3 Problems

W. Loveland Oregon State University

The fusion of ¹¹Li + ²⁰⁸Pb

Dasso=CC, rest are optical model approaches

⁹Li + ²⁰⁸Pb—Statistical models describe data

¹¹Li + ²⁰⁸Pb

CF → ^{212,215}At, ²¹⁴At

ICF → ²¹³At

FIG. 11: (Color online)Comparison of various theoretical predictions for the 11 Li + 208 Pb fusion excitation function, after [1, 2], with our data.

S. Umar (private communication)

What does all this mean?

- Why does the DC-TDHF "work"?
- Why are so many models wrong?

Production of Heavy Elements in Complete Fusion Reactions

$$\sigma_{\text{EVR}}(E_{\text{c.m.}}) = \sum_{J=0}^{J_{\text{max}}} \sigma_{\text{CN}}(E_{\text{c.m.}}, J) W_{\text{sur}}(E_{\text{c.m.}}, J),$$

$$\sigma_{\rm CN}(E_{\rm c.m.}) = \sum_{J=0}^{J_{\rm max}} \sigma_{\rm capture}(E_{\rm c.m.}, J) P_{\rm CN}(E_{\rm c.m.}, J),$$

 We need to know three spin-dependent quantities: (a) the capture cross section, (b) the fusion probability and (c) the survival probability, and their isospin dependence

How well can we describe observations?

Let's look at this more carefully

Despite correctly predicting σ_{EVR} correctly, the values of P_{CN} (and W_{sur})differ significantly

Effect of n-richness on capture cross sections

W. Loveland, et al., PRC 74, 044607 (2006)

Models for capture cross sections

- Improved isospin dependent QMD model (Bian, et al, NPA 829, 1 (2009))
- Modified semi-empirical Swiatecki et al model (PRC 74, 014602 (2005), K. Siwek-Wilczynska, 2009))
- Coupled channels calculations, such as those at <u>http://nrv.jinr.ru/nrv/</u>
- Skyrme energy density functional approach (PRC 74 044604)
- DNS model

How successful are the models?

Aside on DFT methods

For 76 fusion reactions, define

$$\chi_{\log}^2 = \frac{1}{m} \sum_{n=1}^m [\log(\sigma_{\rm th}(E_n)) - \log(\sigma_{\rm exp}(E_n))]^2.$$

Conclusions

- For the 50-150 "calibration" reactions, we know capture cross sections within 50%
- We know interaction barriers within 20%
- For the heavy element synthesis reactions, we know the capture cross sections within a factor of 2.

What about W_{sur} ?

- Well-established formalism for calculations
- Principal uncertainty is the values of the fission barrier heights.
- Best calculations for SHE fission barrier heights show an average discrepancy between data and theory to be 0.4 MeV, with largest error being 1.0 MeV.

Calculation of W_{sur} $W_{sur} = P_{xn}(E^*) \prod_{i=1}^{i_{max}=x} \left(\frac{\Gamma_n}{\Gamma_n + \Gamma_f} \right)_{i=E^*}$

 Γ_n/Γ_f evaluated from Vandenbosch and Huizenga expression

$$\frac{\Gamma_{n}(E_{CN}^{*})}{\Gamma_{f}(E_{CN}^{*})} = \frac{4A^{2/3}(E_{CN}^{*}-B_{n})}{k\left[2a^{1/2}\left(E_{CN}^{*}-B_{f}\right)^{1/2}-1\right]}exp(2a^{1/2}\left\{\left(E_{CN}^{*}-B_{n}\right)^{1/2}-\left(E_{CN}^{*}-B_{f}\right)^{1/2}\right\}\right)$$

$$k=9.8 \text{ MeV} \qquad a=A/12 \text{ MeV}^{-1}$$

B_n, B_f from Möller et al., (ADNDT 39,213; 59, 185)

$$a = \tilde{a} \left[1 + \delta E \frac{1 - \exp(-\gamma E)}{E} \right]$$

$$\gamma = 0.061$$

Collective enhancement of the level density Deformation dependence of the collective enhancement Energy dependence of the collective enhancement

A typical case, ²⁷⁴Hs

 In the reaction ²⁶Mg + ²⁴⁸Cm, we detect neutrons from the decay chain

 $^{274}Hs \rightarrow ^{273}Hs \rightarrow ^{272}Hs \rightarrow ^{271}Hs \rightarrow ^{270}Hs \rightarrow ^{269}Hs \rightarrow ^{268}Hs$

 $\mathsf{E}*(\mathsf{MeV}) = 63 \rightarrow 53 \rightarrow 45 \rightarrow 36 \rightarrow 27 \rightarrow 17 \rightarrow 9$

• For the ²⁵Mg + ²⁴⁸Cm reaction, the bombarding energy is chosen such that its decay chain $^{273}Hs \rightarrow ^{272}Hs \rightarrow ^{271}Hs \rightarrow ^{270}Hs \rightarrow ^{269}Hs \rightarrow ^{268}Hs$

