

INT PROGRAM INT-13-3

Quantitative Large Amplitude Shape Dynamics:

fission and heavy ion fusion

September 23 - November 15, 2013

New generation of relativistic approach for nuclear structure

Jie MENG (孟 杰) School of Physics,Peking University(北京大学物理学院)

EDF – CDFT – RMF – RHF – RBHF

Outline

- \Box Introduction
- \Box CDFT at the Hartree level (success)
- \Box CDFT at the Hartree-Fock level (new learning)
- \Box Full Dirac Brueckner-Hartree-Fock (expection)
- \Box DBHF calculation for ¹⁶O, ⁴⁰Ca, ⁴⁸Ca and ⁵⁶Ni
- \Box Summary & Perspectives

Nuclear Energy Density Functional

Nuclear Energy Density Functionals: the many-body problem is mapped onto a one-body problem without explicitly involving inter-nucleon interactions!

Kohn-Sham Density Functional Theory

For any interacting system, there exists a **local single-particle potential** $h(r)$ **,** such that the exact groundstate density of the interacting system can be reproduced by **non-interacting particles** moving in this local potential.

$$
E[\hat{\rho}] = \langle \Psi | H | \Psi \rangle \qquad \hat{h} = \frac{\delta E}{\delta \hat{\rho}}
$$

The practical usefulness of the Kohn-Sham scheme depends entirely on whether **Accurate Energy Density Functional can be found!**

2013-10-10

 \bullet Nuclear energy density functional has been introduced by effective Hamiltonians

$$
E = \langle \Psi | H | \Psi \rangle \approx \langle \Phi | \hat{H}_{eff}(\hat{\rho}) | \Phi \rangle = E[\hat{\rho}]
$$

- \bullet More degrees of freedom: spin, isospin, relativistic, pairing
- \bullet • Nuclei are self-bound systems; $\rho(r)$ here denotes the intrinsic density.
- \bullet Density functional is probably not exact, but a very good approximation.
- \bullet The functional are adjusted to characteristic properties of nuclear matter and/or finite nuclei and (in future) to ab-initio results.

Nuclear functional usually used:

- non-relativistic zero range forces (Skyrme)
- \triangleright non-relativistic finite range forces of Gaussian shape (Gogny)
- \triangleright relativistic (covariant) density functional theory (RMF)

$(\overline{\psi} \circ \Gamma \psi), 0 \in \{1, \overrightarrow{\tau}\}, \Gamma \in \{1, \gamma_{\mu}, \gamma_{5}, \gamma_{5} \gamma_{\mu}, \sigma_{\mu \nu}\}\$

Lagrangian density: For the nucleon Dirac spinor field ψ , there are ten building blocks characterized by their transformation characteristics in isospin and Minkowski space.

$$
L = \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m)\psi
$$

\n
$$
-\frac{1}{2}\alpha_{s}(\overline{\psi}\psi)(\overline{\psi}\psi) - \frac{1}{2}\alpha_{v}(\overline{\psi}\gamma_{\mu}\psi)(\overline{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\alpha_{\text{TV}}(\overline{\psi}\overline{\tau}\gamma_{\mu}\psi)(\overline{\psi}\overline{\tau}\gamma^{\mu}\psi)
$$

\n
$$
-\frac{1}{3}\beta_{s}(\overline{\psi}\psi)^{3} - \frac{1}{4}\gamma_{s}(\overline{\psi}\psi)^{4} - \frac{1}{4}\gamma_{v}[(\overline{\psi}\gamma_{\mu}\psi)(\overline{\psi}\gamma^{\mu}\psi)]^{2}
$$

\n
$$
-\frac{1}{2}\delta_{s}\partial_{v}(\overline{\psi}\psi)\partial^{\nu}(\overline{\psi}\psi) - \frac{1}{2}\delta_{v}\partial_{v}(\overline{\psi}\gamma_{\mu}\psi)\partial^{\nu}(\overline{\psi}\gamma^{\mu}\psi) - \frac{1}{2}\delta_{\text{TV}}\partial_{v}(\overline{\psi}\overline{\tau}\gamma_{\mu}\psi)\partial^{\nu}(\overline{\psi}\overline{\tau}\gamma_{\mu}\psi)
$$

\n
$$
-e\frac{1-\tau_{3}}{2}\overline{\psi}\gamma^{\mu}\psi A_{\mu} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}
$$
 Higher order terms
\nLocalized form of Fock terms

Parameterizations PC-PK1

Zhao, Li, Yao, Meng, PRC 82, 054319 (2010)

Fitting to 60 binding energies, 17 charge radii, and empirical pairing gaps of 60 selected spherical nuclei.

