Prospects for Measuring the Reactor Neutrino Flux and Spectrum

as a member of the Daya Bay and PROSPECT collaborations

INT, Seattle, November 8, 2013

Reactor Neutrino Oscillation Experiments

Measure (non)-1/r² behavior of \overline{v}_e interaction rate

neutrinos/MeV/fission

L/E $\rightarrow \Delta m^2$ amplitude of oscillation $\rightarrow \theta$

Daya Bay sums data from multiple reactors

Daya Bay - A State of the Art θ_{13} Experiment Daya Bay

Hall 3: began 3 AD operation on Dec. 24, 2011

Daya Bay has multiple detectors

Hall 2: began 1 AD operation on Nov. 5, 2011

Hall 1: began 2 AD operation on Sep. 23, 2011

Daya Bay Detectors

8 functionally identical detectors reduce systematic uncertainties

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

3 volumes eliminate edge effects, common to all θ_{13} experiments

Automated Calibration System

3 Automatic calibration 'robots' (ACUs) on each detector

Three axes: center, edge of target, middle of gamma catcher

3 sources in each robot, including:

- 10 Hz 68 Ge (0 KE e⁺ = 2×0.511 MeV γ 's)
- 0.75 Hz 241 Am-¹³C neutron source (3.5 MeV n without γ)
- $+ 100$ Hz ⁶⁰Co gamma source (1.173+1.332 MeV γ)
- LED diffuser ball (500 Hz) for time calibration

Temporary special calibration sources:

γ: $137Cs$ (0.662 MeV), $54Mn$ (0.835 MeV), $40K$ (1.461) MeV)

n: 241 Am- 9 Be, 239 Pu- 13 C

Daya Bay Fall 2012

Installation of Final Antineutrino Detectors Full Volume Calibration

Regular, automated and special, fullvolume calibration to understand detector response

Prompt + Delayed Selection

Side-by-Side Comparison in Near Hall

Highest statistics in near-site spectra in EH1

Measuring Antineutrino Rate vs Time

Detected rate strongly correlated with reactor flux expectations

- Predicted Rate assumes no oscillation
- Absolute normalization determined by fit to data
- Normalization within a few percent of expectations

Measuring θ13 with Reactor Experiments

Reactor Experiments - Current Results

From Discovery to Precision Measurements

Daya Bay 5.2σ measurement of non-zero θ_{12} **2012**

PRL 108:171803 (2012)

Daya Bay 7.7σ Improved measurement CP**C37**:011001 (2013)

consistent results from Double Chooz and RENO

Most precise sin22θ13 measurement (10%)

First Δm²_{ee} measurement (`atmospheric' Δm² from v_e agrees with v_{μ} from MINOS, consistent with 3-ν model)

Rate+Spectra Oscillation Analysis

Relative oscillation analysis between near and far detectors

Precision Measurements

Combination of n-Gd and n-H with anticipated systematics improvements (sin²2θ₁₃ = 0.09, Δm²_{ee} = 2.41e-3 eV²)

Reactor experiments will provide most precise measurement of sin22θ13 for the foreseeable future.

Towards Absolute Spectrum and Flux

Multiple Reactor Cores

Oscillation of different reactors mixed together in one detector. From measurement, we don't know which IBD event is from which reactor

Daya Bay can compare spectra between detectors and experimental halls

 \bullet L1

Ling Ao NPP

AD1 AD2

Dava Bay NPP

D₁

EH₁

 \bullet 1.2

Towards Absolute Spectrum and Flux

EH₂

EH₃

AD4 AD5

 200 m

 $AD6$

Summed spectrum is an averaged, effective spectrum

Multiple Reactor Cores

Combine 3 ADs antineutrino spectrum together:

Obtain normalized reactor antineutrino spectrum: oscillation, proton number, total fission number Ftotal

$$
S_{Norm}(E_v) = \frac{S_{combined}(E_v)}{P_{sur_eff}(E_v) \cdot N_p} / F_{total}
$$

Where Ftotal is from all 6 reactors contributions to 3 ADs:

 rrd

$$
F_{total} = \sum_{d} \sum_{r} \frac{1}{4 \pi L_r^2} \cdot \frac{W_r^2}{\sum_{i} \alpha_{ir}^d \cdot e_i}
$$

index:

Daya Bay

Towards Absolute Spectrum

Fuel Evolution of Multiple Reactor Cores

Antineutrino detectors in EH1 get \sim 80% of IBDs from D1 and D2

D1 and D2 have 18 month fuel cycles

Twice per fuel cycle one of these

Fuel Evolution of Reactor Core

For a single core, IBDs shift to lower energy bins as fuel evolves \bullet

Summing data from different times adds different spectral changes from multi-reactor experiment.

Energy Response and Scale

Understanding energy scale is important for both oscillation analysis and spectral measurement

Requires detailed translation between true and detected antineutrino energy.

