Damping of quantum vibrations revealed in deep sub-barrier fusion

Takatoshi Ichikawa Yukawa Institute for Theoretical Physics

Collaborators: Kenichi Matsuyanagi (YITP, RIKEN Nishina Center) Kouichi Hagino (Tohoku) Akira Iwamoto (Jyuntendo, JAEA)

Table of contents

Introduction

- Steep falloff of fusion cross sections
- Correlation with energy at touching point
- Introduce damping factor in coupling potential

■ Motivation

- Method
	- Apply the random-phase approximation method to the two-body system

Results and discussion █

• Correlation between calculated *B*(*E*3) and damping factor

Summary

Steep falloff of fusion cross sections

C. L. Jiang *et al.*, Phys. Rev. Lett. **93**, 012701 (2004)

Standard CC calculations largely deviate from experimental data below a certain threshold incident energy

$16\bigcap$ \bot 208 \bigcap

Nuclei in Collision

When two large nuclei collide and fuserather than flying apart-some of the credit goes to the internal motions of protons and neutrons that result in excited states of the nuclei. The best models account for these states in calculating the fusion rate. But in the 9 November Physical Review Letters. Australian physicists say their measurements disagree with even these sophisticated models. The researchers suggest that the internal modes get out of synch even while the collision is underway, so that the nuclei behave more like a macroscopic classical object than a tiny quantum one.

Two nuclei can overcome the "Coulomb harrier" of repulsion of like charges and fuse

G. Gilmour/Australian National Univ

PRL 99, 192701 (2007)

ပ္စာ

Beyond the Coherent Coupled Channels Description of Nuclear Fusion

M. Dasgupta, ¹ D. J. Hinde, ¹ A. Diaz-Torres, ¹ B. Bouriquet, ^{1,*} Catherine I. Low, ^{1,†} G. J. Milburn, ² and J. O. Newton¹ ¹Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia ²Department of Physics, University of Queensland, St. Lucia, QLD 4072, Australia (Received 8 June 2007; published 6 November 2007)

PHYSICAL REVIEW LETTERS

New measurements of fusion cross sections at deep sub-barrier energies for the reactions $160 +$ 204,208 Pb show a steep but almost saturated logarithmic slope, unlike ⁶⁴Ni-induced reactions. Coupled channels calculations cannot simultaneously reproduce these new data and above-barrier cross-sections with the same Woods-Saxon nuclear potential. It is argued that this highlights an inadequacy of the coherent coupled channels approach. It is proposed that a new approach explicitly including gradual decoherence is needed to allow a consistent description of nuclear fusion.

DOI: 10.1103/PhysRevLett.99.192701

PACS numbers: 25.70.Jj, 03.65.Yz, 24.10.Eq

week ending
9 NOVEMBER 2007

FIG. 2 (color online). Fusion cross sections as a function of the center-of-mass energy with respect to the barrier energies $B =$ 74.5 and 74.9 MeV for ²⁰⁸Pb and ²⁰⁴Pb, respectively.

FIG. 3 (color online). Logarithmic slope as a function of energy with respect to the barrier. Calculation with standard parameters fail to match the measurements at low energy.

What is a key physical quantity?

Energy at the touching point strongly correlate with threshold incident energy *Es*

Correlation between E_s and V_{Touch}

- Estimate potential energy at \blacksquare touching point V_{touch} (YPE model)
- $E_s \rightarrow$ Energy at the peak position of the *S*-factor
- Red curve
	- \rightarrow Systematic curve (Jiang *et al.*)

What happen below energy at touching point?

Tunneling in overlap region

TI, K. Hagino, and A. Iwamoto, Phys. Rev. C **75**, 064612 (2007)

Center-of-Mass Distance r

Subbarrier energies ($E > V_{touch}$)

- Inner turning point \rightarrow Outside of touching point
- Deep subbarrier energies ($E < V_{\text{touch}}$)
	- Inner turning point \rightarrow In the overlap region

Steep fall-off phenomenon can be attributed to dynamics after target and projectile touch with each other

$$
\left[\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r)\right] + \varepsilon_n - E\left[u_n(r) + \sum_{n'} \langle \phi_n | V_{\text{coup}} | \phi_{n'} \rangle \right]u_{n'} = 0
$$

