

Mean-field and Beyond for heavy nuclei Present and Future

- Mean-field methods: codes
- Good reasons to go beyond mean-field
- How to do it Applications

U B

Our group:

The precursors: P. Bonche, H. Flocard, M. Weiss, J. Dobaczewski

The successors: M. Bender, T. Duguet

Many collaborators: G. Bertsch, S. Cwiok, W. Nazarewicz, J. Skalski, P. Magierski...

Recent Ph D and Post Doc collabotators V. Hellemans, W. Ryssen, B. Avez, B. Bally, K. Washiama, J. Yao, S. Baroni, ...

Mean-field Methods

- Based on an "effective interaction" or a "density functional" The (small number of) parameters of the effective interaction are fixed by general considerations (no local adjustments)
- Pairing correlations are included at the BCS or better HFB level
- Full self-consistency

Our method: discretization on a 3-dimensional mesh (no expansion on a basis)

- No restrictions to a few shells, mean-field equations are solved as precisely as one wishes.
- Spherical and deformed nuclei are treated on the same footing, no "parametric deformation"

Numerical accuracy of the codesHOSPHE spherical oscillatorLenteur1d (spherical) meshEV83d (cartesian) mesh

HOSPHE		Lenteur		EV8	
shells		dr		dx	
10	-343,6343232	0,5	-344,6723824	1	-343,4911
15	-343,9616588	0,25	-344,0789679	0,9	-343,6463
20	-344,0759899	0,1	-344,0779376	0,8	-343,7597
40	-344,0836702	0,01	-344,0844223	0,7	-343,8380
60	-344,0837838	0,005	-344,084479	0,6	-343,8996
70	-344,0837891	0,002	-344,0844949	0,5	-343,9500
				0,4	-343,9887
	40Ca, SLy4				

Test MOCCa new Coulomb, Skm* dx=0.8 fm -341.064 To be compared to Lenteur converged: -341.080

- In preparation: rewriting of all the codes in a modern way
- Single code with all possibility of symmetry breaking in a box
- Modular code that will replace all the exiting ones and extends them

- Already operational without pairing.
- (Thesis of Wouter Ryssen)

Mean-field energy curves (β_2 proportional to Q)

Plus and minus of the mean-field approach:

Plus:

Starts from an effective interaction: generality Can describe any kind of shapes (from ground state to fission) Cranking (or qp excitations) well justified for deformed nuclei

Minus:

Valid only for energy (variational) and one-body operators Breaking of symmetries (no direct determination of transitions) Soft nuclei? Shape coexistence? Effects of correlations beyond mean-field on masses?

Correlations

Explicitly included at the mean-field level:

- Statistics (fermions)
- Pairing (BCS or HFB)
- Deformation (can bring up to 20 MeV!)

Absent:

- Symmetry restoration (rotational correlations)
- Configuration mixing (shape, multi qp excitations, ...) (vibrational correlations)

Can all missing correlations be included in the interaction? ("DFT spirit") Mean-field wave-functions generated by a double constraint:

$$q_1 = Q_0 \cos(\gamma) - \frac{1}{\sqrt{3}} Q_0 \sin(\gamma)$$
$$q_2 = \frac{2}{\sqrt{3}} Q_0 \sin(\gamma).$$

$$\beta_2 = \sqrt{\frac{5}{16\pi}} \frac{4\pi Q_0}{3R^2 A}$$

and projected on good angular momentum with the projector:

$$\hat{P}_{MK}^{J} = \frac{2J+1}{16\pi^2} \int_0^{4\pi} d\alpha \int_0^{\pi} d\beta \,\sin(\beta) \int_0^{2\pi} d\gamma \,\mathcal{D}_{MK}^{J*} \,\hat{R}$$

projected also on N and Z

Three steps:

1. Projection on N, Z, J, K and M of the mean-field wave functions

$$|JMKq\rangle = \hat{P}^J_{MK} \hat{P}^Z \hat{P}^N |q\rangle$$

after projection, q is a label (reminder) of the mean-field state Non orthogonal basis as a function of q before and after projection!