2013-10-10

Deformed nuclei

Zhao, Li, Yao, Meng, PRC 82, 054319 (2010)

Fission barrier in actinides

The structure of ²⁴⁰Pu and its double-humped fission barrier: a standard benchmark for self-consistent mean-field models

- \checkmark The deformation of the ground state and the excited energy of the fission isomer are reproduced well;
- much closer to the available data. Li, Niksic, Vretenar, Ring, Meng, Phys.Rev.C81, 064321 (2010) \checkmark The inclusion of triaxial shapes lowers the inner barrier by \approx 2 MeV,

240 Pu: 3D PES (β₂₀, β₂₂, β₃₀) in MD constraint CDFT

β2, β3, …: Geng, Meng, Toki, 2007, Chinese Phys. Lett. 24-1865 β2, γ, …: Meng, Peng, Zhang, Zhou, 2006, PRC 73-037303

- • Axial & reflection symmetric shapes for ground state & isomer, the latter is stiffer
- •Triaxial shape around the inner barrier
- • Triaxial & octupole shape around the outer barrier; this is also true for other actinide nuclei

Lu, Zhao, Zhou, PRC85 (2012) 011301R $\beta_{\lambda\mu}$ with even μ are included automatically

Simultaneous quadrupole and octupole shape phase transitions in Thorium

Z. P. Li, B. Y. Song, J. M. Yao, D. Vretenar, J. Meng **Simultaneous quadrupole and octupole shape phase transitions in Thorium** arXiv:1304.3766 [nucl-th] Physics Letters B *In Press, Available online 21 September 2013*

Data for 2149 nuclei from Audi et al. NPA2003

Zhao, Song, Sun. Geissel, Meng, Phys. Rev. C 86, 064324 (2012) Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa

Long-term plan

11**Improve the mass description based on CDFT to σ [~]0.5 MeV.**

Extending the nuclear chart by continuum: from oxygen to lead

Xiaoying Qu, Ying Chen, Shuangquan Zhang, Pengwei Zhao, Ik Jae Shin, Yeunhwan Lim, Youngman Kim, Jie Meng **[arXiv:1309.3987] Extending the nuclear chart by continuum: from oxygen to titanium**

Very successful in nuclear physics

Ring PPNP1996, Vretenar Phys.Rep.2005, Meng PPNP2006

- Spin-orbit splitting
- Pseudo-spin symmetry
- \triangleright Nuclear saturation properties
- \triangleright Exotic nuclei

……

Excellent reproduction of nuclear properties

Meng, Peng, Zhang, Zhao, Front. Phys.2013

The relativistic Hartree-Fock theory

Bouyssy PRC 1987 Bernardos PRC 1993 Marcos JPG 2004 Bürvenich PRC 2002

In addition of the RMF advantages

- \triangleright Pion contribution included
- \triangleright Nuclear effective mass
- \triangleright Fully self-consistent description for spin-isospin excitation

15

 \blacktriangleright ……

Long PLB2006, Long PRC2007, Liang PRL2008, Liang PRC2009

15

 \triangleright Single particle Hamiltonian: Kinetic energy: Local potentials:

Non-local Potentials:

$$
h^{\text{kin}}(\mathbf{r}, \mathbf{r}') = [\alpha \cdot \mathbf{p} + \beta M] \delta(\mathbf{r}, \mathbf{r}'),
$$