Energy Response

Measurement of the absolute spectrum requires understanding the energy response -> Model maps true energy E_{true} to reconstructed kinetic energy E_{rec}

Minimal impact on relative oscillation measurement, crucial for measurement of absolute reactor spectra

Karsten Heeger, Yale University Seattle, November 8, 2013 **21** and 21

Energy loss in acrylic causes small distortion of energy spectrum

If antineutrino interacts in or near acrylic vessel, a portion of the kinetic energy of inverse beta positrons will not be detected

Annihilation gammas with longer range can also deposit energy in the vessels

Generated 2D distortion matrix from MC to correct predicted positron energy spectrum

Uncertainties from varying acrylic vessel thicknesses and MC statistics incorporated into analysis.

PMT readout electronics introduces additional biases

Electronics does not fully capture late secondary hits

- Slow scintillation component missed at high energies
- Charge collection efficiency decreases with visible light

Effective model as a function of total visible energy

 $\vert 1 \vert$

 $\sqrt{2}$

- 2 empirical parameterizations: exponential and quadratic
- Total effective non-linearity f from both scintillation and electronics effects:

$$
f = \frac{E_{\text{rec}}}{E_{\text{true}}} = \frac{E_{\text{rec}}}{E_{\text{vis}}} \cdot \frac{E_{\text{vis}}}{E_{\text{true}}}
$$

Electronics non-linearity

Energy Response Model

Constraints

Positron Energy Response Use calibration gamma sources and continuous 12B spectrum to constrain energy model parameters

multiple models are constructed with different data and parameter constraints

conservatively combine 5 minimal correlated energy models

Detector response to gamma and eused to predict response to e+

Gamma + Beta Spectra

Additional spectra from 212Bi, 214Bi and 208Tl decays

- Sizable theoretical uncertainties from 1st forbidden non-unique beta decays
- 212Bi, 214Bi and 208Tl spectra only utilized to cross-check results

Absolute Spectral Shape

Measurement of absolute antineutrino spectrum strongly dependent on detector energy model

Uncertainty Summary - Relative

Uncertainty Summary - Absolute

Neutron Spill-in/Spill-Out

Difficult to address with data; heavily reliant on simulation

Daya Bay - Projected Uncertainties

Absolute Uncertainties

Daya Bay

Short-Baseline Reactor Experiments

Baselines

Reactor Anomaly

apparent deficit in observed reactor flux

Reactor Spectra One of several anomalies

LSND $(\overline{v}_e$ appearance) MiniBoone (ν_e appearance) Ga anomaly N_{eff} in cosmology Reactor anomaly (ν_e disappearance)

Do we understand reactor flux predictions and spectrum?

 $\sim O(10)$ m

Measure un-oscillated spectrum if you don't see oscillations

Short-Baseline Reactor Experiment

PROSPECT - A US-Based Short Baseline Experiment A Precision Reactor Neutrino Oscillation and Spectrum Experiment

Map out L/E Oscillations

Phased Approach phase 1- near detector phase 2 - near + far detectors

3σ in 1 year 5σ in 3 years

Short-Baseline Reactor Experiment - Objectives

Assuming Primary Physics Objectives

1 Detector, 1 year

Definitive short-baseline oscillation search with high sensitivity

Test of the oscillation region suggested by reactor anomaly and $\overline{v}_{\rm e}$ disappearance channel (3 years of run time can exclude virtually all the implied oscillation region at 5σ) 1
2 dies

> Precision measurement of reactor v_{e} spectrum for physics and safeguards

Secondary Physics and Applied Goals

6Li doped scintillator development

Segmented antineutrino detectors for near-surface operation; develop antineutrino-based reactor monitoring technology for safeguards

Possible first measurement of antineutrinos from spent fuel

US Research Reactors

US Operates High-Powered Research Reactors

US Research Reactors

US Operates High-Powered Research Reactors

HEU Reactor Fuel

HEU, no time variation Reactor off periods for background studies Ability to reconfigure/run for extended periods

Sensitivity

Opportunities for R&D, backup options for detector deployment

Absolute Spectral Shape and Flux

Reactor θ_{13} Experiments

- highest statistics
- requires removal oscillation effect from measured spectrum or simultaneous fit to oscillation
- remove fuel evolution of multiple reactor cores to extract "effective generic reactor spectrum"
- will add data point to absolute flux measurement at baseline of *O*(1km)

Short-Baseline Experiments

- potential measurement without oscillation effect
- measures HEU spectrum
- likely better simulation of reactor cores during fuel cycle
- oscillation search based on relative measurement in segmented detector, absolute flux measurement very difficult

Common Challenges

- calibration is important (edge effects, relative calibration between detector segments in short-baseline experiment)
- requires excellent understanding of energy response model
- requires translation from detected antineutrino energy to true energy

Summary

Reactor neutrinos are a tool for discovery. Reactors are flavor pure sources of \overline{v}_e

Current reactor experiments **(L~1-2km)** provide precision data on **θ¹³** and oscillations measurements. Unprecedented statistics on reactor spectra. Will provide **next benchmark in measurement of absolute spectral shape and flux.**

Short-baseline **(L~10m)** measurements offer opportunities for **definitive shortbaseline oscillation search** and studies of the **reactor spectrum** at a research reactor. Different reactor antineutrino source, environment, and systematics. Segmented detector needed for background rejection, poses new challenges for spectral measurement.

Improved calculations and **assessment of spectral uncertainties** important for comparison of data and predictions.

Thanks to Daya Bay and PROSPECT collaborations and many colleagues for their input and discussions.

End