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Goal: Simulate Large 
Fermi Systems

• Neutron stars
• Glitching (thousands of vortices pinning on nuclei)
• Macroscopic dynamic properties

• 106 cold atoms in traps
• Preparation
• Imaging

• Quantum turbulence, vortex tangles
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Problem:
Fermions are Expensive
• Even Fermionic s too costly:

• How to find ground state?
• Limited to few thousand particles

• How to scale up to study macroscopic systems?
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Outline
• Resolving a Mystery:
MIT Heavy Solitons 
= Vortex Rings
Fermionic  for small systems 
validates bosonic model for realistic systems

• Fermionic s
• Real-time State Preparation

Adiabatic Switching + Quantum Friction

• Real-time extraction of forces

• Modelling Fermions with Bosons
• E model (like )

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
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p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.

ARTICLE RESEARCH

2 5 J U L Y 2 0 1 3 | V O L 4 9 9 | N A T U R E | 4 2 7

Macmillan Publishers Limited. All rights reserved©2013

Friday, October 18, 13



Fermionic Superfluids
Universality

Fermionic Superfluids

Neutron Matter
kF ~ fm-1

ann = -19 fm
rnn = 2 fm

Cold Atoms
kF ~ µm-1

Tuneable a
rnn ~ 0.1 nm

Many systems
• different species
• dipole interactions
• optical lattices
• quantum simulators

Unitary 
Fermi Gas

a = ∞
re = 0

Nuclei
neutrons 

and protons

Other Superfluids
• Superconductors (charged + phonons)
• Quarks (gluon interactions, Dark Matter?)
• He (p-wave)
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Unitary Fermi Gas ()

• Take regulator λ→∞ and coupling g→0 to fix s-wave 
scattering length a-1 ∝ (λ-g-1) = 0 (unitary limit)

⇤H =

� �
⇤a†⇤aEa + ⇤b

†⇤bEb

⇥
�

�
V⇤a†⇤b

†⇤b⇤a

Ea,b =
p2

2m
� µa,b, µ± =

µa ± µb

2
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Universality
• Short distance irrelevant:

• At long distance (r>R) potentials equivalent V1≡V2
• Characterized by scattering length a

V1 V2

0 0

raR raR
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Unitary Fermi Gas ()

• Unitary limit a=∞: No interaction length scale!

• Universal physics:
• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξexp = 0.370(5)(8)

• Simple, but hard to calculate!
Bertsch Many Body X-challenge
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• Unitary limit a=∞: No interaction length scale!
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• ℰ(ρ) = ξℰFG(ρ) ∝ ρ5/3,  ξ=0.376(5)

• Lithium  (Li)

• Dilute neutron matter in neutron stars
• ann = -19 fm
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Yefsah et al. Nature  ()  [arXiv:.]

MIT Experiment
• Li atoms (N≈106) cooled in harmonic trap

• Step potential used to imprint a soliton

• Let system evolve

• Image after ramping magnetic field B and expanding

• Observe an oscillating soliton with long period T≈12Tz
• Bosonic solitons (s) oscillate with T≈√2Tz≈1.4Tz
• Fermionic solitons (d oscillate with T≈1.7Tz
• Interpret as “Heavy Solitons”
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MIT Experiment

Imprint soliton

Step potential
phases evolve to 
π phase shift

Flat domain wall 
(dark/grey soliton)

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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MIT Experiment

Soliton oscillates 
back and forth

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
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, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F
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2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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MIT Experiment
• Li atoms (N≈106) cooled in harmonic trap

• Step potential used to imprint a soliton

• Let system evolve

• Image after ramping magnetic field B and expanding

• Observe an oscillating soliton with long period T≈12Tz
• Bosonic solitons (s) oscillate with T≈√2Tz≈1.4Tz
• Fermionic solitons (d oscillate with T≈1.7Tz
• Interpret as “Heavy Solitons”
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Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1
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, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2
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2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Trapped Domain Walls

• Bosonic solitons (GPE) have T≈√2Tz ≈1.4Tz 
Busch and Anglin ()

• Fermionic solitons (d) have T≈√3Tz ≈1.7Tz
Liao, Brand (); Scott, Dalfovo, Pitaevskii, Stringari ()

• Experiment sees T ≈ 10Tz – 20Tz
• Order of magnitude larger than theory!
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Period depends on:
• Aspect ratio
λ∈{3.3, 6.2, 12}

• Interaction

Much longer than 
predicted for 
domain walls

inertial mass of the soliton M*, this force causes an acceleration

€z~{
M

M!
v2

z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:
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M
~

Ts

Tz

! "2

ð2Þ

The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only

ffiffiffi
2
p

times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2
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z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~

ffiffiffi
2
p

,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2
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inertial mass of the soliton M*, this force causes an acceleration
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z z. Because we observe oscillations, M* must be negative

as well, implying that the soliton is an effective particle that decreases
its kinetic energy as it speeds up. One obtains a direct relation26

between the relative effective mass M*/M and the normalized soliton
period Ts/Tz:
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The observed soliton period of oscillation Ts is about one order of
magnitude longer than the trapping period Tz for single atoms. This
directly indicates an extreme enhancement of the relative effective
mass. In general, the difference between the effective mass M* and
the bare mass M of the soliton arises from the phase slip Dw across the
soliton, which implies a superfluid counterflow26. For the soliton to
move, an entire sheet of atoms thus has to flow past it. The difference
M 2 M* is the mass of that sheet, given by the mass density multiplied
by the entire soliton volume. In contrast, the soliton’s bare mass M is
only due to the mass deficit of jNsj atoms and can become much
smaller in magnitude than M* when the soliton is filled. For weakly
interacting BECs, where solitons are devoid of particles, the effective
mass is still of the same order of the bare mass, (M*/M)BEC 5 2. This
leads to an oscillation period that is only
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times longer than Tz
(refs 20, 35), as has been observed in experiments14,17. In the BCS limit,
where only a minute fraction D0/EF of the gas contributes to Cooper
pairing, jNsj / D0/EF / exp[2p/(2kFjaj)] and thus the soliton’s rela-
tive effective mass can be expected to become exponentially large.

