Prospects for Measuring the Reactor Neutrino Flux and Spectrum

as a member of the Daya Bay and PROSPECT collaborations

INT, Seattle, November 8, 2013

Reactor Neutrino Oscillation Experiments

Measure (non)-1/r² behavior of \overline{v}_e interaction rate

neutrinos/MeV/fission

 $L/E \rightarrow \Delta m^2$ amplitude of oscillation $\rightarrow \theta$

Karsten Heeger, Yale University

Seattle, November 8, 2013

	Overburden		E_{μ}	D1.2	L1.2	L3.4
EH1						
EH2				1348		
EH3				1912		

Daya Bay sums data from multiple reactors

Daya Bay - A State of the Art θ₁₃ Experiment

Hall 3: began 3 AD operation on Dec. 24, 2011

Daya Bay has multiple detectors

Hall 2: began 1 AD operation on Nov. 5, 2011

Hall 1: began 2 AD operation on Sep. 23, 2011

Karsten Heeger, Yale University

Daya Bay Detectors

Karsten Heeger, Yale University

Seattle, November 8, 2013

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels			
	Liquid	Mass	Function	
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target	
Outer acrylic	Liquid scintillator	20 t	Gamma catcher	
Stainless steel	Mineral oil	40 t	Radiation shielding	

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Automated Calibration System

Daya Bay

3 Automatic calibration 'robots' (ACUs) on each detector

Three axes: center, edge of target, middle of gamma catcher

Top view

3 sources in each robot, including:

- 10 Hz 68 Ge (0 KE e⁺ = 2×0.511 MeV γ 's)
- 0.75 Hz 241 Am- 13 C neutron source (3.5 MeV n without γ)
- + 100 Hz 60 Co gamma source (1.173+1.332 MeV γ)
- LED diffuser ball (500 Hz) for time calibration

Temporary special calibration sources:

γ: ¹³⁷Cs (0.662 MeV), ⁵⁴Mn (0.835 MeV), ⁴⁰K (1.461 MeV)

n: ²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

Daya Bay Fall 2012

Installation of Final Antineutrino Detectors

Full Volume Calibration

Regular, automated and special, fullvolume calibration to understand detector response

Prompt + Delayed Selection

Side-by-Side Comparison in Near Hall

Highest statistics in near-site spectra in EH1

Measuring Antineutrino Rate vs Time

Detected rate strongly correlated with reactor flux expectations

- Predicted Rate assumes no oscillation
- Absolute normalization determined by fit to data
- Normalization within a few percent of expectations

Measuring θ₁₃ with Reactor Experiments

Reactor Experiments - Current Results

2012 Daya Bay 5.2 σ measurement of non-zero θ_{13}

PRL 108:171803 (2012)

Daya Bay 7.7σ Improved measurement CP**C37**:011001 (2013) consistent results from Double Chooz and RENO

Most precise sin²20₁₃ measurement (10%)

First Δm_{ee}^2 measurement (`atmospheric' Δm^2 from v_e agrees with v_{μ} from MINOS, consistent with 3-v model)

2013

Rate+Spectra Oscillation Analysis

Relative oscillation analysis between near and far detectors

Precision Measurements

Combination of n-Gd and n-H with anticipated systematics improvements $(sin^22\theta_{13} = 0.09, \Delta m_{ee}^2 = 2.41e-3 eV^2)$

Reactor experiments will provide most precise measurement of $\sin^2 2\theta_{13}$ for the foreseeable future.

Towards Absolute Spectrum and Flux

Multiple Reactor Cores

Oscillation of different reactors mixed together in one detector. From measurement, we don't know which IBD event is from which reactor

Daya Bay can compare spectra between detectors and experimental halls

Towards Absolute Spectrum and Flux

Multiple Reactor Cores

Oscillation of different reactors mixed together in one detector. From measurement, we don't know which IBD event is from which reactor

Combine 3 ADs antineutrino spectrum together:

$$S_{combined}(E_v) = \sum_{d=1}^{3} S_d(E_v) / M_d$$

Obtain normalized reactor antineutrino spectrum: oscillation, proton number, total fission number Ftotal

$$S_{Norm}(E_{v}) = \frac{S_{combined}(E_{v})}{P_{sur_eff}(E_{v}) \cdot N_{p}} / F_{total}$$