 $\mathsf{E}*(\mathsf{MeV}) = 53 \rightarrow 45 \rightarrow 36 \rightarrow 27 \rightarrow 17 \Rightarrow 9$

 We do a Harding-Farley experiment fitting the neutron angular and energy distributions to extract pre- and post-fission neutron multiplicities

$$\left(\frac{\Gamma_n}{\Gamma_{tot}}\right)_1 = \frac{{}^{274}\upsilon_{pre}}{1+{}^{273}\upsilon_{pre}}$$

Continued

• We measure

$$\left(\frac{\Gamma_n}{\Gamma_{tot}}\right)_1 = 0.89$$

This implies dissipative effects ala Kramers.

$$\Gamma_f = \Gamma_f^{BW}(\sqrt{1 - x^2} - x) \times \hbar \omega_B / T,$$
$$x = \eta / 2\omega_0$$

where Γ_f is the corrected fission width, Γ_f^{BW} is the standard statistical model width for fission, *x* is the dimensionless dissipation coefficient where $x = \eta/2\omega_0$, where η is the nuclear viscosity, and ω_0 and ω_B are the characteristic frequencies of parabolic approximations of the nuclear potential energy near the ground state and the saddle point. B_f is the fission barrier

What are our choices about fission barrier heights for this system?

Kowal, et al.	(PRC 82, 014303)	4.37 MeV
ETFSI		2.50
FRLDM		5.31

How well can we calculate W_{sur}?

- We took a group (~75) heavy element synthesis reactions where $Z_1Z_2 < 1000$ (Z_{CN} =98-108) and compared the calculated and measured values of σ_{EVR} .
- The average ratio of (measured/ calculated) cross sections was 6.5. We conclude that we know W_{sur} within a factor of 3.

What about P_{CN} ?

- This is the most difficult quantity to estimate or measure.
- There are a limited number of measurements of P_{CN} .

How do you measure P_{CN} ?

- Angular distribution method (Back)
- Fusion-fission is assumed to be described by the ordinary transition state model of fission angular distributions while quasifission is described by a strongly fore-aft peaked distribution.

Excitation Energy Dependence of P_{CN}

Zagrebaev and Greiner

$$P_{CN}(E^*, J) = \frac{P_{CN}^0}{1 + \exp\left[\frac{E_B^* - E_{int}^*(J)}{\Delta}\right]}$$

P_{CN} (E*)

P_{CN} dependence on fissility

Models for P_{CN}

Solid line, Z-G, dashed line FBD, dot-dash Int.J.Mod Phys.E 17,12, Dotted line is fit

What do we do now?

- Wait for TDHF?
- What does TDHF mean?
- What do we (experimentalists) use in our "tool" kits?

"Scission" neutrons

- In spontaneous and thermal neutron induced fission, one might expect all of the prompt fission neutrons to be emitted from the fully accelerated fission fragments.
- Since 1962, a controversy has raged (in both theory and experiments) about the possibility of some fraction (perhaps as much as 30%) of the prompt neutrons which are emitted isotropically.

History

- 1962 (Bowman, Thompson, Milton, Swiatecki, PR 126, 2120) Scission neuts are ~ 10% of all neuts in ²⁵²Cf sp. f.
- 1963 (Kapoor, et al., PR 131, 283) Scission neuts are ~ 10% of all neuts in ²³⁵U(n_{th}, f)
- 1988 (Budtz-Jorgenson and Knitter, NPA, 490, 307) Scission neuts "negligible" in ²⁵²Cf sp. f.
- 1992 (Brosa and Knitter) Scission neuts are ~ 1.1% of neuts in ²⁵²Cf.
- 1999 (Hwang et al., PRC, 60, 044616) Scission neuts (2 n emission) are 0.06% of ²⁵²Cf neuts.

History (cont.)

- 2001 (Kornilov et al., NPA 686, 187) In ²⁵²Cf sp. f, 30 ± 5 % of prompt neutrons are scission neuts.
- 2009 Petrov et al., AIP Conference Proc. 1175, 289) Comprehensive expt'l study says scission neuts are 10 ± 2, 5 ± 2, 7± 2, and 10 ±2 % of all prompt neutrons in ²⁵²Cf, ²³³U(n_{th},f), ²³⁵U(n_{th},f) and ²³⁹Pu (n_{th}, f), respectively.

Theory

- 2010 Carjan and Rizea, PRC 82, 014617
 Scission neuts represent up to 30% of all prompt neuts in ²³⁵U(n_{th},f)
- 2013 Wada et al. (Physics Procedia, 47, 33) Signature of scission neuts is not isotropy, due to re-absorption and scattering by fragments

Summary

- It is "disturbing", "surprising" etc. to think that 70+ years since the discovery of fission, we still don't understand the origin of as many as 10+ % of the prompt neutrons.
- These scission neutrons contribute to the poorly known lower energy portion of the spectrum of the emitted neutrons.
- The neutron multiplicities and spectra have and will be measured correctly but we need guidance on how to interpret the observations.