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The Reactor Neutrino 

The effect mostly comes from the detailed physics involved in  
the nuclear beta-decay of fission fragments in the reactor 

The Reactor Antineutrino Anomaly 
 obs/expected=0.936 (~3σ) deficit in the detected antineutrinos  

from short baseline reactor experiments  

From J. Kopp, et al. 
 JHEP 05 (2013)050 

 



Beta-decay of fission fragments produce antineutrinos 
at a rate of ~1020 ν/sec for a 1 GW reactor 

Fission 

• Hundreds of fission fragments – all neutron rich 
 

• Most fragments β-decays with several branches 
 

⇒ Approximately 6 νe per fission 
⇒ Aggregate spectrum made up of about six thousands of end-points 
      About 1500 of these transitions are so-called forbidden transitions  



Anti-neutrino Spectrum under Equilibrium Burning 
Conditions depends the Cumulative Fission Yields 

 

Sk (E) = YFF (Z,A,m)S(E,Z,A,m)
FF

∑

 

S(E,A,Z,m) = BiS(E,Z,A,m,E0
i )

i

∑
− normalized to unity

• YFF (cumulative fission yields) known reasonably well 
• A few nuclei do not reach equilibrium 

 
• Branching ratios and end-point energies known for about 90% of the decays 
•  Aggregate β-spectrum measured for 235U, 239Pu and 241Pu 



 The antineutrino  flux used in oscillations experiments is  
 from a conversion of the aggregate beta spectra from ILL 

K. Schreckenbach et al. PLB118, 162 (1985) 
A.A. Hahn et al. PLB160, 325 (1989) 
P. Vogel et al., PRC 24 1543 (1981) 

•  Measurements at ILL of thermal fission 
   beta spectra for 235U, 239Pu, 241Pu  

 
•  Converted to antineutrino spectra by 
    fitting to 30 end-point energies 
 
•  Use Vogel et al. ENDF estimate for 238U 
   238U ~ 7-8% of fissions =>small error   
 
•  All transitions were  treated as allowed GT 
 
• An approximate treatment was added for 

finite size and weak magnetism corrections 

 

Sβ (E) = ai Si(E,
i=1,30

∑ Eo
i )

Si(E,E0
i ) = Eβ pβ (E0

i − Eβ )2 F(E,Z)(1+δRAD )

FIT 



Known corrections to β-decay are  
the main source of the anomaly 

 

S(Ee,Z,A) =
GF

2

2π 3 pe Ee (E0 − Ee )2C(E)F(Ee,Z,A)(1+δ(Ee,Z,A))

 

δ(Ee,Z,A) = δ rad +δFS +δWM

Fractional corrections to the individual beta decay spectra: 

 

δrad =  Radiative correction (used formalism of Sirlin)

δFS =   Finite size correction to Fermi function

δWM =  Weak magnetism

Originally approximated as: 
 
 
  

 

δFS +δWM = 0.0065(Eν − 4MeV ))

The difference between this original treatment and an improved  
treatment of these corrections is the main source of the anomaly 

{ 



The finite nuclear size correction 
Normal (point-like) Fermi function: 
Attractive Coulomb Interaction increases electron density at the nucleus 
 => beta-decay rate increases   
 
Finite size of Nucleus: 
Decreases electron density at nucleus (relative to point nucleus Fermi function) 
=> Beta decay rate decreases 
 
Two contributions: nuclear charge density               and nuclear weak density  
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-First moment of 
convoluted weak and 
charge densities 
= 1st Zemach moment 

For Allowed 
GT transitions: 



The  weak magnetism correction 
 
 
 
 
Interference between the magnetic moment distribution of the vector current and     
the spin distribution of the axial current. 
This increases the electron density at the nucleus  => beta decay rate increases 
 
           Affects GT transitions 
                             + 
           Equivalent correction for spin-flip  
           component of forbidden transitions 
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The correction is operator dependent: 



If all forbidden transitions are treated as allowed GT, the corrections 
 lead to an anomaly - the νe spectrum is shifted to higher energy 

• Obtain larger effect & stronger energy dependence than Mueller 
 because the form of our corrections are different 

 
• Linear increase in the number of antineutrinos with Eν>2 MeV 
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However, ~30% of the transitions are forbidden 

A~95 Peak 
Br, Kr, Rb, Y, Sr, Zr mostly forbidden 
Nb, Mo, Tc often allowed GT 
 
A~ 137 Peak 
Sb, I, Te, Xe, Cs, Ba, Pr, La 
 - mostly forbidden 
 

The forbidden transitions tend to dominate the high energy component of spectrum 
and from the ENDF/B-VII.1 Decay Library these make up 30% of the spectrum  

