

Pursuing mass resolving power of 10⁶: Commissioning of IGISOL 4

H. Penttilä JYFL University of Jyväskylä Finland

& IGISOL group Special thanks to I.D. Moore and D.Gorelov

JYFL

JYFL = Jyväskylän Yliopiston Fysiikan laitos = Department of Physics, University of Jyväskylä

USNDP Meeting

5

BNL, NY, USA Nov 8, 2007

JYFL ACCLAB, ca. 2014

The new MCC30/15 aka K-30 cyclotron

- From D.V. Efremov Scientific Research Institute of Electrophysical Apparatus
- Delivery based on the Intergovernmental Agreement between Finland and Russia regarding compensation of part of the former Soviet Union debt to Finland
- Decision signed June 19, 2007
- o Delivery August 10, 2009
- Inauguration November 15, 2010

Deere	11	10 20 MaV
веат	H–	18 – 30 MeV
	d–	9 – 15 MeV
	Beam current	100/50 uA
Power	Stand by	< 15 kW
consumption	Beam on	< 120 kW
Magnetic	Magnet	2500 mm
structure	diameter	1400 mm
	Pole diameter	4
	sectors	45 tons
	weight	
RF–system	Frequency	40.68 MHz
	Number of	2
	dees	
	Dee voltage	35 – 40 kV
	RF-gen. power	25 kW
lon source	external	
	CUSP	
1		

IGISOL-3 growing out of its craddle

Reasons to move IGISOL

- IGISOL is the main user of proton beams
- high intensity p and d beams available from the new MCC30/15 cyclotron
- possibility to gain from neutron induced fission
- better access with laser beams to the target area and the RFQ
- new test ion source allowing continious operation of JYFLTRAP (offline during front end cooling)
- more effective beam transportation to the beam yard
- more space for experimental setups

Ion guide technique

Based on survival of primary ions from nuclear reaction in helium buffer gas
Fast extraction of ions is required to prevent neutralisation
Charge state concentration: (0), +1, (+2)
<u>Independent of chemistry</u>
Produces ions of any element
Millisecond time scale

Very small decay losses

VOLUME 54, NUMBER 2

PHYSICAL REVIEW LETTERS

14 JANUARY 1985

Submillisecond On-Line Mass Separation of Nonvolatile Radioactive Elements: An Application of Charge Exchange and Thermalization Processes of Primary Recoil Ions in Helium

> J. Ärjc, J. Äystö,^(a) H. Hyvönen, P. Taskinen, V. Koponen, and J. Honkanen Department of Physics, University of Jyväskylä, SF-40100 Jyväskylä, Finland

> > and

A. Hautojärvi and K. Vierinen Department of Physics, University of Helsinki, SF-00170 Helsinki, Finland (Received 17 September 1984)

Transportation of thermalized primary recoil ions from nuclear reactions by helium flow has been investigated as a means of injecting short-lived radioactive nuclides into an on-line isotope separator. Several short-lived radioactive isotopes of highly nonvolatile elements such as B, Sc, Nb, and W have been separated. The efficiency for heavy nuclides with half-lives above 1 ms is between 1 and 10%. The shortest-lived activity identified in an on-line separation is the 182- μ s isomeric state in ^{107}Bi .

Fission ion guide technique

Based on survival of primary ions from nuclear reaction in helium buffer gas
Fast extraction of ions is required to prevent neutralisation
Charge state concentration: (0), +1, (+2)
<u>Independent of chemistry</u>
Produces ions of any element
Millisecond time scale

Very small decay losses

All ions come directly from fission

lon rate corresponds to the independent fission yield -

No gaps in the systematic studies

Study the most neutron rich nuclei produced in the fission (isobaric background usually sets the limit)

Isotopical purification with JYFLTRAP

 \langle

RFQ: get your ions cool and bunched

A. Nieminen *et al.*, Nucl .Instr. Meth. A 481 (2001) 244 P. Campbell *et al.*, Phys. Rev. Lett. 89 (2002) 082501

- Energy loss in ion-atom collisions
- o Confinement of ions by RF field
- o Injector for Penning trap
- Cooler & buncher for collinear laser spectroscopy
- Bunch length < 15 ms
- Energy spread < 1 eV

Isotopic purification with JYFLTRAP

Isotopic purification with JYFLTRAP

Beta decay heat and city of devils

Independent isotopic fission yield studies

Uncertainty due to yield fluctuations

Independent isotopic 25 MeV p fission yields

2

Absolute yields?

A_{max}

Distribution locations

Mass measurement program with JYFLTRAP

Mass measurements: old sins revealed

-ess binding

8

Ramsey cleaning with JYFLTRAP

Trap assisted gamma ray spectroscopy

J. Phys. G: Nucl. Part. Phys. 39 (2012) 015101

Figure 1. A schematic of the beta decay of the isomeric and ground states in 100 Nb into 100 Mo. Beta-decay intensities are from [9]; dashed levels indicate feeding intensities <3%.

UNIVERSITY OF JYVÄSKYLÄ From IGISOL-3 * Dec 3, 2003 † June 29, 2010 to IGISOL-4

UNIVERSITY OF JYVÄSKYLÄ Digging up IGISOL-4

5

UNIVERSITY OF JYVÄSKYLÄ Beam from MCC30 to IGISOL-4 (23 Nov 2011)

UNIVERSITY OF JYVÄSKYLÄ Laboratory in the state of construction

April 18, 2012

UNIVERSITY OF JYVÄSKYLÄ Laboratory in the state of commissioning

- JYFLTRAP Penning trap energised in July 2011
- Beam from K-130 to IGISOL target position in October 2011
- Beam from K-30 (MCC30) to IGISOL target position in November 2011
- Mass separated beam from a spark ion source to experimental area in February 2012
- Mass separated radioactive beam from a nuclear reaction (p,n)⁵⁸Cu to experimental area in March 2012
- First on-line experiment (yield test of ¹⁰³Rh(p,4n)¹⁰⁰Pd) November 2012
- Implantation experiment January 2013 ¹⁰³Rh(p,n)¹⁰³Pd (first physics!)
- First fission experiment February 2013
- First collinear laser spectroscopy experiment (¹⁰⁷Nb) in May 2013
- First Penning trap experiment (isomeric ratios, ERINDA) June 2013
- First Ramsey cleaning (off-line source) September 2013
- First decay spectroscopy experiment in October 2013 (^{204m}Bi M4-decay)
- First TAS decay spectroscopy experiments scheduled in February 2014

UNIVERSITY OF JYVÄSKYLÄ Fission yield at IGISOL 4

UNIVERSITY OF JYVÄSKYLÄ Note on fission yield at IGISOL 4:

Transmission to FC2 in spectroscopy line \approx 50 %

Fission yield to the central line 2800 atoms/(µC * mbarn) ?

UNIVERSITY OF JYVÄSKYLÄ JYFLTRAP performance

Isomeric ratio of ⁹⁷Y

Post-trap implantation

V. Kolhinen et al, EMIS 2012

Towards more neutron rich

Independent isotope production cross sections for fission of ²³⁸U

Beryllium converter target

- 30 MeV protons on Be
- 100 μ A protons yield 10¹² fast neutrons/sr/s
- Monte-Carlo simulations with MCNPX and Fluka for neutron target design*
- Calibration measurement at TSL (2012); energy, angular spread

*M. Lantz, D. Gorelov et al., Phys. Scr. T150 (2012) 014020

Neutron converter, fission target & moderator

Courtesy of D. Gorelov

FLUKA calculation

M. Lantz, D. Gorelov et al., Phys. Scr. T150 (2012) 014020

Thank you for your attention