Sudden and adiabatic approaches

- Sudden Approach
	- →Shallow potential pocket
	- Frozen density approximation Mişicu and Esbensen
- Quantum decoherence of channel wave function
	- \rightarrow Coupling to thermal bath
	- Dasgupta *et al.* and Diaz-Torres

Ş. Mişicu and H. Esbensen, Phys. Rev. Lett. **96**, 112701 (2006)

Adiabatic potential energy

- Assuming that neck formations between colliding two nuclei occur after the touching, we smoothy joint between the two and one body potential energies
	- **describe the one-body shapes by the Lemniscatoid parametrization**

Total Potential Energy p_{max} model, in which the two-state two-state two-

$$
E(r) = E_V + E_C(r) + E_N(r)
$$

<mark>plus-E</mark> \overline{P} a Yukawa-plus-Exponential(YPE) Model

$$
E_N = -\frac{c_s}{8\pi^2 r_0 a^3} \iiint \left(\frac{\sigma}{a} - 2\right) \frac{e^{-\sigma/a}}{\sigma} d^3r d^3r'
$$

 $\epsilon = a(1-\kappa I^2)$ $I = (N-7)/4$ \mathcal{C}_s $c_s = a_s (1 - \kappa_s I^2)$ $I = (N - Z)/A$

Coupling potential in overlap region

TI, K. Hagino, and A. Iwamoto, Phys. Rev. C **75**, 064612 (2007)

Center-of-Mass Distance r

- Subbarrier energies ($E > V_{touch}$)
	- Inner turning point \rightarrow Outside of touching point
- Deep subbarrier energies ($E < V_{\text{touch}}$)
	- Inner turning point \rightarrow In the overlap region

$$
\left[\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar^2}{2\mu r^2} + V(r) + \varepsilon_n - E\right]u_n(r) + \left[\sum_n \left\langle \phi_n \left| V_{\text{coup}} \right| \phi_n \right\rangle \Big| u_{n'} = 0\right]
$$

How should we calculate the coupling potential around overlap region?

Problems in coupling potential

 \blacksquare How do we describe the total wave function in the one-body system?

- The total wave function is expanded by the asymptotic intrinsic basis of the isolated nuclei
- Require to include all the intrinsic basis in the complete set →Almost impossible in practice

■ Double counting of CC effects

• Adiabatic one-body potential with neck formations already includes a large part of the channel coupling effects

Extension of the standard coupled-channel equation is necessary

Coupling potential (Collective model)

- **Calculation of** $\langle \phi_n | V_{\text{coup}} | \phi_n \rangle$ $R(\theta, \phi) = R_0 \left(1 + \sum_{\mu} \alpha_{\lambda \mu} Y_{\lambda \mu}^*(\theta, \phi) \right)$
	- Intrinsic eigenstate $\hat{O}|\alpha\rangle = \lambda_\alpha |\alpha\rangle$ $R_0 \rightarrow R_0 + \hat{O} = R_0 + \beta_2 R_0 Y_{20} + \beta_3 R_0 Y_{30}$

$$
\hat{h}_0 = \hbar \omega_0 \sum_{\mu} a^{\dagger}_{\lambda \mu} \alpha_{\lambda \mu} \qquad \qquad \alpha_{\lambda \mu} = \frac{\beta_{\lambda}}{\sqrt{2\lambda + 1}} \left(a^{\dagger}_{\lambda \mu} + (-)^{\mu} \alpha_{\lambda \mu} \right)
$$

$$
\beta_{\lambda} = \frac{4\pi}{3zR^{\lambda}} \sqrt{\frac{B(E\lambda)}{e^2}}
$$

!

 \backslash

 \int

 $(r, \hat{O}) = V_{\text{coun}}^{(N)}(r, \hat{O}) + V_{\text{coun}}^{(C)}(r, \hat{O})$ • Coupling potential $V_{\text{coup}}(r, \hat{O}) = V_{\text{coup}}^{(N)}(r, \hat{O}) + V_{\text{coup}}^{(C)}(r, \hat{O})$

input: *B*(*E*λ) $β_λ$ \rightleftharpoons *B*(*E*λ)

$$
V_{nm}^{(N)} = \langle I0|V_N(r,\hat{O})|I^{\prime}0\rangle - V_N^{(0)}(r)\delta_{nm}
$$

