Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U

Nils Haag

Chair for Experimental and Astroparticle Physics - E15 Technische Universität München

> INT workshop - Seattle Nov. 6th 2013

Content

• Determination of the $\bar{\nu}_e$ spectrum of ²³⁸U

- General idea
- Experimental setup
- Detector performance:
 - Gamma suppression
 - Response function
 - Energy calibration
- Data analysis Backgrounds
- Results

Conclusion

How to derive the reactor $\bar{\nu}_e$ -spectra

Summation approach

- Compose S_{total} from single branches
- pprox 845 nuclei, 10000 eta-branches
- Knowledge of many parameters and β-spectra required
- Conversion to $\bar{\nu}$ (nearly) trivial $(E_{\bar{\nu}} \approx Q E_{\beta})$
- Quoted inaccuracies of order of 10 20 %

Conversion method

- Measure sum of β-spectra of the 4 fuel isotopes
- 3 of them already known (BILL, 1980's)
- ²³⁸U only from summation method
- Conversion to $\bar{\nu}$ non-trivial

How to derive the reactor $\bar{\nu}_e$ -spectra

Summation approach

- Compose S_{total} from single branches
- pprox 845 nuclei, 10000 eta-branches
- Knowledge of many parameters and β-spectra required
- Conversion to $\bar{\nu}$ (nearly) trivial $(E_{\bar{\nu}} \approx Q E_{\beta})$
- Quoted inaccuracies of order of 10-20 %

Conversion method

- Measure sum of β-spectra of the 4 fuel isotopes
- 3 of them already known (BILL, 1980's)
- ²³⁸U only from summation method
- Conversion to $\bar{\nu}$ non-trivial

My work:

- Experimental determination of the $\bar{\nu}_e\text{-spectrum}$ of the last missing contribution due to fission of ^{238}U
- $\bullet\,$ Accuracy of $\sim 10\,\%$ at energies of $\sim 4\,MeV$

- Measurements of β -spectra from two identical foils from natural uranium (0.7 % ²³⁵U) in ...
 - \bullet ... thermal neutron beam: only fission of $^{235}{\rm U}$

• ... fast neutron beam: mainly fission of ²³⁸U

- Measurements of $\beta\text{-spectra}$ from two identical foils from natural uranium (0.7 % $^{235}\mathrm{U})$ in ...
 - ... thermal neutron beam: only fission of ²³⁵U
 - ... fast neutron beam: mainly fission of ²³⁸U
- \bullet Comparison of measured $\beta\text{-spectrum}$ in thermal beam with BILL measurement of ^{235}U
 - \rightarrow Extraction of efficiency function
 - $\rightarrow~{\rm Test/cancel}$ assumed detector response function

- Measurements of $\beta\text{-spectra}$ from two identical foils from natural uranium (0.7 % $^{235}\mathrm{U})$ in ...
 - ... thermal neutron beam: only fission of ²³⁵U
 - ... fast neutron beam: mainly fission of ²³⁸U
- Comparison of measured $\beta\text{-spectrum}$ in thermal beam with BILL measurement of $^{235}\mathrm{U}$
 - \rightarrow Extraction of efficiency function
 - $\rightarrow~{\rm Test/cancel}$ assumed detector response function
- γ -spectroscopy of irradiated foils:
 - $\rightarrow \! \text{Determination}$ of relative amount of fissions in both targets
 - $\rightarrow \rm Absolute$ calibration of $^{238}\rm U$ $\beta \rm -spectrum$

