) Collective mass \mathcal{M} (lin.resp.): $[\hat{H}, \hat{R}] |\Phi_a\rangle = i\partial_a |\Phi_a\rangle$ $\mathcal{M}^{-1} = \langle \Phi_a | [\hat{R}, [\hat{H}, \hat{R}]] | \Phi_a \rangle$ 4) Momentum of inertia $\Theta \leftrightarrow$ as \mathcal{M} 5) Quantum corrected energy V: $V = \mathcal{V} - \mathcal{Z}_{\text{vib}} - \mathcal{Z}_{\text{rot}}$ $(\mathcal{Z} \equiv \text{zero-point energy})$ 6) Ground state energy E_{gs} : solve Schr.eq. with V and \mathcal{M} 7) Tunneling probability $P \leftrightarrow WKB$ 8) Repetition time $T_{rep} \leftrightarrow WKB$ fission lifetime $\tau_{\rm fis} = T_{\rm rep}/P$

"ab initio" - no free parameters (I) < (I)

ELE NOR

Computation of barriers and lifetimes – strengths and weaknesses

 \rightarrow model assumptions: 1D fission path

can be spanned by quadrupole constraint

- + self-consistent computation of dynamical response (coll. mass, inertia, ZPE)
- + Skyrme force the only "model parameter" determined from g.s. properties
- ? do we need mutiple fission paths (in vicinity as well as topologically different)

Shell gap and shell correction

P.-G. Reinhard et al (Univ. Erlangen)

三日 のへの

・ロト ・回 ト ・ ヨト ・ ヨ

Well developed shell gaps – example ²⁰⁸Pb

single nucleon spectra near the Fermi energy for ²⁰⁸Pb for a variety of models protons neutrons 0 1i13/2-2 2f7/21i11/2-2 13/2 $11/2^{+}$ -4 $9/2^{+}$ $\epsilon_{\rm p}\,[{\rm MeV}]$ 1h9/2(MeV) typical gap (126)5-6 MeV $1/2^{-1}$ typical gap -6 82 4–5 MeV 5/23p1/2 $1/2^{+}$ -8 3/23p3/23s1/23/22f5/2 $2d3/2^{+}$ $13/2^{+}$ 11/21i13/2-10 1h11/2-7/2 $5/2^{+}$ $2d5/2^{+}$ $5/2^{-1}$ SLy6 SkI3 $D1_{s}$ NL3 FΥ **BSk1** NL-Z2 Expt. F BSk1 SLy6 Sk13 $D1_{s}$ NL-Z2 NL3 Expt.

proton and neutron shell gaps are well developed for all models and forces \implies the "magic numbers" Z = 82 and N = 126 well visible

3 1 4 3

Single nucleon spectra and shell gaps in SHE

single nucleon spectra near the Fermi energy for SHE Z=114/N=184 computed for a variety of mean-field models plotted with multiplicity of states to indicate density of states (d.o.s)

spectrum much more diffuse than in ²⁰⁸Pb

Single nucleon spectra and shell gaps in SHE

single nucleon spectra near the Fermi energy for SHE Z=114/N=184 computed for a variety of mean-field models plotted with multiplicity of states to indicate density of states (d.o.s)

protons: high d.o.s. $Z \approx 114 \& Z \approx 126$, loosely filled 114 < Z < 126floating & weak shell closures, broad region of shell stabilization

Shell correction energies in SHE

(super-)heavy elements exist only due to shell effects

fission-stabilization through shell effects estimate of shell-stabilization by the shell-correction energy

$$E_{\text{corr}} = \sum \varepsilon_{\alpha} - \int d\varepsilon g(\varepsilon)$$
$$g(\varepsilon) \propto \sum \exp\left(-\frac{(\varepsilon - \varepsilon_{\alpha})^2}{\sigma^2}\right)$$

 difference of quantized sum of s.p.e. and smoothed distribution (LDM)

magic numbers obsolete replaced by broad islands of shell stabilization

RMF models produce systematically less E_{corr} (trend develops with increasing A)

Fission of super-heavy elements (SHE)

P.-G. Reinhard et al (Univ. Erlangen)

三日 のへの

イロト イヨト イヨト イヨト

Trends of extrapolation uncertainties: fission barriers

extrapolation uncertainties surprisingly small, no growth towards SHE SV-min = fit to g.s. only; SV-bas = g.s. & giant resonances \leftrightarrow much smaller uncert. experimental values for upper SHE outside error bars \leftrightarrow modeling ?