\n
$$
h^{\text{D}}(\mathbf{r}, \mathbf{r}') = [\Sigma_T(\mathbf{r})\gamma_5 + \Sigma_0(\mathbf{r}) + \beta \Sigma_S(\mathbf{r})] \delta(\mathbf{r}, \mathbf{r}'),
$$

\n
$$
h^{\text{E}}(\mathbf{r}, \mathbf{r}') = \begin{pmatrix} Y_G(\mathbf{r}, \mathbf{r}') & Y_F(\mathbf{r}, \mathbf{r}') \\ X_G(\mathbf{r}, \mathbf{r}') & X_F(\mathbf{r}, \mathbf{r}') \end{pmatrix}
$$

Pairing Force: Gogny D1S

$$
V(\mathbf{r},\mathbf{r}') = \sum_{i=1,2} e^{((r-r')/\mu_i)^2} (W_i + B_i P^{\sigma} - H_i P^{\tau} - M_i P^{\sigma} P^{\tau})
$$

▶ Dirac Woods-Saxon Basis: solve the integro-differential RHFB equation

Charge-exchange excitation modes

RH + RPA

- \Diamond No contribution from isoscalar mesons (^σ,^ω), because exchange terms are missing.
- \Diamond π -meson is dominant in this resonance.
- \Leftrightarrow zero-range pionic counter-term g' has to be refitted to reproduce the data.

RHF + RPA

- \Diamond Isoscalar mesons (σ,ω) play an essential role via the exchange terms.
- \Diamond While, π -meson plays a minor role. \diamond g' = 1/3 is kept for self-consistency.

Lcalized form of Fock terms

The fine structure of spin-dipole excitations in O-16 is reproduced quite well in ^a fully self-consistent RPA calculation based on the RHF theory

Liang, Giai, Meng PRL 101, 122502 (2008) Liang, Zhao, Meng Phys. Rev. C 85, 064302 (2012)

- **A localized form of Fock terms** is proposed with considerable simplicity as compared to the conventional Fock terms.
- • Based on this localized RHF theory, the spindipole excitation in Zr-90 is well reproduced with a RPA calculation.

2013-10-10 **Liang, Zhao, Ring, Roca-Maza, Meng Phys. Rev. C 86, 021302 (2012)**

•

New generation CDFT: *ab initio* calculation

*ab initio-***---- "from the beginning"**

- \blacktriangleright without additional assumptions
- \blacktriangleright without additional parameters

ab initio **in nuclear physics**

- \blacktriangleright with realistic nucleon-nucleon interaction
- \blacktriangleright with some few-body methods and many-body methods, such as Monte Carlo method, shell model and energy density functional theory

ab initio calculation in nuclear physics

ab initio **calculation for light nuclei**

Pieper, Wiringa, et al

Expt.

ab initio **calculation for heavier nuclei**

- > Coupled Channel method Hagen PRL2009
- \triangleright BHF theory

Hjorth-Jensen Phys.Rep.1995 With HJ potential Dawson Ann.Phys.1962 With Reid potential Machleidt NPA1975

With Bonn potentials Muether PRC1990 16_O in BHF method in Bonn potential

ab initio CDFT calculation for nucleus

Relativistic Brueckner Hartree-Fock: nuclear matter

 \triangleright Nuclear matter Anastasio PRep 1978 Brockmann PLB 1984 ter Haar PRep. 1987 Defining an effective medium dependent meson-exchange interaction based upon the nuclear matter G matrix Brockmann PRC1990 Brockmann PRL 1992 Fritz PRL 1993

ab initio **calculation CDFT attempt for finite nucleus: extracted interaction from the** *ab initio* **calculation for nuclear matter**

> Density-dependent relativistic mean field theory Brockmann PRL1992 > Density-dependent relativistic Hartree-Fock theory Fritz PRL1993

Relativistic Brueckner Hartree-Fock calculation for finite nucleus

- *ab initio* **CDFT / Full Relativistic Brueckner Hartree-Fock calculation for finite nucleus with expansion in Harmonics Oscillator (HO) basis**
- \blacktriangleright **Effective NN interaction: Brueckner G-matrix in HO basis**
- **Solve relativistic Hartree-Fock (RHF) equation in HO basis with the G-matrix in HO basis**