2. K-mixing:

$$|JM\kappa q\rangle = \sum_{K=-J}^{+J} f_{\kappa}^{J}(K) |JMKq\rangle$$

3. Selection of the relevant states (truncation on κ) and mixing on the deformation:

$$|JM\nu\rangle = \sum_{q} \sum_{\kappa=1}^{\kappa_{m}^{J,q}} F_{\nu}^{J}(\kappa,q) \left| JM\kappa q \right\rangle$$

The coefficients *F* are determined by minimizing the energy:

$$\frac{\delta}{\delta F_{\nu}^{J\,*}(K,q)}\frac{\langle JM\nu|\hat{H}|JM\nu\rangle}{\langle JM\nu|JM\nu\rangle}=0$$

and are obtained by solving the HWG equation:

$$\sum_{q'} \sum_{\kappa'=1}^{\kappa_m^{J,q}} \left[\mathcal{H}_J(\kappa,q;\kappa',q') - E_\nu^J \mathcal{I}_J(\kappa,q;\kappa',q') \right] F_\nu^J(\kappa',q') = 0$$

Core of the problem: determination of the kernels:

$$\begin{aligned} \mathcal{H}^{J}(\kappa,q;\kappa',q') &= \langle JM\kappa q | \hat{H} | JM\kappa'q' \rangle \\ \mathcal{I}^{J}(q,\kappa;q',\kappa') &= \langle JM\kappa q | JM\kappa'q' \rangle \,. \end{aligned}$$

Br

PLUS:

- -Very rich basis with many ph components (more precisely qp excitations with respect to a spherical basis)
- -GCM is not limited to small amplitude motion as the QRPA
- multi np-mh excitations are automatically included

MINUS:

- -Kind of ph excitations determined by the constraint used in the mean-field
- -Only time reversed pairs are excited
- -Up to now, (nearly) only axially deformed states

26/09/2013

Projection on angular momentum

=

From intrinsic to laboratory frame of reference

No approximation based on the collective model for transition probabilities.

26/09/2013

Selected applications

- Shape coexistence in neutron deficient Pb region
- Breaking of translational invariance
- 240 Pu fission barrier
- Superheavy elements
- 180Hg

Neutron-deficient Pb region

FIG. 16: (Color online) Comparison between the calculated and the measured low-lying spectra for ¹⁸⁶Hg, ¹⁸⁸Pb, and ¹⁹⁰Po. The B(E2) values are given in e^2b^2 units. The experimental data are taken from Refs. [8, 17, 52–54].

Yao, Bender, Heenen, PRC 2013

26/09/2013

Restoration of translational invariance Generator coordinate:

r translation of the mean-field wave function

$$\begin{aligned} |\Psi_k\rangle &= cst. \int d^3 \mathbf{r} e^{i\mathbf{k}.\mathbf{r}} |\Phi(\mathbf{r})\rangle \\ E_k &= \frac{\int d^3 r \langle \Phi(\mathbf{0}) |H| \Phi(\mathbf{r}) \rangle. e^{i\mathbf{k}.\mathbf{r}}}{\int d^3 r \langle \Phi(\mathbf{0}) |\Phi(\mathbf{r}) \rangle. e^{i\mathbf{k}.\mathbf{r}}} \end{aligned}$$

$$E_k = E_0 + \frac{1}{2} \frac{\mathbf{k}^2}{M^*(k)}$$

 $M^{*}(0) = 3 \frac{\left(\int_{0}^{\infty} R^{2} dR \mathcal{I}(R)\right)^{2}}{\left[\left(\int_{0}^{\infty} R^{4} dR \mathcal{I}(R)\right)\left(\int_{0}^{\infty} R^{2} dR \mathcal{H}(R)\right) - \left(\int_{0}^{\infty} R^{2} dR \mathcal{I}(R)\right)\left(\int_{0}^{\infty} R^{4} dR \mathcal{H}(R)\right)\right]}$ $E_{0} = \frac{\int d^{R} R^{2} \mathcal{H}(R)}{\int d^{R} R^{2} \mathcal{I}(R)}$

$$\beta_{\ell m} \equiv \frac{4\pi}{3R^{\ell}A} \,\Re\{\langle Q_{\ell m}\rangle\}$$

with $R = 1.2 A^{1/3}$ fm. two conventions used throughout this talk

- 1. axial: $\beta_2 < 0$: oblate, $\beta_2 > 0$: prolate
- 2. triaxial: $\beta_2 > 0$, $\gamma = 60^{\circ}$: oblate, $\beta_2 > 0$, $\gamma = 0^{\circ}$: prolate

200

Relevant degrees of freedom for ²⁸²₁₁₂Cn

Fission and octupole

The future

Triaxiality also plays a role and has to be included for many nuclei done, but very time-consuming

Description of odd nuclei (1qp excitations) requires: -to break time-reversal invariance (cranked HFB as a mean-field tool) done, but very time-consuming will improve also the description of spectra of even nuclei

- to break more symmetries of the mean-field

Readjustment of the effective interaction (correlations increase the binding energy

Effective interactions based on realistic nucleon-nucleon interactions