P.-G. Reinhard et al (Univ. Erlangen)

Fission properties of superheavy elements

17. October 2013 15 / 46

Different types of fission paths and their regimes

Systematics of barriers in SHE – for the parameterization SV-bas

(I)

Systematics of barriers in SHE – for the parameterization SV-bas

broad regions of fission stability (as anticipated by shell structure)

(4) (3) (4) (4) (4)

Image: Image:

Systematics of barriers in SHE – for the parameterization SV-bas

(4) (3) (4) (4) (4)

Systematics of barriers in SHE – several forces

P.-G. Reinhard et al (Univ. Erlangen)

Fission properties of superheavy elements

Test fission lifetimes for SHE

unresolved trend:

forces which perform very well for $Z \approx 100$ underestimate $\tau_{\rm fiss}$ for $Z \approx 114$ and vice versa

Systematics of lifetimes for a variety of forces

P.-G. Reinhard et al (Univ. Erlangen)

17. October 2013 20 / 46

Competing channels: α - and β -decay

P.-G. Reinhard et al (Univ. Erlangen)

EI= DQQ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Compare lifetimes: fission – α **decay –** β^- **decay**

fission fluctuates strongly pattern robust (shell structure) magnitude depends on force

 α - & β^- -decay lifetimes vary smoothly and are rather independent of force

Dominant decay channel: fission – α decay – β^- decay

experimental trend roughly reproduced by SV-min

P.-G. Reinhard et al (Univ. Erlangen)

Fission properties of superheavy elements

17. October 2013 23 / 46

Test of α decay for SHE – correlation effects

 \implies 1) recent Skyrme parameterizations describe α -decay in SHE very well 2) ground-state correlations become important in SHE for a detailed description

Least-squares optimization and covariance (correlation) analysis

P.-G. Reinhard et al (Univ. Erlangen)

(I) < ((i) <

31= 9QQ

Error propagation – covariance analysis

given by: $\Delta \mathbf{p} \cdot (\nabla \otimes \nabla \chi^2) \cdot \Delta \mathbf{p} = 1$ observables: $A = A(\mathbf{p}), B = B(\mathbf{p})$

$$\implies \qquad \overline{\Delta A \Delta B} = \nabla A \cdot \hat{\mathcal{M}}^{-1} \cdot \nabla B$$

Error propagation - covariance analysis

ellipsoid of "reasonable" parameters: $\eta_{AB} \approx 0$ obs. B $\chi^2(\mathbf{p}) \approx \chi^2(\mathbf{p}_0) + \frac{1}{2}(\mathbf{p} - \mathbf{p}_0)\hat{\mathcal{M}}(\mathbf{p} - \mathbf{p}_0)$ ΔA <u>____</u> \mathbf{p}_2 B⁽⁰⁾ $\chi_0^2 + 1$ ΔB $\chi^2_{\rm C}$ p₂⁽⁰⁾ A⁽⁰⁾ obs. A p⁽⁰⁾ p_1 given by: $\Delta \mathbf{p} \cdot (\nabla \otimes \nabla \chi^2) \cdot \Delta \mathbf{p} = 1$ highly correlated observables: $\eta_{AB} pprox 1$ obs. B observables: $A = A(\mathbf{p}), B = B(\mathbf{p})$ ΔA $\overline{\Delta A \Delta B} = \nabla A \cdot \hat{\mathcal{M}}^{-1} \cdot \nabla B$ $B^{(0)}$ ΔB uncertainty: $\Delta A = \sqrt{\Delta A \Delta A}$ $\Delta A \Delta B$

correlation: η_{AB}

P.-G. Reinhard et al (Univ. Erlangen)

$$\eta_{AB} = \frac{1}{\sqrt{\Delta^2 A} \, \Delta^2 B}$$

obs. A

uncorrelated observables:

 $A^{(0)}$

A B K A B K

Correlations with fission barriers in ²⁶⁶Hs

correl. with fission barr. B_f(²⁶⁶Hs)

fission barriers not correlated with one single LDM property

P.-G. Reinhard et al (Univ. Erlangen)

Correlations with fission barriers in ²⁶⁶Hs

fission barriers not correlated with one single LDM property but correlated with the full set of LDM properties

P.-G. Reinhard et al (Univ. Erlangen)

17. October 2013 27 / 46

ELE NOR

Correlations with fission barriers in Z=120/N=182 (for SV-min)

fission barriers in 120/182 show much less correlation – even for SV-min \longrightarrow ??

