IS THE LASD ADIABATIC OR NON ADIABATIC ?

To CROSS or NOT to CROSS ?

W. Nazarewicz, Nucl. Phys A 557 (1993)

Superheavy nuclei – predictions of structure and stability

M. Kowal, J. Skalski National Centre for Nuclear Research (Warsaw) P. Jachimowicz University of Zielona Gora

- 1. Introduction
- 2. Calculation of Potential Energy surface (PES)
- 3. First minima ground state properties GS (Masses, Shapes, Q-alpha energies, Vibrations)
- 4. First saddle points (Masses, Shapes, First Fission barriers Ba)
- Second minima properties of super-deformed state (SD) (Masses, Shapes SD Vibrations).
- 6. Second Fission barriers Bb
- 7. Puzzle of Third minima in actinides.
- 8. Superdeformed Oblate Minima in SHE
- 9. Cross sections predictions

Macroscopic-microscopic approach:

$$E = E_{tot}(2_{\mu}) - E_{MACRO}(2_{\mu}=0)$$

$$E_{MACRO}(2_{\mu}) + E_{MICRO}(2_{\mu})$$

 $\circ E_{MACRO}(\beta_{\lambda\mu}) = Yukawa + exp$

Shape Parametrization:

Fit to the experimental masses

- Z>82, N>126,
- Number of nuclei: 252
- Calculation for even-even, even-odd, oddeven and odd-odd systems - 1364 nuclei !

Predictions for SHE: Z=101-128,

Statistical parameters of the fit to masses in the model with blocking in separate groups of eveneven, odd-even, even-odd and odd-odd heavy nuclei:

	e - e	o - e	e - o	0 - 0
Ν	74	56	69	53
h	0.0	1.013	0.824	1.703
$< M^{th} - M^{exp} >$	0.212	0.340	0.356	0.566
$Max \mid M^{th} - M^{exp} \mid$	0.833	0.836	1.124	1.387
$\delta_{\rm RMS}$	0.284	0.425	0.435	0.666

The same but for the method without blocking.

	e - e	o - e	e - o	0 - 0
Ν	74	56	69	53
h	0.0	-0.751	0.268	0.234
$< M^{th} - M^{exp} >$	0.187	0.460	0.273	0.295
$Max \mid M^{th} - M^{exp} \mid$	0.652	1.398	0.892	0.853
δ_{RMS}	0.251	0.551	0.343	0.366

Ν

LSD FRLDM HN	Models	EXP	HN	FRLDM	LSD	Α	Ν	Ζ
16 18 18	N	5.4	4.5	3.2		232	140	02
0.9 1.0 0.4	$\langle B_f^{\rm th} - B_f^{\rm expt} \rangle$	5.4		3.2	4.4	232	140	12
[1.8 2.2 1.0	$Max B_f^{th} - B_f^{expt} $	5.9	5.1	3.8	4.4	234	142	
1.0 1.1 0.5	rms	5.6	5.6	4.5	5.5	236	144	
		6.0	5.9	5.1	6.7	238	146	
		6.1	5.9	5.7	6.5	240	148	
	1.5	5.7	5.4	4.5	5.9	236	142	94
250~~	-	5.9	6.1	5.3	6.5	238	144	
•°Ct -	1.0	5.8	6.4	6.0	7.0	240	146	
²⁴² Cm ²⁴² Pu ²⁴⁴ Pu ²⁵² or		5.7	6.3	6.4	7.1	242	148	
	0.5 -	5.5	6.0	6.6	6.9	244	150	
236 Pu 246 Cm 248 Cm	0.0	5.4	5.7	6.3	7.2	246	152	
²³⁶ Pu ²⁴⁰ U ²⁴⁰ Cm	236E	6.0	6.7	6.6	7.1	242	146	96
-	-0.5 -	6.1	6.6	6.9	7.2	244	148	
234	234	6.0	6.2	7.0	6.8	246	150	
	-1.0	5.9	5.9	6.8	6.6	248	152	
-	-	5.4	5.3	5.9	5.9	250	154	
	-1.5	5.6	6.5	7.1	6.5	250	152	98
N	130 140 142	5.3	5.8	6.1	_	252	154	