=
$$
\sum_{\alpha} \langle I0|\alpha\rangle \langle \alpha|I^{\prime}0|V_N(r,\lambda_{\alpha})|V_N^{(0)}(r)\delta_{nm}
$$

 $\overline{}$ $\overline{}$

 $= R_0 \left[1 + \sum_{i=1}^{n} \right]$

 $R(\theta,\phi) = R_0 \left[1 + \sum \alpha_{\lambda\mu} Y^*_{\lambda\mu}(\theta,\phi) \right]$

 μ

 $\sqrt{}$

 \setminus

$$
V_N(r, \lambda_\alpha) \approx V_N^{(0)}(r) - \frac{dV_N^{(0)}(r)}{dr} \lambda_\alpha + \frac{1}{2} \frac{d^2V_N^{(0)}(r)}{dr^2} \lambda_\alpha^2
$$

Extension of coupled-channel model

 R_d = R_p + R_t TI, K. Hagino, and A. Iwamoto, Phys. Rev. Lett. **103**, 202701 (2009) Φ 0 *r* 1 *ad Rd* + *λα* $R_d = r_d(A_T^{1/3} + A_P^{1/3})$ *ad*: Damping factor $e^{-(r-R_d-\lambda_{\alpha})^2/2a_d^2}$ $(r < R_d + \lambda_{\alpha})$ 1 $(r \ge R_d + \lambda_\alpha)$ $\Phi(r, \lambda_\alpha) = \begin{cases}$ $V_N(r, \lambda_\alpha) \sim V_N^{(0)}(r) +$ $\overline{\mathsf{I}}$ $\left| - \right|$ $dV_N^{(0)}(r)$ $\frac{N}{dr}$ λ_{α} + 1 2 $d^2V_N^{(0)}(r)$ $\frac{r}{dr^2} \lambda^2_\alpha$ α $\overline{\mathsf{I}}$ $\Phi(r, \lambda_\alpha)$ $V_{nm}^{(N)}=$ $\overline{\sqrt{2}}$ *I*0 $\begin{array}{c} \hline \end{array}$ $\left|V_N(r, \hat{O})\right|$ *I* 0 $\left\langle V_N^{(0)}(r)\delta_{nm}\right\rangle\to 0$ $\left[-\frac{\hbar^2}{2\mu}\right]$ 2μ d^2 $\frac{d}{dr^2}$ + *J*(*J* + 1) $\frac{2\mu r^2}{r^2} + V(r) + \epsilon_n - E$ $\overline{\mathsf{I}}$ $u_n(r)$ + \sum *n* $\overline{\sqrt{2}}$ ϕ_n $\overline{\mathsf{I}}$ $|V_{\text{coup}}|$ $\overline{\mathsf{I}}$ ϕ_n $\overline{\mathcal{L}}$ **Two body** $\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{J(J+1)}{2\mu^2} + V(r) + \epsilon_n - E\right]u_n(r) + \sum_j \left\langle \phi_n \left|V_{\text{coup}}\right| \phi_n \right\rangle u_n(r) = 0$ Touching point Damping factor

 $\left[-\frac{\hbar^2}{2\mu}\right]$ 2μ d^2 $\frac{d}{dr^2}$ + *J*(*J* + 1) $\frac{2\mu r^2}{r^2} + V(r) + \epsilon_n - E$ $\overline{\mathsf{I}}$ $u_n(r) = 0$

One body

Calculated results: fusion cross section ICUIATEO FESUITS: TU ergies between the two-body and the adiabatic one-body and the adiabatic one-body and the adiabatic one-I 1 loulated results: fusion eres sectio 16O+208Pb, it is difficult to joint smoothly the potential energies between the two-body and the adiabatic one-body systems at the touching point, because the proton-to-neutron $\overline{1}$ $\overline{0}$

0.68 fm, *as* = 21.33 MeV, and κ*^s* = 2.378 from FRLDM2002 \mathcal{I} the radius parameter *r*⁰ is adjusted to be 1.205 fm, 1.176 fm and 1.202 fm for the 64Ni+64Ni, 58Ni+58Ni and 16O+208Pb

systems, respectively. For the mass asymmetric system of

First derivative of fusion cross section [C as **a** board of the set o
Set of the set of th \blacksquare $85 - 55 - 55$ l K \overline{a} \overline{b}

Astrophysical S-factor 85 90 95 + damping

Difference between two approaches ap $\overline{1}$ \overline{O}

- Both the sudden and adiabatic models provide similar results for the fusion cross sections $\overline{\overline{}}$ cm
	- What is a difference between these two models?