Indeed, as shown in Fig. 2, we find that the soliton period, and hence
the relative effective mass, increases dramatically as the interactions
are tuned from the limit of Bose–Einstein condensation (Fig. 2a)
towards the BCS limit. At 700 G, where 1/kFa 5 2.6(2), the system repre-
sents a strongly interacting Bose gas of molecules7. The soliton period
is Ts 5 4.4(5)Tz, already three times longer than in the case of a weakly
interacting BEC. At the Feshbach resonance (Fig. 2d), we measure a
soliton period of Ts 5 14(2)Tz, corresponding to a relative effective
mass of M*/M 5 200(50). This is more than 50 times larger than the

result of mean-field BdG theory in three dimensions26,36 that predicts
M*/M 5 3. Note that the superfluid is fully three-dimensional: on
resonance, the chemical potential m < 35BvH, where vH is the radial
trapping frequency. Still, for very elongated traps, one expects to reach a
universal quasi-one-dimensional regime where the tight radial confine-
ment is irrelevant for propagation along the long axis37. This prompted
us to study the dependence of the soliton period on the aspect ratio of
our trap.

Figure 3 summarizes our measurements for the soliton period and
the relative effective mass as a function of the interaction parameter
1/kFa throughout the BEC–BCS crossover, for aspect ratios l 5 3.3,
6.2 and 15. The strong increase of M*/M towards the BCS regime is
observed for all trap geometries. The normalized soliton period Ts/Tz
appears to converge to a limiting value for the most elongated trap: the
normalized period changes by only 15% as the aspect ratio is increased
by more than a factor of two from 6.2 to 15. This indicates that the
soliton dynamics approach a universal quasi-one-dimensional limit.
Even in a much less elongated trap with l 5 3.3(1), the soliton period
is only slightly increased by about 30% compared to l 5 6.2, accom-
panied by an increased susceptibility of the soliton towards bending or
‘snaking’10,13,15 (for examples, see Supplementary Information).

We attribute the large relative effective mass M*/M in the strongly
interacting regime to the filling of the soliton with uncondensed fer-
mion pairs resulting from strong quantum fluctuations. Similar filling
with uncondensed particles has been predicted for solitons in strongly
interacting Bose condensates10,22–25,33. A substantial filling of the soli-
ton will reduce the number jNsj of atoms missing inside the soliton,
therefore considerably weaken the restoring harmonic force from the
trap and strongly increase M*/M. At the Feshbach resonance, our in
situ density profiles provide a lower bound on the soliton filling of
90%, compared to the expected 20% from mean-field theory (see
Supplementary Information). Mean-field theory for the BEC–BCS
crossover heavily underestimates the role of quantum fluctuations
already on the BEC side, where it predicts a fraction of uncondensed
bosons that scales as na3 instead of the correct

ffiffiffiffiffiffiffi
na3
p

scaling7. Our
experiment thus directly reveals the importance of beyond mean-field
effects for the dynamics of strongly interacting fermionic superfluids.
Significant soliton filling was found theoretically in a strongly inter-
acting relativistic superfluid using methods from string theory38–40.
For the resonantly interacting Fermi gas, a theoretical study based on a
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Figure 2 | Soliton oscillations in the BEC–BCS crossover. Shown are soliton
oscillations in a trapped fermionic superfluid for various magnetic fields B
around the Feshbach resonance. a–d, The soliton period is observed to
markedly increase as the system is tuned from the BEC regime (a) to the
Feshbach resonance (d). The measured period (Ts/Tz), magnetic field (B in G)
and interaction parameter at the cloud centre 1/kFa were respectively: a, 4.4(5),
700, 2.6(2); b, 7.5(9), 760, 1.4(1); c, 12(2), 815, 0.30(2); d, 14(2), 832, 0. The
initial atom number per spin state (N0), its decay rate (t in s) and Thomas-
Fermi radius after time of flight (RTF in mm) range respectively from: 1.1 3 105,
1.2(2), 135 at B 5 700 G to 2.3 3 105, 12(1) and 200 on resonance. The aspect
ratio is l 5 6.2(7). Note that at B 5 700 G, the superfluid is short lived due to
enhanced three-body loss. At 760 G (b), the soliton survived for more than 6 s,
comparable to the lifetime of the superfluid at that field.
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Figure 3 | Soliton period and effective mass versus interaction strength in
the BEC–BCS crossover. The normalized soliton period Ts/Tz is shown as a
function of the interaction parameter 1/kFa in the cloud centre, for three
different trap aspect ratios: l 5 15(1) (black circles), 6.2(7) (red diamonds) and
3.3(1) (orange squares). The error bars correspond to the typical spread over
five measurements, and the solid lines are guides to the eye. The soliton period
strongly increases from the BEC regime towards the Feshbach resonance
(vertical dotted line), where Ts/Tz 5 12(2) for l 5 15(1), and to the BCS side.
This directly reflects an extreme enhancement of the relative effective mass
M!=M~T2

s

$
T2

z , which we attribute to strong quantum fluctuations and filling
of Andreev bound states. The result for a weakly interacting BEC, Ts=Tz~

ffiffiffi
2
p

,
is shown as the dashed line. The star marks the mean-field prediction26 at
unitarity M!=M~T2

s

$
T2

z ~3.
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Finite temperature:
• Anti-decay
• (Negative mass)

density functional approach found solitons with clear filling in the wake
of shock waves41. The strong increase of the soliton period is reminiscent
of the situation for dark-bright solitons in weakly interacting BECs,
where a distinguishable atomic species or another spin state resides
inside the soliton notch14,42,43. For fermions, mean-field theory in the
strongly interacting regime attributes a substantial part of the soliton
filling to Andreev bound states19,26–28. These are also predicted to carry
the dominant fraction of the superfluid flow across the soliton, which
can be regarded, in its rest frame, as a Josephson junction of vanishing
barrier height29. It will be an interesting topic for future experiments to
determine the contribution of Andreev states to the soliton filling.

Temperature dependence
To demonstrate that the slow soliton oscillations are a truly quantum
effect and not due to the finite temperature of our gas, we investigated
the soliton motion as a function of temperature for the unitary Fermi
gas at the Feshbach resonance (Figs 4 and 5). A measure of tempera-
ture is provided by the thermal fraction, the number of uncondensed
molecules observed after the rapid ramp. The soliton period is found
to be insensitive to changes in temperature within the measurement
uncertainty (Fig. 5a).