T-Matrix and G-Matrix

Bethe-Goldstone Equation

$$
G = V + V \frac{Q}{E - H_0} G
$$

- \triangleright *E* is the starting energy
- *Q* is the Pauli operator
- *G*-matrix is for many-body problem

Bethe-Goldstone equation

Bethe-Goldstone equation in basis space

$$
\langle nm|G(\omega)|n'm'\rangle = \langle nm|V|n'm'\rangle + \sum_{\varepsilon_i,\varepsilon_j>\varepsilon_F} \frac{\langle nm|V|ij\rangle\langle ij|G(\omega)|n'm'\rangle}{\omega - (\varepsilon_i + \varepsilon_j)}
$$

where \mathcal{E}_F is the Fermi energy, $\omega = \mathcal{E}_m + \mathcal{E}_n$ is the starting energy and $\;l,J$ are intermediate states. $\mathcal{L} = \mathcal{E}_m + \mathcal{E}_n$ is the starting energy and (i, j)

Bethe-Goldstone equation in plane wave basis

$$
G_{ll'}^{\alpha}(kk'K\omega) = V_{ll'}^{\alpha}(kk') + \sum_{ll'} \frac{d^3q}{(2\pi)^3} V_{ll'}^{\alpha}(kq) \frac{Q(q,K)}{\omega - H_0} G_{ll'}^{\alpha}(qk'K\omega)
$$

where α is a shorthand notation for J, S, L and T .

Matrix inversion method

$$
G = \left(1 - \frac{V}{\omega - H_0}\right)^{-1} V
$$

Relativistic Brueckner Hartree-Fock theory

Relativistic Brueckner Hartree-Fock (RBHF) equation

$$
\sum_{n'} (\alpha \cdot p + \beta M + \beta \Gamma^{BHF})_{nn'} \psi_{n'} = \varepsilon_n \psi_n
$$

where $\Gamma^{BHF}_{nn'}$ is related with the density matrix $\rho_{nn'}$

$$
\Gamma_{nn'}^{BHF}=G_{nnnn'm'}\rho_{mm'}-G_{nnmm'n'}\rho_{mm'}
$$

RHF equation in HO basis

$$
\begin{pmatrix} A_{nn'}^{BHF} & B_{n\overline{n'}}^{BHF} \\ B_{n'n}^{BHF} & C_{\overline{n}\overline{n'}}^{BHF} \end{pmatrix} \begin{pmatrix} f_n^{(a)} \\ g_n^{(a)} \end{pmatrix} = \mathcal{E}_a \begin{pmatrix} f_n^{(a)} \\ g_n^{(a)} \end{pmatrix}
$$

where

$$
A_{nn'}^{BHF} = (\alpha \cdot p + \beta M)_{nn'} + \sum_{b} \sum_{m,m'} f_m^{(b)} f_m^{(b)} (G_{nmn'm'} - G_{nmm'n'})
$$

\n
$$
B_{n\overline{n'}}^{BHF} = (\alpha \cdot p + \beta M)_{n\overline{n'}} + \sum_{b} \sum_{m,m'} f_m^{(b)} g_{m'}^{(b)} (G_{nm\overline{n'}m'} - G_{nm\overline{m'}n'})
$$

\n
$$
C_{\tilde{n}\overline{n'}}^{BHF} = (\alpha \cdot p + \beta M)_{\tilde{n}\overline{n'}} + \sum_{20\overline{\beta_3}} \sum_{m,m'} g_{m'}^{(b)} g_{m'}^{(b)} (G_{\tilde{n}\overline{m}\overline{n'}m'} - G_{\tilde{n}\overline{m}\overline{m'}n'}).
$$

Numerical check: RHF equation in HO &RHO basis

Example

 \triangleright Object: ¹⁶O

> Interaction: Bouyssy C Bouyssy PRC1987

 Basis: Harmonics Oscillator (HO) (*N=*12) Relativistic Harmonics Oscillator (RHO) (*N_F*=12, *N_D*=8)