- Measurements of $\beta\text{-spectra}$ from two identical foils from natural uranium (0.7 % $^{235}\mathrm{U})$ in ...
 - ... thermal neutron beam: only fission of ²³⁵U
 - ... fast neutron beam: mainly fission of ²³⁸U
- Comparison of measured $\beta\text{-spectrum}$ in thermal beam with BILL measurement of $^{235}\mathrm{U}$
 - $\rightarrow\,$ Extraction of efficiency function
 - \rightarrow Test/cancel assumed detector response function
- γ -spectroscopy of irradiated foils:
 - $\rightarrow \text{Determination}$ of relative amount of fissions in both targets
 - $\rightarrow \rm Absolute$ calibration of $^{238}\rm U$ $\beta \rm -spectrum$
- Conversion into $\bar{\nu}_e$ -spectrum

- Measurements of $\beta\text{-spectra}$ from two identical foils from natural uranium (0.7 % $^{235}\mathrm{U})$ in ...
 - ... thermal neutron beam: only fission of ²³⁵U
 - ... fast neutron beam: mainly fission of ²³⁸U
- Comparison of measured $\beta\text{-spectrum}$ in thermal beam with BILL measurement of $^{235}\mathrm{U}$
 - \rightarrow Extraction of efficiency function
 - \rightarrow Test/cancel assumed detector response function
- γ -spectroscopy of irradiated foils:
 - \rightarrow Determination of relative amount of fissions in both targets \rightarrow Absolute calibration of 238 U β -spectrum
- Conversion into $\bar{\nu}_e$ -spectrum
- ⇒ Most systematical uncertainties vanish (unknown beam profile, fission rates ...)

The ²³⁸U experiment: Experimental site

Experimental site: Scientific neutron source Heinz Maier-Leibnitz FRM II

The converter facility at SR10

- Removable converter plates of 500 g ²³⁵U in thermal neutron cloud
- Thermal and fast neutron beam available

The ²³⁸U experiment: Neutron spectrum

Detector setup

- Spectroscopic module of plastic scintillator and photomultiplier
- Multiwire Chamber for suppression of gamma-induced events

Detector setup

- Spectroscopic module of plastic scintillator and photomultiplier
- Multiwire Chamber for suppression of gamma-induced events

• **Target** from natural uranium:

99.3 % ²³⁸U 0.7 % ²³⁵U

- 25 μ m thickness
- Between Ni foils

Detector setup

- Spectroscopic module of plastic scintillator and photomultiplier
- Multiwire Chamber for suppression of gamma-induced events

- **MWC**:
 - $\gamma\text{-}$ suppression
- 25 Au-coated W-wires
- Counting gas: CF₄

Detector setup

- Spectroscopic module of plastic scintillator and photomultiplier
- Multiwire Chamber for suppression of gamma-induced events

- Scintillator and PM for β-spectroscopy
- 6.5 cm thick plastic scintillator (13 MeV)
- Truncated cone for optimal electron detection

The ²³⁸U experiment - the experimental setup

The ²³⁸U experiment - the experimental setup

Detector Performance

The coincidence

Coincidence matrix

- Assign PM and MWC signal event-by-event
- Possibility to introduce offline cuts
- Time resolved: Check for time dependencies (nothing unexpected observed)

Detector performance: γ -suppression

Coincidence between PM and MWC

- ⁶⁰Co source outside detector pot
- Without coincidence: Compton-edges of γ -lines
- \bullet Coincidence: Background suppression of $\gtrsim\!99.5\,\%$

Detector performance: Response function

Monoenergetic β line is affected by:

- Energy deposition in material between target and detectors
- Backscattering and bremsstrahlungs losses at scintillator
- Scattering off the detector housing
- Gaussian broadening: photon statistics in spectroscopic module

• Simulations cross-checked with Bi-calibration measurements

Detector performance: Energy calibration

Energy calibration

²⁰⁷Bi: Lines of internal conversion at 1 MeV

¹¹⁶In β -decay: Q-value at 3.3 MeV

³⁸Cl β -decay: Q-value at 4.9 MeV

Spectroscopic module: FWHM: 8% at 1 MeV

Detector performance: Energy calibration II + Stability

- Calibration linear
- Cross-check by μ peak at 13 MeV

• Energy + Rate stability check

Data Analysis

- Gammas from fission
- Target-independent, diffuse BG
- Target-dependent background:
 - Conversion of gammas from the beam
 - Electrons, mainly from ²⁸Al
 - Capture of scattered neutrons
- Neutron capture on H-atoms in scintillator
- ²³⁵U fission in fast beam