The stability of solitons is, however, strongly affected by thermal
effects. At low temperatures, the soliton oscillation occurs essentially
without energy loss, demonstrating dissipationless flow (Fig. 4a). For
increasing temperature, we observe anti-damping of soliton oscilla-
tions (Fig. 4b). This is characteristic of a particle with negative mass
that can lower its energy by accelerating. To our knowledge, such anti-
damping of solitons has not been directly observed previously in a
quantum gas experiment. The energy loss is likely to be due to colli-
sions with thermally induced phonons10, and we indeed observe a
strong decrease in the anti-damping time constant as the temperature
is raised (Fig. 5b). At even higher temperatures, the soliton’s position
becomes less reproducible (Fig. 4c) and its lifetime is strongly reduced
(Fig. 5c). Concurrently, we observe increased axial fluctuations in the
superfluid (see Fig. 4d–f), some of which appear to have comparable
contrast to the imprinted soliton. These additional solitons might be

‘thermal solitons’, predicted to occur even in equilibrium in weakly
interacting Bose condensates44. Similar to vortex–anti-vortex pairs in
two dimensions, soliton–anti-soliton pairs can be expected to spon-
taneously break in one dimension and proliferate.

We note that on resonance, the fastest solitons we observe move
at the exceedingly slow speed of 0.50 mm s21 or 5% of the (indepen-
dently measured) speed of sound on resonance. Their sudden dis-
appearance, observed for example in Fig. 4c, can thus not be related to
motion close to the Landau critical speed. Instead, their decay might
be tied to inelastic collisions with thermal solitons, as soliton collisions
have been found to become increasingly inelastic towards the BCS
side in theoretical simulations28. Another possibility for their decay at
such low speeds is that the soliton’s energy dispersion has a minimum
at an unexpectedly small fraction of the critical velocity28. One might
expect fermion pairs to break at finite temperatures and fill in the soli-
ton, in addition to quantum fluctuations. However, even for the highest
thermal fraction where solitons have been observed, the actual tem-
perature is determined to be below T 5 0.10EF/kB (kB is the Boltzmann
constant), while the bulk pairing gap is about D0 5 0.4EF (ref. 45). Pair
breaking should thus still be exponentially suppressed, explaining the
insensitivity of the soliton period to the thermal fraction.

Conclusion and outlook
We have created and observed long-lived solitons in a strongly inter-
acting fermionic superfluid. Their period of oscillation and thus their
relative effective mass increases markedly as the interactions are tuned
from the BEC limit of tightly bound molecules towards the BCS limit
of long-range Cooper pairs. This signals strong, beyond mean-field,
effects, which are likely to be due to uncondensed fermion pairs filling
the soliton, in addition to purely fermionic Andreev bound states. Our
study provides an important quantitative benchmark for theories
of non-equilibrium dynamics of strongly interacting Fermi gases.
An exciting prospect is to directly detect the Andreev bound states
spectroscopically19,46. Although they are not topologically protected,
their lifetime should equal that of the soliton—many seconds or 100,000
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Figure 4 | Soliton motion in the unitary Fermi gas at various temperatures.
a–c, Soliton trajectories for increasing temperature, with thermal fractions
a, 7(2)%, b, 9(2)% and c, 15(3)%. The error bars indicate the standard deviation of
typically five repetitions and the solid lines are fits to the data to the anti-damped
sinusoidal function f(t) / exp(t/ts) sin(2pt/Ts 1 w). Whereas the period is found
to be independent of temperature within our uncertainty, the anti-damping time
decreases from ts/Ts 5 5(2) for the coldest clouds (a) to ts/Ts 5 1.3(5) for the
hottest ones (c). d–f, Representative optical densities (left) and residuals (right) of
the superfluid after the rapid ramp. Whereas at low temperatures, the soliton is
the only significant density variation, at higher temperatures transverse stripes
appear that we tentatively interpret as thermal solitons.
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fitting error on ts and the error on Ts, and those in c reflect the time difference
between having 90% and 10% survival probability.
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Subtle imaging:
• Need expansion

(turn off trap)
• Must ramp to 
B<700G

•~10% depletion
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Supplementary information:
Heavy Solitons in a Fermionic Superfluid

Tarik Yefsah, Ariel T. Sommer, Mark J.H. Ku, Lawrence W. Cheuk, Wenjie Ji, Waseem S. Bakr, and Martin W.
Zwierlein

Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.

2
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Domain walls should 
have snake instability

•They observe 
something for small 
aspect ratios
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Figure S 3: Observation of the snake instability in a fermionic superfluid. a-c Absorption images exhibiting
“snaking” solitons in expanding fermionic superfluids. d-f Same as a-c) but with a white dashed line as guide to the
eye. The superfluids were prepared at B = 760G in a trap with aspect ratio of 2.9 (a) and 3.1 (b-c) with an axial
trapping period of Tz = 44ms. The images were taken 200ms after the phase imprint of the soliton, using the standard
rapid ramp to Bmin = 580G and a total time of flight of 9ms.

From Bogoliubov-de Gennes to the Andreev equation
In the BCS limit of weak attractive interactions, there exists a direct connection to solitons studied in relativistic
quantum field theory 9, 10 and conducting polymers 11. Here the size of the Andreev bound state becomes much larger
than the interparticle spacing, and its energy much smaller than the pairing gap. In this limit, following Andreev 12,
one may separate out the fast oscillation at kµ =

√
2mµ
!2 in Eq. 1 of the main text by writing un(z) = un0(z)e±ikµz ,

vn(z) = vn0(z)e±ikµz (± for fermions moving to the right or left), and assuming the envelope functions un0(z),
vn0(z) to be slowly varying. Then the Bogoliubov-de Gennes equation simplifies to the Andreev equation 12, a Dirac
equation where the pair wavefunction ∆(z) plays the role of a spatially varying mass coupling particles and holes 9.
For vanishing transverse momentum it reads 13:

(
∓i!vFσz

∂

∂z
+∆(z)σx

)(
un0

vn0

)
= En

(
un0

vn0

)
(1)

Here vF = !kF
m is the Fermi velocity and kF = (3π2n)1/3 is the Fermi wavevector related to the total density n.