P.-G. Reinhard et al (Univ. Erlangen)

1 = 1 = 1 A C

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fully self-consistent description of fission (and α -, β -decay) Skyrme-Hartree-Fock: effective energy-density functional, fitted to g.s. data reliable extrapolations, estimate of uncertainty fission: collective dynamics along 1D path fom Q_{20} -constraint

3 3 9 9 9 9

Fully self-consistent description of fission (and α -, β -decay)

Skyrme-Hartree-Fock: effective energy-density functional, fitted to g.s. data reliable extrapolations, estimate of uncertainty

fission: collective dynamics along 1D path fom Q20-constraint

Robust shell structure while magic numbers fade away

"gap" perturbed by intruders \rightarrow broad band of low density of states broad islands stabilization (Z/N \approx 104/150 deformed, Z/N \approx 116/172 spherical)

Fully self-consistent description of fission (and α -, β -decay)

Skyrme-Hartree-Fock: effective energy-density functional, fitted to g.s. data reliable extrapolations, estimate of uncertainty

fission: collective dynamics along 1D path fom Q20-constraint

Robust shell structure while magic numbers fade away

"gap" perturbed by intruders \rightarrow broad band of low density of states broad islands stabilization (Z/N \approx 104/150 deformed, Z/N \approx 116/172 spherical)

Fair predictions for barrier heights and fission lifetimes

fine for actinides & lower SHE, $\Delta B_f \approx 1-2$ MeV, wrong trend higher SHE low m^*/m and/or low pairing \leftrightarrow high barriers & $\tau_{\rm fiss}$ competition with α - & β -decay qualitatively correct

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fully self-consistent description of fission (and α -, β -decay)

Skyrme-Hartree-Fock: effective energy-density functional, fitted to g.s. data reliable extrapolations, estimate of uncertainty

fission: collective dynamics along 1D path fom Q20-constraint

Robust shell structure while magic numbers fade away

"gap" perturbed by intruders \rightarrow broad band of low density of states broad islands stabilization (Z/N \approx 104/150 deformed, Z/N \approx 116/172 spherical)

Fair predictions for barrier heights and fission lifetimes

fine for actinides & lower SHE, $\Delta B_f \approx 1-2$ MeV, wrong trend higher SHE low m^*/m and/or low pairing \leftrightarrow high barriers & $\tau_{\rm fiss}$ competition with α - & β -decay qualitatively correct

Correlations of *B_f* with other observables

"a bit of everything" \leftrightarrow some correl. for each LDM parameter ($K > a_{sym} > \kappa > m/m$) high correlation with all LDM parameters together for ²⁶⁶Hs; low for 120/182

Fully self-consistent description of fission (and α -, β -decay)

Skyrme-Hartree-Fock: effective energy-density functional, fitted to g.s. data reliable extrapolations, estimate of uncertainty

fission: collective dynamics along 1D path fom Q20-constraint

Robust shell structure while magic numbers fade away

"gap" perturbed by intruders \rightarrow broad band of low density of states broad islands stabilization (Z/N \approx 104/150 deformed, Z/N \approx 116/172 spherical)

Fair predictions for barrier heights and fission lifetimes

fine for actinides & lower SHE, $\Delta B_f \approx 1-2$ MeV, wrong trend higher SHE low m^*/m and/or low pairing \leftrightarrow high barriers & $\tau_{\rm fiss}$ competition with α - & β -decay qualitatively correct

Correlations of *B_f* with other observables

"a bit of everything" \leftrightarrow some correl. for each LDM parameter ($K > a_{sym} > \kappa > m/m$) high correlation with all LDM parameters together for ²⁶⁶Hs; low for 120/182

Open problems

wrong trend of τ_{fiss} from island Z=104 to island Z=116 (still for all Skyrme forces) \leftrightarrow 1D fission path?, Q_{20} constraint?, triaxial sidewalk?, pairing model?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

P.-G. Reinhard et al (Univ. Erlangen)