Ζ	Ν	А	LSD	FRLDM	HN	EXP1	EXP2
90	136	226	_	7.20	6.26	_	_
	138	228	_	6.53	5.92	_	6.5
	140	230	_	5.65	5.97	6.80	6.1
	142	232	5.2	5.45	6.07	6.70	6.2
	144	234	4.8	5.37	6.07	_	6.3
	146	236	_	6.04	6.35	_	_
92	138	230	_	4.28	5.64	_	_
	140	232	_	4.73	5.66	5.40	5.3
	142	234	4.7	4.89	5.84	5.50	5.7
	144	236	4.3	5.03	5.78	5.67	5.6
	146	238	4.9	5.64	5.93	5.50	5.8
~	148	240	4.6	6.37	6.04	_	5.8
U	150	242	_	7.10	6.23	_	-
94	140	234	_	_	4.68	_	_
	142	236	4.4	4.36	5.06	_	4.5
	144	238	5.3	4.47	5.15	5.10	5.2
	146	240	4.5	4.91	5.28	5.15	5.3
	148	242	5.0	5.72	5.52	5.05	5.3
	150	244	6.1	6.47	5.63	4.85	5.2
	152	246	6.6	7.07	5.75	_	5.3
	154	248	_	-	5.42	_	-
96	144	240	_	3.92	4.25	_	_
	146	242	4.2	4.45	4.42	5.00	4.0
	148	244	5.3	5.07	4.72	5.10	4.3
	150	246	5.2	5.87	4.98	4.80	4.7
	152	248	6.3	6.65	5.14	4.80	5.0
	154	250	5.3	6.25	4.87	_	4.4
	156	252	_	5.68	4.31	_	_
98	150	248	_	5.18	4.14	_	_
	152	250	4.6	5.92	4.57	_	3.8
	154	252	_	5.83	4.36	_	3.5
	156	254	-	5.27	3.95	_	_

Theoretical models:	LSD		FRLDM		HN	
Experimental data:	[23]	[24]	[23]	[24]	[23]	[24]
N	12	18	14	22	14	22
$< B_{f}^{th} - B_{f}^{exp} >$	0.78	0.84	0.79	0.90	0.39	0.33
$Max \mid B_f^{th} - B_f^{exp} \mid$	1.50	1.50	1.85	2.33	0.83	0.86
δ_{RMS}	0.92	0.94	0.95	1.11	0.46	0.40
$ \begin{array}{c} 1.0\\ 0.8\\ 0.6\\ 0.4\\ 0.4\\ 0.0\\ 0.0\\ 0.2\\ 0.0\\ 0.6\\ 0.8\\ -0.6\\ -0.8\\ -1.0\\ 136\\ 138 \end{array} $	²³² U ²³² U ²³⁴ ²³² Th 140 142	U ²³⁶ U ²³⁸ PU Th 2 144	²⁴⁴ Pu ²⁴⁸ Pu ²⁴⁰ Pu ²⁴⁶ Cm ²⁴⁴ Cm ²⁴² Cm 146 148 150 N	²⁴⁸ Cn Cm	n -	6
$\begin{bmatrix} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.0 \\ 0.$	²³² U 236 23 ²³⁰ Th 140 142	Pu ²³⁶ U ³⁴ U ³⁴ U ²³⁴ Th 2 ³⁴ Th	²⁴² Cm ²⁴⁴ Cm ²⁴⁴ ²⁴² Cm ²⁴⁰ U ₂₄₆ ²³⁸ U ²⁴² Pu ²⁴⁰ Pu Pu 146 148 150	²⁵⁰ Cf Pu ²⁴⁶ Pu ²⁴⁸ Cn ²⁴⁸ Cn	²⁵² Cf ²⁵⁰ Cm n 154 15	6

Second minima in actinides,

Ζ	Ν	А	$E_{II}^{min}(th)^*$	$E_{II}^{min}(exp)^*$
92	144	236	2.04	2.75
92	146	238	1.94	2.56
94	142	236	2.43	3.00
94	144	238	2.05	2.40
94	146	240	1.95	2.80
94	148	242	1.99	2.20
96	144	240	1.69	2.00
96	146	242	1.64	1.90
96	148	244	1.68	2.20(?)