Forbidden: 
Not Fermi (0+) or GT (1+) 
i.e,  ∆L>0, ∆π=+/-1 
 



Unique forbidden versus non-unique forbidden transitions 
 

Allowed:  Fermi τ and Gamow-Teller Σ=στ 
 
Forbidden: 


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Unique if    (
r 
L ⊗

r 
Σ )∆J =∆L +1,    e.g.,  2-

Unique transitions only involve one operator & there is a unique shape change 
      e.g., 2- the phase space is multiplied by C(E) = p2+q2 

      Also, a well defined weak magnetism correction 
 

Non-unique transitions involve several operators  
       The C(E) shape factor is operator dependent 
       WM and FS are also operator dependent 
 
 

 

S(Ee,Z,A) =
GF

2

2π 3 pe Ee (E0 − Ee )2C(E)F(Ee,Z,A)(1+δ(Ee,Z,A))



Without detailed nuclear structure information there is no method of 
determining which operators determine the forbidden transitions  

Table lists the situation for 6 operators that enter 1st forbidden transitions 
 
Many transitions are 2nd forbidden, etc.  
 
Have not derived a similar table for the Finite Size corrections 



The uncertainty in how to treat the forbidden transitions 
introduces an uncertainty in the antineutrino flux 

• No way to determine what combination of operators and hence corrections 
      to use for this (25%) component of the spectra 
• No clear way to estimate the uncertainty due the non-unique forbidden transitions 
• Therefore, we examined the uncertainties using several prescriptions.  
 
 
For different choices of the forbidden operators we examined: 

» 1.  Inferred antineutrino spectrum from a fit a beta spectrum,                         
without forbidden transitions 
 

» 2. Changes in 
 
» 3. Changes in 

 
» 4. Change in the predicted antineutrino spectra     
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1. Examine the inferred antineutrino spectrum from a fitted 

 β-spectrum for fictitious nucleus with 4 - 50 branches 

• Actual spectrum involves 30% forbidden transitions and 70% allowed GT 
• Fit assumes 100% allowed GT transition 
• Inferred      spectrum deviates from the actual     spectrum by ~5%  
 - very similar results found for 4, 10 and 50 branches 
                

 

ν e

The problem arises from assuming that the forbidden nature  
of the  transitions can be ignored  

ν e



     
2. Examine the bi-variant function                                       

 

k(Ee,Eν ) = Nν (Eν ) /Nβ (Ee )

If k(Ee,Eν ) changes by a small percentage for some path in the  (Ee,Eν) plane  
 as we change the operators that determine the forbidden transitions 
 
=> A prescription for inferring Nν(Eν) from known Nβ(Ee) 

Found no path in the (Eν,Ee) plane that  
left the function   k(Eν,Ee) unchanged by 5% 
 
 

=> Uncertainty in  Nν(Eν) is ~5% 



 
3. Examine change in the antineutrino spectrum  

with respect to the β-spectrum 
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Nν (Eν ) = aiS(Eν ,E0i)  ;  
i

∑ Nβ (Eβ ) = aiS(Eβ ,E0i)    
i

∑

As we changed the operators determining the forbidden transitions  
there was no path in the (Ee,Eν) plane such that R changed by as little as 5% 
 
=> Uncertainty in Nν(Eν) is  ~5% 

Examine the function R: 



4. Examine the ratio of antineutrino spectra for different 
treatments of the forbidden transitions 

Ratio of antineutrino spectrum to the original ILL spectrum allowing 
 different operators to dominate the non-unique forbidden transitions 
 

=> Need direct measurement of the shape of the spectrum to reduce the uncertainties 

The forbidden transitions introduce an operator-dependent  distortion of spectrum  
A purely theoretical analysis is unlikely to reduce the uncertainties in a model-independent way 
 



 
What does experiment say?  

Bugey 3 did not report any significant distortions 
 Do Double Chooz, Daya Bay, Reno see distortions in the near detectors? 

Bugey 

Daya Bay 
- See talk by Karsten Heeger Friday 



       Summary 
 • The weak magnetism and finite size corrections are the main effects that 

led to the anomaly 

• These corrections increase the antineutrino spectrum above 2 MeV if all 

transitions can be treated as allowed 

• Forbidden transitions  ~30% -  tend distort the shape of the spectrum 

• Uncertainty in how to treat non-unique forbidden transitions outweighs 

the size of the anomaly 

• Requires:   

   Direct measurement of the antineutrino spectrum 

   Or a measurement of the dominant forbidden β-decay spectra 
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