When ∆(z) changes sign, this equation allows for one normalisable zero-energy mode for each of the Fermi points
at ±kµ, localised at the zero crossing of the gap 9. This limiting case of an Andreev bound state, a superposition of
half a particle and half a hole, famously carries half-integer particle number 9 and gives rise to the conductivity of
polymers 11. A self-consistent solution for the pairing gap is 11 ∆(z) = ∆0 tanh(z/ξBCS), where ∆0 is the bulk
pairing gap and ξBCS = !vF

∆0
is the BCS coherence length. In a BCS superfluid, the Andreev bound state energy

is never strictly zero owing to the non-vanishing kinetic energy cost !2/mξ2BCS ∼ ∆2
0/EF of forming the bound

state 14, 15, where EF = !2k2
F

2m is the Fermi energy.
In the theory of conducting polymers 11, ∆(z) describes the ion displacement and is a real quantity. This

leads to topologically protected solitons. In the present case, ∆(z) is self-consistently related to the particle and hole
amplitudes and can be complex. The state with soliton can thus be continuously deformed into the uniform state
without soliton; the soliton is thus not topologically protected.

3
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Interpretation

• “Heavy solitons”
• Effective mass larger by orders of magnitude
• Extremely stable (thick) filled domain walls
• Interpreted as a new quantum phenomenon
not described by current theories

• What do fully  simulations see?
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Vortex Ring Oscillation
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FIG. 4. (color online) Oscillations of a vortex ring in a harmonic trap on a 24⇥ 24⇥ 96 lattice (left) and a 32⇥ 32⇥ 128 lattice
(right). We start with a cylindrical cloud (not shown, see Ref. [30, 38]) with central density nF = k

3
F /3⇡

2 where the Fermi
wavevector kF = 1/�x = 1. The harmonic trapping potential along z is then increased slowly while applying the quantum
cooling algorithm described in [38] to cool the system to a state with two separated clouds. These are the phase imprinted with
�� = ⇡ and the knife edge is removed, allowing the soliton to evolve as shown. Movies, including a case for a 48⇥ 48⇥ 128
lattice, may be found in [30]. This ring then oscillates along the axis of the trap. In the smaller simulation, the ring does not
fully form, and it collapses in on itself, re-forming as a dark-soliton near the turning points. This behavior mirrors that seen in
BEC [25], but is demonstrated here for the first time in a fermionic system. This new domain wall exhibits the same initial
instability, and a vortex ring of the opposite circulation and similar size forms and moves back along the trap in the opposite
direction. This oscillation is at the limit of the fermionic equivalent of the domain-wall branch of these types of excitations [26].
Note that [26] also discusses collisions of these excitations, which are elastic at low energies. Reducing the width of the trap,
one will continuously approach the quasi-1D situation of oscillating domain walls. Note that the period T ⇡

p
3Tz in this case

approximately agrees with other the quasi-1D simulations [14, 17, 18]
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Vortex Rings

• Thin vortex approximation in infinite matter
(follows essentially from Biot-Savart law)

• Approximately valid for rings near core
 (but not too near)
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Friday, October 18, 13



Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Self-interaction
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion
Buoyant force

Magnus effect
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Buoyant force Magnus effect
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Near-Harmonic Motion 10

FIG. 6. Left column shows various trajectories of a vortex ring in the R-z–plane, while the right column shows the time
dependence of corresponding z-coordinate of the vortex ring. The forth row show an example of an almost stationary vortex ring.
The radius of a stationary vortex ring is ⇡ 0.49R?, where R? is the TF radius of the cloud. The last row shows an example of
a vortex ring trajectory in the presence of a considerable number of phonons.
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Vortex Rings in a Trap

• MI: Inertial (kinetic mass) differs significantly from

• MVR: Mass depletion

• Long periods
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Vortex Rings in a Trap

• Behaviour depends on T ~ R/lcoh ~ kFR

• Large traps have long periods (kFR ~ 20 for experiment)

• Small (narrow) approach domain wall T≈√2Tz
Formula does not apply

• Depends on lcoh
Characterizes dependence on scattering length
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Vortex Rings in a Trap

• MI: Inertial (kinetic mass) differs significantly from

• MVR: Mass depletion

• Long periods
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Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)

Vortex Ring Motion

Self-interaction

Friday, October 18, 13



Does  measure 
vortex rings?

• Reproduces all qualitative dependences:
✓Long periods
✓Anti-decay at “finite temperature”
✓Dependence on aspect ratio and interaction strength
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But  sees
domain walls, not rings

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,
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which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
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2%. Note that the soliton sequences shown in
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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FIG. 6. Left column shows various trajectories of a vortex ring in the R-z–plane, while the right column shows the time
dependence of corresponding z-coordinate of the vortex ring. The forth row show an example of an almost stationary vortex ring.
The radius of a stationary vortex ring is ⇡ 0.49R?, where R? is the TF radius of the cloud. The last row shows an example of
a vortex ring trajectory in the presence of a considerable number of phonons.

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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S: Superfluid Local 
Density Approximation

• Three densities:
n≈〈a†a〉, τ≈〈∇a†∇a〉, ν≈〈ab〉

• Three parameters:
• Effective mass (m/α)
• Hartree (β), Pairing (g)

Forbes, Gandolfi, Gezerlis ()
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Bd: contained in 

• Variational: ℰ=〈H〉 (minimize over Gaussian states)

• Bogoliubov-de Gennes (d) contained in 

• Unit mass (α=1)

• No Hartree term (β=0)
• (No polaron properties)

E(n, ⇧,⇤) = �
⇧

m
+ ⇥

(3⌅2n)5/3

10m⌅2
+ g ⇤†⇤

�⇤�a†⇤�a⇥+ �⇤�b
†
⇤�b⇥

��a†�b
†
⇥ ��b�a⇥

Friday, October 18, 13



S: Superfluid Local 
Density Approximation

• Three densities:
n≈〈a†a〉, τ≈〈∇a†∇a〉, ν≈〈ab〉

• Three parameters:
• Effective mass (m/α)
• Hartree (β), Pairing (g)

Forbes, Gandolfi, Gezerlis ()
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TDDFT (TDSLDA)

• No diagonalization needed for evolution
Just apply Hamiltonian
Use  for kinetic term

• Efficient real-time evolution the scales well
Distribute wavefunctions over nodes
Utilize s

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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TDDFT (TDSLDA)

• Computational challenge: Finding initial (ground) state?
Root-finders requires repeated diagonalization of s.p. Hamiltonian
Slow and does not scale well
Only suitable for small problems or if symmetries can be used

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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State Preparation?