P. Jachimowicz, M. Kowal, and J. Skalski, PRC 85, 034305 (2012). M. Kowal and J. Skalski, PRC 82, 054303 (2010)

The potential energy is calculated in the following grid points:

Nucleus	SHF	FRLDM	ETFSI	HN	EXP
²⁸⁴ 112 ₁₇₂	6.06	7.41	2.2	4.29	5.5
²⁸⁶ 112 ₁₇₄	6.91	8.24	3.6	5.01	5.5
²⁸⁸ 114 ₁₇₄	8.12	9.18	6.1	5.53	6.7
²⁹⁰ 114 ₁₇₆	8.52	9.89	6.6	5.83	6.7
²⁹² 114 ₁₇₈	_	9.98	7.2	6.34	6.7
²⁹² 116 ₁₇₆	9.35	9.26	6.5	6.22	6.4
²⁹⁴ 116 ₁₇₈	9.59	9.46	7.2	6.28	6.4
²⁹⁶ 116 ₁₈₀	_	9.10	7.2	6.07	6.4
²⁹⁴ 118 ₁₇₆	_	8.48	6.6	5.99	_
²⁹⁶ 118 ₁₇₈	_	8.36	7.0	6.04	_
298118_{180}	_	8.05	7.4	5.72	_
²⁹⁶ 120 ₁₇₆	_	7.69	6.2	5.64	_
²⁹⁸ 120 ₁₇₈	_	7.33	6.6	5.50	_
³⁰⁰ 120 ₁₈₀	_	7.01	6.8	5.05	_
³⁰² 120 ₁₈₂	_	6.07	7.2	4.66	_
³⁰⁴ 120 ₁₈₄	_	4.86	6.8	4.20	_

Ν

Q alpha predictions in SH nuclei including odd & odd-odd

Some aspects not quite clear

• We use blocking procedure; this causes often a sharp decrease of pairing effect. For comparison, we also calculate masses by adding quasiparticle energy.

 $E^{gs-gs} = 9.66 \text{ MeV}$ $E^{k-const} = 9.27 \text{ MeV}$

 $E^{gs->gs} = 9.35 \text{ MeV}$ E ^{k-const}=? MeV

 $E^{gs->gs} = 9.99 \text{ MeV}$ $E^{\text{k-const}} = 9.68 \text{ MeV}$

 $E^{gs-gs} = 10.22 \text{ MeV}$ $E^{k-const} = 10.11 \text{ MeV}$

TΗ $E^{gs->gs} = 11.25 \text{ MeV}$ $E^{\text{k-const}} = 11.25 \text{ MeV}$

E = 9.55 (0.19) MeVE = 9.396 MeV; E = 9.382 MeV

E = 8.80 (0.10) MeVE = 8.791 MeV; E = 8.69 MeV

E = 9.95 (0.40) MeVE = 10.28 MeV; E = 9.775 MeV

E = 9.63 (0.10) MeV E = 9.61 MeV; E = 9.750 MeV

E = 10.81 (0.10) MeV E = 10.960 MeV; E = 10.967 MeV

EXP

SDO minima

YpE

²⁸⁶120, SLy6, delta, BCS

²⁹⁰124, SLy6, delta, BCS

•LSD → 1 MeV deeper minima!

Formula a'laViola Seaborg from Royer

Possible Q-alpha hindrance: the 14- SD oblate ground state in parent. The G.S. to G.S. transition inhibited; SDO to SDO has smaller Q.

One proton emission half lives

S. Ćwiok^{a,b}, J. Dobaczewski^{a,c}, P.-H. Heenen^d, P. Magierski^b, W. Nazarewicz^{c,e,f}

Since for high-K isomers |M| is reduced, their beta+ decay is even slower.

A fascinating possibility for their longer life-times is related to K-isomerism, high-K configurations at the SDO shape are very likely!!!