The properties of ¹⁶ O

The properties of 16O with different methods with Bouyssy interaction

[1] Bouyssy PRC1987

Hu, Meng, Ring, *to be published.*

Convergence of RBHF theory

Example

- \triangleright Object: ¹⁶O
- > Interaction: Bonn A Machleidt ANP1987
- Basis: Harmonics Oscillator (HO)

[1] Audi NPA2003, [2] Muether PRC1990, [3]Long PLB2006

Energy components of 16O in RBHF theory

Hu, Meng, Ring, *to be published.*

Single proton energies for 16O in RBHF theory

The scalar and vector potentials in RMF and RBHF theories

Spin-orbit force in RMF theory

$$
U_{s.o.} \propto (U_{V} - U_{s}) \vec{L} \cdot \vec{S}
$$

DDRH and DDRHF based on RBHF

PEKING UNIVERSITY **The Lagrangian of Density-dependent RH (DDRH) theory**

北京大学

Brockmann PRL1992

 (ρ)

 ρ) σ

 $\rho) \omega$

 S $\bar{}$ δ σB

DDRH*

 σ

 ω

 $U_s = g$

 $=$

 $U_{\scriptscriptstyle V}$ = g

Ξ

 V $\bar{}$ δ ωB

 (ρ)

$$
L = \overline{\psi}_N (i\gamma_\mu \partial^\mu - M_N - g_{\sigma N}(\rho)\sigma - g_{\omega N}(\rho)\gamma_\mu \omega^\mu - e\gamma_\mu \frac{1 - \tau^3}{2} A^\mu) \psi_N
$$

+
$$
\frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu
$$

The Lagrangian of Density-dependent RHF (DDRHF) theory

Fritz PRL1993

$$
L = \overline{\psi}_N (i\gamma_\mu \partial^\mu - M_N - g_{\sigma N}(\rho) \sigma - g_{\omega N}(\rho) \gamma_\mu \omega^\mu - \frac{f_{\pi N}}{m_\pi}(\rho) \tau^a \gamma_5 \gamma_\mu \partial^\mu \pi^a - e \gamma_\mu \frac{1 - \tau^3}{2} A^\mu) \psi_N
$$

+
$$
\frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - \frac{1}{4} \Omega_{\mu\nu} \Omega^{\mu\nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu
$$

+
$$
\frac{1}{2} \partial_\mu \pi^a \partial^\mu \pi^a - \frac{1}{2} m_\pi^2 \pi^{a2}
$$

U_V = $g_{\sigma B}(\rho) \sigma$

$$
U_V = g_{\omega B}(\rho) \omega
$$

Properties of 16O

[1] Audi NPA2003

* DD couplings extracted from RBHF theory at nuclear matter

Hu, Meng, Ring, *to be published.* Also have not a set of $\frac{34}{4}$

DDRH and DDRHF based on RBHF

Single particle levels in 16O

Hu, Meng, Ring, *to be published.*

DDRH and DDRHF based on RBHF

Relation between binding energy and radii of 16 O

Relation between binding energy and radii

Ground state properties in RBHF theory

Deviations of binding energy between data and RBHF calculation

 \triangleright The binding energy is reproduced within10% in RBHF

 \triangleright The spin-orbit splitting is small

Hu, Meng, Ring, *to be published.*

Summary and Perspectives

- New generation of CDFT, i.e., Relativistic Brueckner-Hartree-Fock (RBHF) theory is developed for finite nuclei in HO basis.
- The code of RHF equation in HO basis is confirmed by reproduce the same results as in coordinate space.
- \triangleright RBHF calculation for ¹⁶O with Bonn potential has been check up to N fermion $= 28$.
- The experimental binding energy, charge radii and spin-orbit splitting for ${}^{14}C$, ${}^{16}O$, ${}^{40}Ca$, ${}^{48}Ca$ and ${}^{56}Ni$ are reproduced with RBHF within 10%, and RBHF results are comparable with the ones from PKO1.
- 2013-10-10 \blacktriangleright Calculation for heavier nuclei is in progress.
Thank you for your attention!