• How to find initial (ground) state?

• Root-finders repeatedly diagonalize s.p. Hamiltonian
Slow and does not scale well

• Imaginary time evolution?
Non-unitary: spoils orthogonality of wavefunctions
Re-orthogonalization unfeasible (communication)
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Quantum Friction

• Unitary evolution (preserves orthonormality)

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes, Roche, and Wlazłowski () [arXiv:.]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Quantum Friction

• Consider evolution with potential H+Vt:

∂tE = -i Tr ([H,ρ]⋅Vt)

• Therefore Vt = i[H,ρ]† guarantees ∂tE ≤ 0
Non-local potential equivalent to “complex time” evolution
Not suitable for fermionic problem

• Diagonal version is a local potential: Vt = diag(i[H,ρ]†)

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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Bulgac, Forbes, Kelley, Roche, Wlazłowski () [arXiv:.]:
xx

State Preparation
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Harmonic oscillator with an excited state

Quantum Friction

Potential counteracts 
currents

Use with dynamics to 
minimize energy
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Quantum Friction

• General method: (works for many problems)
Needs a good initial state to ensure reasonable occupation numbers

• Easy to compute: local time-dependent potential
Acts to remove local currents

• Couple with quasi-adiabatic state preparation
Bulgac, Forbes,Roche, and Wlazłowski () [arXiv:.]

Vt � �
�h �� ·�jt

�t
=

�h�̇t

�t
� ��(�†

t�2�t)

�t
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TDDFT (TDSLDA)

• Still Computationally expensive:
Need to evolve each hundreds of thousands of wavefunctions

• Possible for moderate systems (nuclei) using 
supercomputers, resonances, induced fission etc.
Maybe cold atoms (if axially symmetric etc.)
Probably not for neutron stars (glitching dynamics)

ı⇤t⇥n = H[⇥]⇥n =

�
���2

2m � µ+U �†

� ��2

2m + µ�U

⇥�
un

vn

⇥
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A Tale of 
Two Simulations

• E: (Effective Thomas Fermi model)
• “Bosonic”  simulation of dimers
Gross-Pitaevskii equation () tuned to model the unitary Fermi gas () 
Quantum hydrodynamics

• Easy to compute

• S: (Superfluid Local Density Approximation)
• Fermionic Kohn-Sham 
Like  or d mean-field theory with tuned parameters

• Hard to compute, but more accurate
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With Rishi Sharma [arXiv:.]

Image Credit

Comparison
Fermions

SLDA TDDFT
Gross Pitaevskii

model

Bulgac et al. (Science )
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With Rishi Sharma [arXiv:.]

Image Credit

Comparison
Fermions

SLDA TDDFT
Gross Pitaevskii

model

Bulgac et al. (Science )

• Fermions:
• Simulation hard!
• Evolve 104-106 wavefunctions
• Requires supercomputers

• G:
• Simulation much easier!
• Evolve  wavefunction
• Use supercomputers to study 
large volumes
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G model for 

• Think:
• Boson = Fermion pair (dimer)

• Galilean Covariant (fixes mass)

• Match Unitary Equation of State

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)�F + �E(�F)

�

�t� =

�
�

�2

4mF
+ 2[VF + ��(�F)]

�
�

⇤F = 2|�|2

EFG � ⇤
5/2
F

⇥F = E �
FG(⇤F) � ⇤

3/2
F

Friday, October 18, 13



G model = Extended 
Thomas Fermi ()

• Vortices etc. appear as kinks in √ρF

E[�] =

�
3�x

�
|��

�F|2

8mF
+ VF(�x)�F + �EFG(�F)

�
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G model for 

• Dynamics are much easier than 
• Only one wavefunction to evolve

• Contains superfluid hydrodynamic equations

• Match to low-energy physics

E[�] =

�
3�x

�
|��(�x)|2

4mF
+ VF(�x)�F + �E(�F)

�

�t� =

�
�

�2

4mF
+ 2[VF + ��(�F)]

�
�
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Matching Theories:
The Good

• Galilean Covariance (fixes mass/density relationship)

• Equation of State

• Hydrodynamics
• speed of sound (exact)
• phonon dispersion (to order q3)
• static response (to order q2)

With Rishi Sharma [arXiv:.]
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With Rishi Sharma [arXiv:.]

Linear Response
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Ancilotto, L. Salasnich, and F. Toigo ()

GPE vs. Experiment 
J Low Temp Phys

Fig. 4 1D density profiles at different times t showing the collision of two strongly interacting Fermi
clouds. Left part: our calculations [25]. Right part: experimental data from Ref. [40]. The normalized
density is in units of 10−2/µm per particle

We simulated the whole procedure by using the Runge-Kutta-Gill fourth-order
method [41, 42] to propagate in time the solutions of the following non-linear
Schrödinger equation (NLSE)

i! ∂

∂t
Ψ =

[
− !2

4m
∇2 + 2U(r) + 2

!2

2m

(
3π2)2/3

ξ |Ψ |4/3 + (1 − 4λ)
!2

4m

∇2|Ψ |
|Ψ |

]
Ψ

(31)

which is strictly equivalent [7, 8, 36, 37] to Eqs. (17) and (18), with E (n,∇n) given
by Eq. (4), and

Ψ (r, t) =
√

n(r, t) eiθ(r,t) (32)

Since the confining potential used in the experiments is cigar-shaped, we have ex-
ploited the resulting cylindrical symmetry of the system by representing the solution
of our NLSE on a 2-dimensional (r, z) grid. During the time evolution of our system,
when the two clouds start to overlap, many ripples whose wavelength is comparable
to the interparticle distance are produced in the region of overlapping densities. In or-
der to properly compare our results with the experimental data of resonant fermions
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Matching Theories:
The Bad

• ETF has ρ=2|Ψ|2
• Density vanishes in core of vortex
• Implies ∫|Ψ|2 conserved
(Conservation of coarse-grained ∫|Ψ|2 
provides a measure of validity)

• No “normal state”
• Two fluid model needed?
• Coarse graining (transfer to “normal” component)

With Rishi Sharma [arXiv:.]