Where Ftotal is from all 6 reactors contributions to 3 ADs:

$$F_{total} = \sum_{d} \sum_{r} \frac{1}{4\pi L_r^2} \cdot \frac{W_r^d}{\sum_{i} \alpha_{ir}^d \cdot e_i}$$

index: d day r reactor i isotope

Daya Bay

Summed spectrum is an averaged, effective spectrum

Towards Absolute Spectrum

Fuel Evolution of Multiple Reactor Cores

Antineutrino detectors in EH1 get ~ 80% of IBDs from D1 and D2

D1 and D2 have 18 month fuel cycles

Twice per fuel cycle one of these cores will be off for ~month.

Fuel Evolution of Reactor Core

For a single core, IBDs shift to lower energy bins as fuel evolves

Summing data from different times adds different spectral changes from multi-reactor experiment.

Energy Response and Scale

Understanding energy scale is important for both oscillation analysis and spectral measurement

Requires detailed translation between true and detected antineutrino energy.

Energy Response

Measurement of the absolute spectrum requires understanding the energy response -> Model maps true energy E_{true} to reconstructed kinetic energy E_{rec}

Minimal impact on relative oscillation measurement, crucial for measurement of absolute reactor spectra

Karsten Heeger, Yale University

Energy loss in acrylic causes small distortion of energy spectrum

If antineutrino interacts in or near acrylic vessel, a portion of the kinetic energy of inverse beta positrons will not be detected

Annihilation gammas with longer range can also deposit energy in the vessels

Generated 2D distortion matrix from MC to correct predicted positron energy spectrum

Uncertainties from varying acrylic vessel thicknesses and MC statistics incorporated into analysis.

PMT readout electronics introduces additional biases

Electronics does not fully capture late secondary hits

- Slow scintillation component missed at high energies
- Charge collection efficiency decreases with visible light

- Effective model as a function of total visible energy
- 2 empirical parameterizations: exponential and quadratic
- Total effective non-linearity f from both scintillation and electronics effects:

Energy Response Model

Constraints

Use calibration gamma sources and continuous ¹²B spectrum to constrain energy model parameters

Positron Energy Response

multiple models are constructed with different data and parameter constraints

conservatively combine 5 minimal correlated energy models

Detector response to gamma and eused to predict response to e+

Gamma + Beta Spectra

Additional spectra from ²¹²Bi, ²¹⁴Bi and ²⁰⁸TI decays

- Sizable theoretical uncertainties from 1st forbidden non-unique beta decays
- ²¹²Bi, ²¹⁴Bi and ²⁰⁸Tl spectra only utilized to cross-check results

Absolute Spectral Shape

Measurement of absolute antineutrino spectrum strongly dependent on detector energy model

Uncertainty Summary - Relative

Karsten Heeger, Yale University

Uncertainty Summary - Absolute

Detector				Absolute flux measurement
	Efficiency	Correlated	Uncorrelated	depends on the absolute
Target Protons		0.47%	0.03%	detector efficiencies and
Flasher cut	99.98%	0.01%	0.01%	uncertainties/
Delayed energy cut	90.9%	0.6%	0.12%	
Prompt energy cut	99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	< 0.01%	
Capture time cut	98.6%	0.12%	0.01%	Dominated by spill-in/spill-out
Gd capture ratio	83.8%	0.8%	<0.1%	 of neutrons.
Spill-in	105.0%	1.5%	0.02%	
Livetime	100.0%	0.002%	< 0.01%	
Combined	78.8%	1.9%	0.2%	
	Rea			
Correlate	d	Uncorr	elated	
Energy/fission	0.2%	Power	0.5%	Influence of uncorrelated
$\overline{\nu}_{e}$ /fission	3%	Fission fraction	0.6%	reactor
		Spent fuel	0.3%	systematics reduced by
Combined	3%	Combined	0.8%	far vs. near measurement.