 \rightarrow Average angular momentum of compound nuclei zound nuclei

Direct processes

compound the 64Ni measuring avera result of the present adiabatic model, while the dashed line is the result of the sudden model by Miss, and Esperan taken from Esperan taken from Esperan \sim [8]. The dotted line is the result of the standard coupled-channel Expediant constitution function function function function \mathbf{r}_1 e two approaches By measuring average angular momentum, we discriminate the two approaches

Motivation

■ What is the microscopic origin of the damping factor phenomenologically introduced?

• Coupling potential varnishes around the touching of colliding two nuclei

 \rightarrow Transitions between channels decreases due to the damping of the vibrational excitation?

Transition strength *B*(*E*2 or *E*3)

Investigate quantum-mechanical vibrational spectrum using the random-phase approximation (RPA) method, when colliding two nuclei approach each other

Mean-field potential

Total Hamiltonianexpanded by deformed harmonic-oscillator basis $\overline{}$

$$
H = -\frac{\hbar^2}{2m}\Delta + V_N(\vec{r}) + V_{\text{S.O.}}(\vec{r}) + V_C(\vec{r})(1 - \tau_3)/2
$$

$$
V_{\text{S.O.}} = -\lambda \left(\frac{\hbar}{2m_{\text{nuc}}c}\right)^2 \frac{\vec{\sigma} \cdot \nabla V \times \vec{p}}{\hbar}
$$

Folded Yukawa potential \Box One-body shape → Lemniscatoid parametrization

$$
V_{\rm N}(\vec{r}) = -\frac{V_0}{4\pi a_{\rm pot}} \int_V \frac{e^{-\left|\vec{r} - \vec{r'}\right|/a_{\rm pot}}}{\left|\vec{r} - \vec{r'}\right|/a_{\rm pot}} d\vec{r'}
$$

Random-phase approximation (RPA) method

It is easy to apply the RPA method to the two-body system, because we describe the two-body system by the one Slater determinant

$$
Q_{\nu}^{\dagger} = \sum_{mi} X_{mi}^{\nu} a_{m}^{\dagger} a_{i} - Y_{mi}^{\nu} a_{i}^{\dagger} a_{m}
$$
\n
$$
Q_{\nu} | RPA \rangle = 0
$$
\n
$$
\langle RPA | \left[a_{i}^{\dagger} a_{m}, [H, Q_{\nu}^{\dagger}] \right] | RPA \rangle = \hbar \Omega_{\nu} \langle RPA | \left[a_{i}^{\dagger} a_{m}, Q_{\nu}^{\dagger} \right] | RPA \rangle
$$
\n
$$
\langle RPA | \left[a_{m}^{\dagger} a_{i}, [H, Q_{\nu}^{\dagger}] \right] | RPA \rangle = \hbar \Omega_{\nu} \langle RPA | \left[a_{m}^{\dagger} a_{i}, Q_{\nu}^{\dagger} \right] | RPA \rangle
$$
\n
$$
B \setminus \int_{\Omega} X^{\nu} \setminus \int_{\Omega} \int_{\Omega} (1 - 0) \int_{\Omega} X^{\nu} \setminus \int_{\Omega} \int_{\Omega} (1 - 0) \int_{\
$$

$$
\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \hbar \Omega_{\nu} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix}
$$

$$
A_{minj} = \langle \text{RPA} | \left[a_m^{\dagger} a_i, [H, a_n^{\dagger} a_j] \right] | \text{RPA} \rangle = (\epsilon_m - \epsilon_n) \delta_{mn} \delta_{ij} + \bar{v}_{mjin}
$$

$$
B_{minj} = -\langle \text{RPA} | \left[a_i^{\dagger} a_m, [H, a_j^{\dagger} a_n] \right] | \text{RPA} \rangle = \bar{v}_{mnij}
$$

Residual interaction

Density-dependent δ type residual interaction

• neutron-neutron, proton-proton

(Shlomo-Bertsch)

$$
v_{ph}(\mathbf{r}_1, \mathbf{r}_2) = \left[\frac{t_0}{2}(1 - x_0) + \frac{t_3}{12}(4 - x_3)\rho(\mathbf{r}_1)\right]\delta(\mathbf{r}_1 - \mathbf{r}_2)
$$