9

Figure 7. (color online) Comparison of the power spectrum
(averaged over the time after “switch off”) for different mo-
mentum modes for the tdslda and the etf. The fluctuations
in the slda drop down at a faster rate than the gpe.

breaking excitation, demonstrating the amplification of
short-wavelength modes.

All of this evidence is commensurate with the fun-
damental failure of the etf to properly describe pair-
breaking excitations above ! > 2� that appear to
be present in all simulations (except the vortex-less
vstir = 0.1 simulation). In the tdslda, these excitations
break superfluid pairs, transferring energy to the normal
component of the fluid which is absent in the etf. This
provides a damping mechanism for the superfluid in the
tdslda that allows the vortex lattice to crystallize. In
the etf, these excitations must remain in the superfluid
and scatter off of the vortices, preventing the lattice from
crystallizing.

To check this, we can consider the superfluid order
parameter �. Pair-breaking effects reduce the amount of
superfluid, resulting in a decrease in the total integrated
gap as the tdslda, whereas the corresponding quantity
in the etf, the particle number, remains conserved (9):

tdslda:
Z

d3~x |�|2 vs. etf:
Z

d3~x | |2. (13)

To realize pair-breaking physics in an etf-like model,
one needs to introduce an additional thermal “normal”
component to the system, transferring energy and mass
to this as excitations exceed the pair-breaking thresh-
old. To test the validity of this notion, we compare in
Fig. 8 the evolution of the integrated pairing gap (13)
in the tdslda with the integrated order parameter in
the etf after coarse-graining the field  with a filter
that removes excitations above q & 1.3k

F

. (We simply
smoothed the 64

2 simulation with a two-dimensional
Gaussian smearing function of spatial width 0.75/k

F

.)
The qualitative agreement here shows that this char-

acterization of the superfluid to normal conversion is
reasonable. This is visually confirmed in Fig. 5 where
we also include a coarse-grained representation of the
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0.94

0.99

1.04

vstir ⇡ 0.11v
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Figure 8. (color online) Conservation of the integrated squared
pairing gap (squared smoothed  ) for the simulations for
vstir = 0.1v

F

, (vstir = 0.11v

F

) vstir = 0.2v

F

, (vstir = 0.197v

F

), and
vstir = 0.25v

F

(vstir = 0.242v

F

) for tdslda (etf). The wave-
function was smoothed by convolving with a two-dimensional
Gaussian smearing function of spatial width 0.75/k

F

.

density (smoothing now the density ⇢ = 2| |2 rather
than  ).

A similar coarse graining of the evolved etf was per-
formed in [36] to compare with the shock-wave experi-
ment [9]. The agreement there confirms this picture that
the etf is suitable for modelling bulk dynamical prop-
erties. Note, however, that the difference in dynamics
here is in contrast with the implied claim of Refs. [36]
that the coarse graining is simply needed to replicate the
averaging implied by imaging. Contrasting the vortex
dynamics here suggests that the actual motion of topo-
logical defects through the Fermi gas cannot be properly
modelled by the simple etf. The agreement seen be-
tween [36] and [9] thus supports the conclusion that
these differences do not affect bulk dynamical proper-
ties.

Coarse graining also adds density to the core of vor-
tices, bringing the density more closely in line with that
of the slda. In a proper two-fluid model, these effects
would increase the effective mass of topological defects,
for example, altering their dynamical behaviour as was
observed for soliton dynamics.

The degree to which the integrated gap
R
|�|2 is con-

served provides a measure of the extent to which one
can trust the qualitative results of the etf model, and
Fig. 8 shows that a reasonable estimate of this can be
obtained from

R
| ̄|2 where  ̄ is  smoothed on a scale

of q ⇡ 1.5k

F

– i.e.  ̄ is the result of applying a low-pass
filter to  excluding Fourier components with k > 1.5k

F

.
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With Rishi Sharma [arXiv:.]

Vortex Structure
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Figure 2. Structure of a single static vortex in the slda [53]
(solid blue curve), and in the matching etf (dashed black
curve). We compare only with parameter set II from [53]
which has unit inverse effective mass ↵ = m/m⇤ = 1 and
parameters tuned so that ⇠ = 0.44 while the energy of the
normal state is ⇠

N

= 0.54 (this gives a somewhat low pairing
gap � ⇡ 0.3718E

F

). We do not consider the ↵ 6= 1 vortex for
parameter set I in [53] which is missing the corrections that
restore Galilean invariance [30].

thought of as “normal” fermionic modes occupying the
vortex core where the superfluid condensate vanishes),
while the etf by construction has zero-density wherever
the condensate  = 0 vanishes.

This core occupation also appears in solitons, giv-
ing rise to a change in the oscillation period for soli-
tons in a quasi-1d harmonic trap from T ⇡

p
2T

z

[54–
58] in the bosonic systems (reproduced by the etf

model) to T ⇡
p

3T

z

in the fermionic dfts (bdg [59]
and slda [60]). Thus, bosonic and fermionic simula-
tions are qualitatively, but not quantitatively, similar
when describing these types of dynamics. Note that
recent experiment [10] suggest that solitons in the ufg

might have a significantly longer period T ⇡ 10T

z

, but
this has been resolved by identifying the observations
with vortex rings [15].

Related to the deficiency in properly describing the
core density, we note that unitary evolution of the etf

implies that

@

@t

Z
d3~x  †(~x, t) (~x, t) = 0. (9)

This means that, not only is the total particle number
conserved (which is physical), but the integrated “gap”
is also conserved @

t

R
d3~x |�|2 = 0. In fermionic systems,

pair-breaking excitations will reduce the gap, resulting
in a mixture of superfluid and normal fluid; in highly
excited systems the superfluid may vanish completely.
The etf on the other hand does not admit this behaviour,
and even highly excited systems will still have a rapidly
fluctuating but non-zero order parameter. The degree to
which the integrated gap is conserved during the evolu-
tion of a fermionic system provides a useful measure of

how successfully the etf can model the corresponding
evolution. (We shall explore this further in Fig. 8.)

