
Mean-field and Beyond 
for heavy nuclei 

Present and Future 
 

- Mean-field methods: codes  
- Good reasons to go beyond mean-field 
-  How to do it Applications 
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Our group: 
 
The precursors: P. Bonche, H. Flocard,  
                          M. Weiss, J. Dobaczewski  
 
The successors: M. Bender , T. Duguet  
 
Many collaborators: G. Bertsch, S. Cwiok, W. Nazarewicz,  
                                 J. Skalski, P. Magierski… 
 
Recent Ph D and Post Doc collabotators 
V. Hellemans, W. Ryssen, B. Avez, B. Bally, K. Washiama, 
J. Yao, S. Baroni, … 
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Mean-field Methods 

• Based on an “effective interaction” or a “density functional” 
 The (small number of) parameters of the effective interaction  
are fixed by general considerations (no local adjustments) 
• Pairing correlations are included at the BCS or better HFB level 
• Full self-consistency 
 
Our method: discretization on a 3-dimensional mesh (no expansion 
on a basis) 
• No restrictions to a few shells, mean-field equations are solved  
as precisely as one wishes. 
• Spherical and deformed nuclei are treated on the same footing, 
no “parametric deformation”  
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3-dimensional Cartesian mesh 

Value of wave functions 
at mesh points= 
variational parameters  

Codes: 
ev8, ev4 
cr8, cr4 
GCM codes  
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   HOSPHE 
shells 
10 -343,6343232 
15 -343,9616588 
20 -344,0759899 
40 -344,0836702 
60 -344,0837838 
70 -344,0837891 
 

  Lenteur 
 dr 
0,5 -344,6723824 
0,25 -344,0789679 
0,1 -344,0779376 
0,01 -344,0844223 
0,005 -344,084479 
0,002 -344,0844949 
 

EV8 
dx 
1 -343,4911 
0,9 -343,6463 
0,8 -343,7597 
0,7 -343,8380 
0,6 -343,8996 
0,5 -343,9500 
0,4 -343,9887 
 

Numerical accuracy of the codes 
HOSPHE spherical oscillator 
Lenteur    1d (spherical) mesh 
EV8          3d (cartesian) mesh 

40Ca, SLy4  

Test MOCCa new Coulomb, Skm* dx=0.8 fm   -341.064  
To be compared to Lenteur converged:            -341.080 
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In preparation: rewriting of all the codes in a modern way 
 
Single code with all possibility of symmetry breaking in a box 
 
Modular code that will replace all the exiting ones and extends them 
 
 
Already operational without pairing. 
 
(Thesis of Wouter Ryssen) 



208Pb 180Hg 202Rn 170Hf 

Mean-field energy curves (β2 proportional to Q) 
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Plus and minus of the mean-field approach: 

Plus: 
Starts from an effective interaction: generality 
Can describe any kind of shapes (from ground state to fission) 
Cranking (or qp excitations) well justified for deformed nuclei 
 
 
 

Minus: 
Valid only for energy (variational) and one-body operators 
Breaking of symmetries (no direct determination of transitions) 
Soft nuclei?  Shape coexistence? 
Effects of correlations beyond mean-field on masses? 
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Correlations 
Explicitly included at the mean-field level: 

• Statistics (fermions) 

• Pairing (BCS or HFB) 

• Deformation (can bring up to 20 MeV!) 

 

Absent: 

• Symmetry restoration (rotational correlations) 

• Configuration mixing (shape, multi qp excitations, …) 

     (vibrational correlations) 

Can all missing correlations be included in the interaction? 

              (“DFT spirit”) 
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Mean-field wave-functions generated by a double constraint: 

 
and projected on good angular momentum with the projector: 

projected also on N and Z 
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Three steps: 
    1. Projection on N, Z, J, K and M of the mean-field wave functions 

after projection, q is a label (reminder) of the mean-field state 
Non orthogonal basis as a function of q before and after projection! 

2. K-mixing: 

3. Selection of the relevant states (truncation on κ) and mixing 
on the deformation: 
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The coefficients F are determined by minimizing the energy: 

and are obtained by solving the HWG equation: 

Core of the problem: determination of the kernels: 
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PLUS: 
-Very rich basis with many ph components  
 (more precisely qp excitations with respect  
  to a spherical basis) 
-GCM is not limited to small amplitude motion 
 as the QRPA 
- multi np-mh excitations are automatically included 
  
MINUS: 
-Kind of ph excitations determined by the constraint 
                                   used in the mean-field 
-Only time reversed pairs are excited 
-Up to now, (nearly) only axially deformed states 
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Projection on angular momentum  
= 

     From intrinsic to laboratory frame of 
reference 

 
No approximation based on the collective model 

for transition probabilities. 
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Selected applications 
 
- Shape coexistence in neutron deficient Pb region 

 
- Breaking of translational invariance 

 
- 240 Pu fission barrier 
 
- Superheavy elements 

 
- 180Hg 
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Yao, Bender, Heenen,  PRC 2013 
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Neutron-deficient Pb region 
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     Restoration of translational invariance 
Generator coordinate:  
           r translation of the mean-field wave function 
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240Pu 
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Relevant degrees of freedom for 282
112Cn  
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Fission and octupole 
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The future  
 
Triaxiality also plays a role and has to be included for many nuclei 
      done, but very time-consuming 
 
Description of odd nuclei (1qp excitations) requires: 
-to break time-reversal invariance (cranked HFB as a mean-field tool) 
      done, but very time-consuming 
      will improve also the description of spectra of even nuclei 
 
- to break more symmetries of the mean-field 
 
 Readjustment of  the effective interaction (correlations increase the binding 
energy 
 
Effective interactions based on realistic nucleon-nucleon interactions 
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