• neutron-proton

$$
v_{ph}(\mathbf{r}_1, \mathbf{r}_2) = \left[t_0 (1 + \frac{x_0}{2}) + \frac{t_3}{12} (5 + x_3) \rho(\mathbf{r}_1) \right] \delta(\mathbf{r}_1 - \mathbf{r}_2)
$$

 t_0 = -1100 MeV fm³, t_3 = 16000 MeV fm⁶, x_0 = 0.5, x_3 = 1.0

Fine-tune the strength of the residual interaction so that the eigen energy of $K = 0$ ⁻ mode (center-of-mass motion) becomes zero

Transition density and current

The first 3⁻ excited state of the RPA solution with $K = 0^+$

• Transition density

$$
\rho^{\nu}(\mathbf{r}) = -\frac{i}{\hbar} \sqrt{\frac{\hbar}{2M_{\nu}\Omega_{\nu}}} \langle 0 | \left[\hat{\rho}^{\nu}(\mathbf{r}), P_{\nu}\right] | 0 \rangle
$$

• Transition current

$$
\mathbf{j}^{\nu}(\mathbf{r}) = \sqrt{\frac{M_{\nu}\Omega_{\nu}}{2\hbar}} \langle 0 | \left[\hat{\mathbf{j}}^{\nu}(\mathbf{r}), Q_{\nu}\right] | 0 \rangle
$$

Amplitude of the vibrational excitation becomes small around the touching point

B(*E3*) strength of the right-sided nucleus

$$
3^{-}|\hat{Y}_{30}^{(R)}|R,0^{+}\rangle
$$

= $\frac{1}{\sqrt{2}}((3^{-},+|\hat{Y}_{30}^{(R)}|\phi_{0}\rangle + \langle 3^{-},-|\hat{Y}_{30}^{(R)}|\phi_{0}\rangle)$

$$
\hat{Y}_{30}^{(R)} = \hat{Y}_{30}(r - R)
$$

$$
|\Psi^+\rangle = \frac{1}{\sqrt{2}} (|R\rangle + |L\rangle)
$$

$$
|\Psi^-\rangle = \frac{1}{\sqrt{2}} (|R\rangle - |L\rangle)
$$

$$
\rightarrow |R\rangle = \frac{1}{\sqrt{2}} (|\Psi^-\rangle + |\Psi^+\rangle)
$$

B(*E*3) considerably decreases around the touching point

Nilsson Diagram

Good quantum number

- Z component of the total angular momentum Ω
- Parity for the origin

cf.

 $\begin{array}{c} \hline \end{array}$ $|\Psi^{-}\rangle =$ 1 $\overline{\sqrt{ }}$ 2 $(|R\rangle - |L\rangle)$ $\overline{\mathsf{I}}$ $| \Psi^+ \rangle =$ 1 $\overline{\sqrt{ }}$ 2 $(|R\rangle + |L\rangle)$

Nilsson Diagram $\overline{1}$ $\overline{\mathbf{v}}$ $\overline{}$ –20 $\overline{}$

Coupled-channel calculation with damping factor

 Check correlation between the calculated *B*(*E*3) and the damping factor which well reproduce the experimental data of fusion cross sections

Correlation between *B*(*E*3) and damping factor

Calculated B(E3) strongly correlate the damping factor fitted by the calculation of the fusion cross section

Summary

- We, for first time, apply the RPA method to the two-body¹⁶O+¹⁶O and $40Ca+40Ca$ systems and calculate the vibrational excitation when two colliding nuclei approach each other
- The transition strength *B*(*E*3) largely decreases when colliding two \blacksquare nuclei approach each other due to the change of their wave functions and each 3- excitation mode vanishes
- The large reduction of *B(E3)* around the touching point strongly \Box correlates with the damping factor which reproduces well the experimental fusion corrections
- The vanishing of the coupling between the relative and the intrinsic \Box degree of freedoms is responsible for the fusion hindrance in deep sub-barrier reactions

TI and K. Matsuyanagi, Phys. Rev. C**88**, 011602(R) (2013) TI, K. Hagino, and A. Iwamoto, Phys. Rev. C **75**, 064612 (2007) TI, K. Hagino, and A. Iwamoto, Phys. Rev. Lett. **103**, 202701 (2009)