OPTIMAL CONFIGURATION:

(15/2+)+(9/2)-=>12-

(13/2-)+(7/2)+=>10-

K-isomerism (discussion) !

FISSION HINDRANCE:

- T_{sf} for odd and odd-odd heavy and superheavy nuclei are by 3-5 orders longer than for their even-even neighbours.
- Increase was found for high-K isomers, with respect to (prolate) shape isomers on which they are built, in even 240Cm-244Cm.
- For SDO superheavy K-isomers two factors combine to increase fission half-life:
- A) the axial fission path is closed by the conservation of the K quantum number.
- B) triaxial barriers increase due to a decrease in pairing caused by the blocking of two neutrons or protons.
- C) additional hindrance of fission is expected for configurations involving blocked high-Omega intruder states.

ALPHA HINDRANCE:

- High-K isomer in 270Ds has longer (partial) half-live T_{alpha}= 6.0 ms than the g.s., T_{alpha}(g.s.)=100 microsec.
- For SDO nuclei, an additional hindrance may result from a difference between the parent and daughter high-K configuration.
- Extra excitation in the daughter, leading to a smaller Q_{alpha}.

B2

K depending on the point – from energy minimization

B=5.7 MeV

Eight-Dimensional calculations of the third barrier in 232Th and a conflict between theory and experiment on uranium nuclei.

Status of third minimum in actinides:

Importance of the subject

- IIIrd minima in actinides, if exist, are low-spin hyperdeformed states (axis ratio close to 3:1) maybe the only ones in both medium and heavy nuclei.
- Their large quadrupole deformation & massassymetry makes them unique (collective E1 ca 10keV rotational transitions)
- 3. Experiments confirming predicted minima may validate nuclear models.
- 4. S.p. orbits at the Fermi level in super- and hyperdeformed actinides are those occupied at normal shape in SHN; they can provide a test of a model.

some facts supporting the existence of a deep third minimum

- the most of experimental evidence for a deep third well does not stem from global fits of fission probabilities where one may argue about parameters, but rather from transmission resonances of rotational bands that give quite direct information.
- measurements of the angular distribution of the fragments arising from the induced fission (including some information about the spin and K-quantum number).
- The rotational parameters obtained by fitting the high resolution excitation energy spectrum are characteristic for the HD shapes.
- Clustering phenomenon in the actinide region is a dramatic manifestation of the shell structure at the very large deformations. HD low laying states trapped in the III'd minimum may play the role of a doorway-like states before fission. Then only a limited number of fission paths can occur contributing to sharper mass distribution.

Good methods should give similar predictions.

- Micro-macro, as a simpler one, is better tested/fitted against various data, eg. fission half-lives.
- Selfconsistent methods could (if constructed properly) give better extrapolations. But it is not guarateed at present. Hence, a prudent idea is to see whether both methods give similar results.

• The dipole deformation b1 is omitted there, as corresponding to a shift of the origin of coordinates which leaves energy (always calculated in the center of mass frame) invariant. However, this is true only for weakly deformed shapes. For large elongations, b1 acquires a meaning of a real shape variable.

IIIrd minima – type: A

M. Kowal, J. Skalski, PRC 85, 061302(R) (2012)

- minima with larger octupole deformations
 (A) have quadrupole moments Q=170 b, disturbingly close to the scission region.
- minima (A) are just intermediate
 congurations on the scission path, whose energy was calculated erroneously because of limitations of the admitted class of shapes.

Illrd minima – type: B

IIIrd minima – type: B

IIIrd minima – type: B

the barrier vanishes in uranium and must be smaller than 330 keV in 232Th. The only other nonzero upper limit on the IIIrd barrier of 200 keV we nd in 230Th.