Despite the fact that the resulting etf contains only a
single parameter (compared with the three independent
parameters of the slda), it still qualitatively reproduces
many response properties. This qualitative agreement
is a somewhat fortuitous consequence of the best-fit pa-
rameter values. From the point-of-view of the etf, the
ufg contains two independent length scales: the inter-
particle spacing set by the density, and the coherence
length set by the gap. This is demonstrated by the failure
of the etf to capture the core structure of a vortex. Thus,
while the present concordance of the slda and etf is
fortuitous, it may turn out that the slda requires further
gradient corrections [43] (a result that is still awaiting
further ab initio confirmation). If this correction turns
out to be significant, then one might have to introduce
gradient corrections in a more complicated form (com-
pared to the simple Weizsäcker term) that does not spoil
vortex structure and collision dynamics. Such correc-
tions will be non-universal (i.e. must have a different
form for small densities than for large densities) and
probably most conveniently accounted for in two-fluid
model with an additional “normal” component that can
populate the vortex core. The approximation to the bdg

discussed in [61] may shed some light on the nature of
these types of corrections.

IV. LINEAR RESPONSE

We now consider dynamical systems. For small fluctu-
ations one can simply compare the linear response of
the etf with that of the Fermi systems. We compute the
response of the system to an external time-dependent
perturbation in the limit of small �:

V

R

(x, t) = �Re
⇥
e

i(qx+!t)
⇤
,

⇢

R

(x, t) = ⇢

0

+ �Re
⇥
�

n

e

i(qx+!t)
⇤
+ O(�2).

The magnitude of the resulting response |�
n

| is shown
in Fig. 3 for the bdg and slda and compared with
the response for the corresponding etf model tuned to
match the value of ⇠.

The response at low frequencies is dominated by the
pole associated with the superfluid phonon. This may
be computed analytically for homogeneous matter in
the etf:

!phonon =

s✓
 
hq

2

4m

◆
2

+
2q

2

3m

⇠E

F

= c

s

q + O(q3), (10)

where c

s

=
p
⇠/3v

F

is the sound speed and v

F

=  
hk

F

/m

is the Fermi velocity. At small momenta, the f-sum
rule [62] ensures that the residue of the pole in the
bosonic and fermionic theories at low q is equal to
-⇡⇢

0

q

2 
h

2

/(2m!).
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Bulgac, Forbes, Kelley, Roche, Wlazłowski () [arXiv:.]

Defect motion
• Like , the  has T≈√2Tz≈1.4Tz for domain walls

• Fermionic theories (, d) have T≈1.7Tz
• Consistent with occupation of fermionic cores 
(fermionic walls are heavy)

• E vortex rings have period 1.8 shorter than 
experiment. Consistent when compared with .

11

threshold set by the gap ~! > 2� ⇡ EF . The theory, how-
ever, has the same symmetries, and is tuned to have the
same equation of state as the full theory. The advantage
of this approach over traditional fermionic time-dependent
density functional theorys (TDDFTs) is its computational
simplicity: the bosonic approach needs only to evolve a
single wavefunction. A detailed comparison of the ETF
and SLDA is performed in [53].

In Table I we compare the oscillation periods predicted
by the ETF with the observed period from [1] on resonance
for the three aspect ratios studied in the experiment.
The observations are consistently larger than the ETF
predictions by a factor of about 1.8: this might be due
to the lack of a normal component filling the core of
the vortices in the ETF and is reminiscent of the factorp

3/2 difference in the calculated period of 1D domain
walls. This is consistent with the heuristic estimate (1b)
whereby the mass depletion MVR would be suppressed
for fermions by the presence of the normal state.

TABLE I. Dependence of the oscillation period on aspect ratio
for a vortex ring imprinted with R0 = 0.30 R? at resonance.
Note that the ETF consistently underestimates the period by
about a factor of 0.56.

Aspect Ratio ETF Period Observed Period [1]
� = 3.3 T = 9.9 Tz T = 18(2)Tz

� = 6.2 T = 8.4 Tz T = 14(2)Tz

� = 15 T = 6.7 Tz T = 12(2)Tz

To test the consistency of this suppression, we use the
ETF to model the TDSLDA simulations shown in Fig. 4.
The comparison is shown in Table II where it is seen that
the TDSLDA periods are larger than the ETF by a factor
consistent with

p
3/2 for small systems. This is expected

since these simulations are in small traps and are very
close to the limit where domain walls remain stable. The
lattice simulation 48 ⇥ 48 ⇥ 128, which involved 259 762
complex time-dependent 3D nonlinear coupled partial

differential equations, performed on Titan [29] on 2048
GPUs, is one of the largest Direct Numerical Simulations
performed so far.

TABLE II. Benchmark of the ETF periods to the SLDA periods
for sizes 24⇥ 24⇥ 96, 32⇥ 32⇥ 128, and 48⇥ 48⇥ 128.

Size TETF TSLDA TSLDA/TETF
24⇥ 24⇥ 96 1.4Tz 1.7Tz 1.2
32⇥ 32⇥ 128 1.6Tz 1.9Tz 1.2
48⇥ 48⇥ 128 1.9Tz 2.6Tz 1.4

In Table III we demonstrate how the period depends
on the initial radius of the imprinted vortex ring R0. This
parameter is not directly measured or controlled in the
experiment, so we must estimate the value R0 ⇡ 0.2R?
by the resulting amplitude of oscillation ⇠ 0.5Rz shown
in the figures of [1].

TABLE III. Imprinting the vortex with different radii, all on
resonance with 1/� = 3.3. In the tables below we show how
oscillation period changes with aspect ratio for a vortex ring
imprinted at R0 = 0.30 R? on resosnace kF a = 1 in each
scenario.