BG handling:

- In decay: β and γ 's
- Check with simulation:
 - Use calculated fission spectra
 - Add 2 gammas to every decay
- Influence cancelled by:
 - Small solid angle (2%)
 - Efficiency for γ detection
 - Normalisation to BILL
- Remaining BG: O(10⁻³)

Gammas from fission

- Target-independent, diffuse BG
- Target-dependent background:
 - Conversion of gammas from the beam
 - Electrons, mainly from ²⁸Al
 - Capture of scattered neutrons
- Neutron capture on H-atoms in scintillator
- ²³⁵U fission in fast beam

BG handling:

- Measurement without target
- Dummy measurements (Pb + Ni)

 Cross check with detector simulations

- Gammas from fission
- Target-independent, diffuse BG
- Target-dependent background:
 - Conversion of gammas from the beam
 - Electrons, mainly from ²⁸A
 - Capture of scattered neutrons
- Neutron capture on H-atoms in scintillator
- ²³⁵U fission in fast beam

BG handling:

- Gamma line at 2.2 MeV
- Neutrons from fission: No dummy measurement possible
- Small but indeterminable
- Lower threshold for β-spectrum: 2.25 MeV

- Gammas from fission
- Target-independent, diffuse BG
- Target-dependent background:
 - Conversion of gammas from the beam
 - Electrons, mainly from ²⁸A
 - Capture of scattered neutrons
- Neutron capture on H-atoms in scintillator
- ²³⁵U fission in fast beam

BG handling:

- Thermal beam: ²³⁵U fissions
- Fast beam: ²³⁵U and ²³⁸U
- Analytical determination of 235 U fissions in fast beam (σ_f and neutron spectrum known)

235 U β -spectrum

- Signal to BG ratio: ≈ 6.5 at 4 MeV $\gtrsim 1$ up to 6.5 MeV
- Thermal beam BG: mostly scattered neutrons

²³⁸U β -spectrum

- Signal to BG ratio: ≈ 0.7 at 4 MeV $\gtrsim 1$ up to 3.5 MeV
- Main fast beam BG: diffuse (target-independent)

• Lower threshold: 2.25 MeV

Data analysis: Normalisation to BILL

Data analysis: Normalisation to BILL

 \rightarrow Make an easy approximation

Data analysis: Normalisation to BILL II

Data analysis: Normalisation to BILL II

Corrected for this small effect

• Benefit: No knowledge of resp needed to re-evaluate

Absolute calibration

Absolute calibration of ²³⁸U

- $\gamma\text{-spectroscopy}$ of the two irradiated foils
- Screen both foils 5 times each in \sim 2 weeks
- Measure peak areas of selected lines
- Solve Bateman equations (trivial) $\Rightarrow N_f(th) = (44.4 \pm 0.3) \cdot N_f(fast)$