IIIrd minima – type: B

Isotope	$M^{ m theor}$ $M^{ m expt}$	$B_{ m I}^{ m theor} \ B_{ m I}^{ m expt}$	$E_{\mathrm{II}}^{\mathrm{theor}}$ $E_{\mathrm{II}}^{\mathrm{expt}}$	$B_{\mathrm{II}}^{\mathrm{theor}} \ B_{\mathrm{II}}^{\mathrm{expt}}$	$E_{ m III}^{ m theor} \ E_{ m III}^{ m expt}$	$B_{ m III}^{ m theor}$ $B_{ m III}^{ m expt}$
²³² Th	35.33	4.4	2.2	6.1	4.1	4.4
[29]	35.45	5.8		6.7 (6.2)		
[31,32]		5.2 (4.6)	2.4	6.6	2.8	7.0
²³² U	34.34	4.5	3.2	5.7	0.0	0.0
[29]	34.61	5.4		5.4 (5.3)		
[30]		4.0	3.1	4.9	3.2	6.0

P. Jachimowicz, M. Kowal, J. Skalski,

PRC 87, 044308 (2013)

IIIrd saddle from the mesh 5D-8D; 8D mesh (beta1-beta8) – 50803200 points!

Status of third minimum in actinides:

Present status of Illrd minima in actinides; How deep? Do they exist?

 We have presented, for the firs time, full 8D hyper-cube calculation for 232Th (till now only 5-dimensional macroscopic-microscopic calculations of fission saddles were available in the literature). To find the third barrier on such giant grid IWF method has been applied. After proper inclusion of dipole deformation deep of third minimum is only about 300 KeV what rather will not allow to trap the states and carry out the spectroscopic studies.

At present no predictions of deep IIIrd minima;

- Including a dipole distortion lowers the third saddle by more than 4 MeV. It seems likely that, with the shape parametrization, the dipole deformation is important everywhere, where large elongation and necking is combined with a sizable mass asymmetry. For example, it may be the case of the Poinare shape transition at high spins in medium-heavy nuclei.
- In 232,230Th shallow minima (old) experiment & theory consistent;
- Uranium nuclei: predictions conflicting experimental results.

how to solve the problem ? (prospects for the future)

• Other data interpretation?

Assuming, that the existing resonances can not be interpreted otherwise, all current meaningful theoretical models must be reconstructed anew to give appropriate hyperdeformed deep III minima.

- Theory change? Possibilities for theory:
- Rotation ? ; Temperature?
- Importance of beyond-mean-field effects?
- New experimental study dedicated to hyperdeformation in 232Th is essential for understanding of existence of third minima in all actinides nuclei. Particularly promising are experiments employing highly monochromatic gamma-ray beams for photofission studies. With a high quality of photon and spectral intensity, exceeding the performance of existing facilities by several orders of magnitude seems to be possible in the near future (ELI – Project)

the result of Blons et al if İS confirmed. will have we to understand why between 232Th and 232U, two beta decays away, the landscape changes energy SO dramatically.

if in the future experiment, a depth of the IIIrd minimum is obtained similar as that in 232U, we will have a total contradiction between theory and experiment.

Bibliography (latest articles)

- Theory:
- M. Kowal, J. Skalski, " *Examination of the existence of third, hyperdeformed minima in actinide nuclei*", PHYSICAL REVIEW C **85**, 061302(R) (2012).
- P. Jachimowicz, M. Kowal, J. Skalski," *Eight-dimensional calculations of the third barrier in 232Th*", PHYSICAL REVIEW C 87, 044308 (2013).
- T. Ichikawa, P. Moller, and A. J. Sierk, "Character and prevalence of third minima in actinide fission barriers", PHYSICAL REVIEW C 87, 054326 (2013).
- J. D. McDonnell,W. Nazarewicz, and J. A. Sheikh,"*Third minima in thorium and uranium isotopes in a self-consistent theory*" PHYSICAL REVIEW C **87**, 054327 (2013).
- Experiment:
- L. Csige, et, al., "*Hyperdeformed sub-barrier fission resonances observed in 232U*", PHYSICAL REVIEW C **80**, 011301(R) (2009).
- L. Csige, et, al., "*Transmission resonance spectroscopy in the third minimum of 232Pa*", PHYSICAL REVIEW C **85**, 054306 (2012).
- L. Csige, et, al., "*Exploring the multihumped fission barrier of 238U via sub-barrier photofission*", PHYSICAL REVIEW C **87**, 044321 (2013).