Neutron Spill-in/Spill-Out

Difficult to address with data; heavily reliant on simulation

Daya Bay - Projected Uncertainties

Absolute Uncertainties

Courses	1 march	Abs Uncertainty (%)		
Source	ltem	Current	Goal	
Statistics		0.2	0.1	
	H/Gd n-Capture Ratio	0.5	0.2	
Detector	Delayed Energy	0.6	0.3	
Detector	Number of Protons	0.47	0.3	
3	Spill-in Effects	1.5	0.3	
	Subtotal	1.8	0.6	
	Thermal power uncertainty	0.5	0.5	
Reactor	Fission fraction	0.6	0.6	
	Spent fuel contribution	0.3	0.3	
	Subtotal	0.8	0.8	
	Theoretical prediction	2.7		
Flux normalization	Bugey-4 anchor		1.4	
	subtotal	2.7	1.4	
Reactor Anomaly		5.7	5.7	

Daya Bay

Short-Baseline Reactor Experiments

Baselines

Reactor Anomaly

apparent deficit in observed reactor flux

Reactor Spectra

One of several anomalies

Do we understand reactor flux predictions and spectrum?

~O(10)m

Measure un-oscillated spectrum if you don't see oscillations

Short-Baseline Reactor Experiment

PROSPECT - A US-Based Short Baseline Experiment A Precision Reactor Neutrino Oscillation and Spectrum Experiment

Map out L/E Oscillations

Scientific Reach

Phased Approach phase 1- near detector phase 2 - near + far detectors

3σ in 1 year 5σ in 3 years

Short-Baseline Reactor Experiment - Objectives

Primary Physics Objectives

Definitive short-baseline oscillation search with high sensitivity

Test of the oscillation region suggested by reactor anomaly and $\overline{v_e}$ disappearance channel (3 years of run time can exclude virtually all the implied oscillation region at 5 σ)

Precision measurement of reactor $\overline{v_e}$ spectrum for physics and safeguards

Secondary Physics and Applied Goals

⁶Li doped scintillator development

Segmented antineutrino detectors for near-surface operation; develop antineutrino-based reactor monitoring technology for safeguards

Possible first measurement of antineutrinos from spent fuel

US Research Reactors

US Operates High-Powered Research Reactors

Site	Power (MW _{th})	Duty Cycle	Near Detector		Far Detector		-
			Baseline (m)	Avg. Flux	Baseline (m)	Avg. Flux	
NIST	20	68%	3.9	1.0	15.5	1.0	-
HFIR	85	41%	6.7	0.96	18	1.93	Z
ATR	120	68%	9.5	1.31	18.5	4.30	
	•	•		1			commercial core

Reactor Cores

Karsten Heeger, Yale University

US Research Reactors

US Operates High-Powered Research Reactors

HEU Reactor Fuel

HEU, no time variation Reactor off periods for background studies Ability to reconfigure/run for extended periods

Sensitivity

Opportunities for R&D, backup options for detector deployment

Karsten Heeger, Yale University

Absolute Spectral Shape and Flux

Reactor 013 Experiments

- highest statistics
- requires removal oscillation effect from measured spectrum or simultaneous fit to oscillation
- remove fuel evolution of multiple reactor cores to extract "effective generic reactor spectrum"
- will add data point to absolute flux measurement at baseline of O(1km)

Short-Baseline Experiments

- potential measurement without oscillation effect
- measures HEU spectrum
- likely better simulation of reactor cores during fuel cycle
- oscillation search based on relative measurement in segmented detector, absolute flux measurement very difficult

Common Challenges

- calibration is important (edge effects, relative calibration between detector segments in short-baseline experiment)
- requires excellent understanding of energy response model
- requires translation from detected antineutrino energy to true energy

Summary

Reactor neutrinos are a tool for discovery. Reactors are flavor pure sources of $\overline{v_e}$

Current reactor experiments (L~1-2km) provide precision data on θ_{13} and oscillations measurements. Unprecedented statistics on reactor spectra. Will provide next benchmark in measurement of absolute spectral shape and flux.

Short-baseline (L~10m) measurements offer opportunities for **definitive short-baseline oscillation search** and studies of the **reactor spectrum** at a research reactor. Different reactor antineutrino source, environment, and systematics. Segmented detector needed for background rejection, poses new challenges for spectral measurement.

Improved calculations and **assessment of spectral uncertainties** important for comparison of data and predictions.

Thanks to Daya Bay and PROSPECT collaborations and many colleagues for their input and discussions.

End