Now the β - spectrum of the fission products of ²³⁸U is ready

The U238 β - spectrum

Energy $[keV]$	$N_{\beta} \left[\frac{betas}{fission \cdot MeV} \right]$	stat. err. [%]	norm. err. $[\%]$	norm. err. BILL [%]
2250 - 2500	1.032	3.2	2.1	1.7
2500 - 2750	$8.302 \cdot 10^{-1}$	3.0	2.1	1.7
2750 - 3000	$6.922 \cdot 10^{-1}$	2.4	2.1	1.7
3000 - 3250	$5.698 \cdot 10^{-1}$	2.3	2.1	1.7
3250 - 3500	$4.533 \cdot 10^{-1}$	2.4	2.1	1.7
3500 - 3750	$3.740 \cdot 10^{-1}$	2.4	2.1	1.7
3750 - 4000	$2.807 \cdot 10^{-1}$	2.7	2.1	1.7
4000 - 4250	$2.279 \cdot 10^{-1}$	2.9	2.1	1.7
4250 - 4500	$1.725 \cdot 10^{-1}$	3.5	2.1	1.8
4500 - 4750	$1.343 \cdot 10^{-1}$	3.9	2.1	1.8
4750 - 5000	$1.084 \cdot 10^{-1}$	4.5	2.1	1.8
5000 - 5250	$7.891 \cdot 10^{-2}$	5.5	2.1	1.8
5250 - 5500	$5.831 \cdot 10^{-2}$	6.8	2.1	1.8
5500 - 5750	$4.137 \cdot 10^{-2}$	9.7	2.1	1.8
5750 - 6000	$2.909 \cdot 10^{-2}$	11.7	2.1	1.8
6000 - 6250	$2.765 \cdot 10^{-2}$	11.1	2.1	1.8
6250 - 6500	$2.248 \cdot 10^{-2}$	12.7	2.1	1.8
6500 - 6750	$1.296 \cdot 10^{-2}$	18.9	2.1	1.9
6750 - 7000	$7.078 \cdot 10^{-3}$	28.1	2.1	1.9

Hypothetical branch approach not feasible (statistics), but:

- Weak interaction: Similarity of e^- and $\bar{\nu}_e$
- Differences: Mass of e⁻ and e.m. corrections
- Shift of electron spectrum by 511 keV + E_{corr} ($E_{corr} \in [0, 100]$ keV):

 $N_{\nu}(E_{\nu}) = N_{e}(E_{kin} + 511 \, keV + E_{corr}) \cdot k_{e}(E_{kin})$

Hypothetical branch approach not feasible (statistics), but:

- Weak interaction: Similarity of e^- and $\bar{\nu}_e$
- Differences: Mass of e⁻ and e.m. corrections
- Shift of electron spectrum by $511 \text{ keV} + \text{E}_{corr} \ (\text{E}_{corr} \in [0, 100] \text{ keV})$:

 $N_{\nu}(E_{\nu}) = N_e(E_{kin} + 511 \, keV + E_{corr}) \cdot k_e(E_{kin})$

- $(1-k) \lesssim 5\%$
- Determination of k from former meas. and calc.
- Error on correction k: $\sim 2\%$

The final $\bar{\nu}_e$ -spectrum

Antineutrino spectrum of the fission products of ²³⁸U:

- Total relative error $\sim 6\%$ at 4 MeV (regime interesting for current experiments)
- Spectral distortions of $\sim\!10\,\%$

The U8 spectrum

Energy $[keV]$	$N_{\bar{\nu}} \left[\frac{\bar{\nu}}{fission \cdot MeV} \right]$	error [%]	norm. error [%]
3000	$9.586 \cdot 10^{-1}$	3.5	3.3
3250	$7.952 \cdot 10^{-1}$	3.1	3.3
3500	$6.603 \cdot 10^{-1}$	2.6	3.3
3750	$5.406 \cdot 10^{-1}$	2.6	3.3
4000	$4.433 \cdot 10^{-1}$	2.6	3.3
4250	$3.498 \cdot 10^{-1}$	2.8	3.3
4500	$2.787 \cdot 10^{-1}$	2.9	3.3
4750	$2.171 \cdot 10^{-1}$	3.3	3.3
5000	$1.700 \cdot 10^{-1}$	3.7	3.4
5250	$1.341 \cdot 10^{-1}$	4.1	3.4
5500	$1.032 \cdot 10^{-1}$	5.0	3.4
5750	$7.737 \cdot 10^{-2}$	5.9	3.4
6000	$5.618 \cdot 10^{-2}$	7.6	3.4
6250	$3.973 \cdot 10^{-2}$	10.6	3.4
6500	$3.048 \cdot 10^{-2}$	12.6	3.4
6750	$2.805 \cdot 10^{-2}$	11.7	3.4
7000	$2.093 \cdot 10^{-2}$	14.1	3.4
7250	$1.139 \cdot 10^{-2}$	21.9	3.4
7500	$7.132 \cdot 10^{-3}$	30.0	3.4

Table 5.2: The $\bar{\nu}$ -spectrum of the fission products of ²³⁸U. The energies given represent the center of the 250 keV wide bins. The error quoted in the third column is the combined inaccuracy of all error sources, apart from the global absolute normalisation uncertainty which is quoted in the last column.

Remark on radioactive equilibrium

$$FinalU8 = MyU8 \cdot \frac{BILLU5}{MyU5}$$

- Data from the first 11 hours of irradiation not used
- Used data:
 - 42 hours in fast neutron beam (²³⁸U)
 - 16 hours in thermal beam (²³⁵U)
 - Off-equilibrium effects of BILL and MyU5 nearly cancel

Consider effects in ²³⁸U

Measured mean cross section per fission

Mean cross section (IBD) per fission:

$$< \sigma_{f,U238} >_{red} = \int_{2.875 \ MeV}^{7.625 \ MeV} S_{U238}(E) \cdot \sigma_{IBD} dE$$

$$< < \sigma_{f,U238} >_{red}(This \ thesis) = 0.97 \pm 0.08(pred.) \pm 0.03(exp.)$$

Measured mean cross section per fission

Mean cross section (IBD) per fission:

$$<\sigma_{f,U238}>_{red} = \int_{2.875 MeV}^{7.625 MeV} S_{U238}(E) \cdot \sigma_{IBD} dE$$

 $\frac{<\sigma_{f, U238}>_{red}(This thesis)}{<\sigma_{f, U238}>_{red}([Mue11])} = 0.97 \pm 0.08(pred.) \pm 0.03(exp.)$

 Theoretical predictions confirmed and accuracy enhanced → Slight spectral distortion revealed

Conclusion

- ²³⁸U $\bar{\nu}_e$ -spectrum only from calculations (10% contribution) \Rightarrow ²³⁸U experiment: γ -suppressing β -spectroscope
- Overall error \leq 7 % \pm 3 % (norm.) up to 6 MeV \rightarrow Accuracy significantly enhanced
- Calculations confirmed with slight spectral distortion
- Fully correlated to BILL U235 spectrum!

Conclusion

- ²³⁸U $\bar{\nu}_e$ -spectrum only from calculations (10% contribution) \Rightarrow ²³⁸U experiment: γ -suppressing β -spectroscope
- Overall error \leq 7 % \pm 3 % (norm.) up to 6 MeV \rightarrow Accuracy significantly enhanced
- Calculations confirmed with slight spectral distortion
- Fully correlated to BILL U235 spectrum!
- \bullet Thesis submitted for publication \rightarrow online next week
- Paper in preparation \rightarrow will appear this year

Contact

Nils Haag

Chair for Experimental and Astroparticle Physics - E15 Technische Universität München

E-Mail: nils.haag@ph.tum.de Tel: 089 289 12524

Backup

Data Analysis: Target-dependent background

In fast neutron beam:

- Dummy target measurements: Lead and Nickel
- Analyse residual BG (after subtraction of diffuse BG)
- Simulate signal from gammas (beam) and electrons (AI-decay)
- Simulation reproduces data for gammas (fit area)
 → correctly predicts BG with U target
- \bullet Total BG to be corrected for: Only few % at 4 MeV

Stability of Bi peak

Impact of new pandemonium isotopes

Impact of gaussian broadening on Kurie plots

Garfield simulaiton of MWC

Comparison of final result with and w/o response in NF

No problem with neutron spectrum

Thermal Beam

No problem with decay correlated gammas