Imprint radius Period Amplitude
R0 = 0.20 R? T = 8.6 Tz ⇠ 0.45 Rz

R0 = 0.30 R? T = 9.9 Tz ⇠ 0.35 Rz

R0 = 0.40 R? T = 10.7 Tz ⇠ 0.15 Rz

R0 = 0.50 R? T = 11.0 Tz ⇠ 0.05 Rz

Finally, we comment on the observed “snake” instability
discussed in the supplementary information of [1]. Al-
though significantly more stable than domain walls, large
vortex rings can also bend and decay through the Crow
instability [54, 55] and the MIT experiment is poised right
on the edge of the regime where one can start to explore
the quantum turbulence cascade.
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Disagreement with 
MIT experiment?

• Periods slightly underestimated
• Will probably be resolved with full  simulation

• Fringe pattern does not exactly match
• Again, likely resolved by full 
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SUPPLEMENTARY INFORMATION
doi:10.1038/nature12338

Supplementary information:
Heavy Solitons in a Fermionic Superfluid
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Imaging Solitons

Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Conclusion
• Virtually all aspects of the MIT experiment are 
explained by vortex rings:
Long periods, dependence on aspect ratio and interaction strength, anti-decay at 
finite temperature, imaging after expansion and dependence on Bmin
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Solitions?
Rings!

Vortex rings explain 
 experiment
•Long periods

•Dependence on 
aspect ratio and 
interaction

• Imaging limitations

•Validates 

10

FIG. 6. Left column shows various trajectories of a vortex ring in the R-z–plane, while the right column shows the time
dependence of corresponding z-coordinate of the vortex ring. The forth row show an example of an almost stationary vortex ring.
The radius of a stationary vortex ring is ⇡ 0.49R?, where R? is the TF radius of the cloud. The last row shows an example of
a vortex ring trajectory in the presence of a considerable number of phonons.

Feshbach resonance, in the unitarity limit where the scattering length
diverges, a substantial part of this filling is due to so-called Andreev
bound states, localized fermionic states bound to the soliton, also
known to reside inside vortex cores2. Here, the gas density in the vici-
nity of the soliton is predicted to be suppressed by 80% of the bulk
density, as opposed to 100% for solitons in BECs.

In the BCS limit of weak attractive interactions, the BdG equations
reduce to the Andreev equation, a Dirac equation where the pairing
gap D(z) plays the role of a spatially varying mass coupling particles
and holes3 (see Supplementary Information). The same equation des-
cribes solitons in conducting polymers5. The solution for the pairing
gap is known5 to be D(z) 5 D0 tanh(z/jBCS), as in the BEC limit, that
is, it is again represented by Fig. 1a but with j 5 jBCS, the BCS cohe-
rence length. The density profile of the localized state in Fig. 1a here
represents the fermionic Andreev bound state, as opposed to the den-
sity of uncondensed bosons in the BEC regime. Solitons in the BCS
regime are expected to be essentially completely filled in. Indeed, in this
limit of long-range overlapping Cooper pairs, only a minute fraction
of particles near the Fermi surface takes part in pairing, and the reduc-
tion of the pairing gap at the soliton affects the density only very weakly.

Creating solitons in a fermionic superfluid
The creation of solitons in a strongly interacting fermionic superfluid
poses several challenges. First, a superfluid with a soliton is not in its

ground state, so the temperature of the gas has to be low enough for
the soliton not to decay rapidly into thermal excitations. Such dissipa-
tion can proceed through collisions of the soliton with sound waves,
leading to its acceleration. When the soliton reaches a critical velocity,
it is expected to decay into phonons or, in the case of fermionic super-
fluids, pair excitations27,28,30. Second, solitons can generally decay into
vortices via the so-called snake instability13,15,31,32. In the case of weakly
interacting BECs in elongated traps, stability requires the chemical
potential m of the condensate to be not much larger than the transverse
confinement energy31. For a Fermi gas, this would require a quasi-one-
dimensional geometry where the transverse cloud width is one inter-
particle spacing. As we show below, this is not necessary. Last, for strongly
interacting superfluids, it is a priori not obvious that solitons are stable
against quantum fluctuations10,21–25,33.

Here we create and observe long-lived solitons in a strongly inter-
acting fermionic superfluid of 6Li atoms near a Feshbach resonance.
Solitons are created via phase imprinting (see Fig. 1b), a technique
successfully employed for weakly interacting Bose condensates11,12,14.
The superfluid containing typically ,2 3 105 atom pairs is prepared
in an elongated trap with cylindrical symmetry (axial and radial trap-
ping period respectively Tz 5 45–210 ms and TH 5 14 ms) and tun-
able aspect ratio l 5 Tz/TH (ref. 7). A green laser beam far detuned
from the atomic resonance is masked to shine on one half of the
superfluid. In a time t, the applied potential U, as experienced by a
single fermion, advances the phase of the superfluid order parameter
in the exposed region by Dw 5 2Ut/B relative to the unexposed region.
The time t < 35 ms is experimentally adjusted in order to create one
high-contrast soliton.

In the strongly interacting regime, the soliton does not cause a den-
sity depletion within our resolution. However, it is tied to a phase twist
in the pair wavefunction. As in the case of vortices34, the pair wave-
function can be directly observed via a rapid ramp to the BEC side of
the Feshbach resonance. The ramp converts large fermion pairs into
tightly bound molecules, empties out the soliton cores and increases
the soliton width to the final healing length !1

! ffiffiffiffiffiffiffiffiffiffi
nMaf
p

, where af is
the scattering length at the final magnetic field and nM the density of
molecules. The rapid ramp followed by time-of-flight expansion thus
enhances the soliton contrast and acts as a magnifying glass (for details,
see Supplementary Information).

Figure 1c and d report the observation of solitons in a fermionic
superfluid prepared at 815 G (close to the 832 G Feshbach resonance)
for various hold times following the phase imprint. Here, the inter-
action parameter at the cloud centre is 1/kFa 5 0.30(2), where a is the
scattering length and kF 5 (3p2n)1/3 is the Fermi wavevector, related
to the total central fermion density n and the Fermi energy EF~
h!2k2

F

!
2m. Figure 1c shows the optical density in absorption images

taken after time of flight and the rapid ramp to ,580 G, while Fig. 1d
displays residuals obtained by subtracting a smoothed copy of the
same absorption image. The optical density contrast of solitons is
about 10% (see Supplementary Information). A sequence of radially
integrated residuals as a function of time is displayed in Fig. 1e, dem-
onstrating the soliton to be stable for more than 4 s or 100,000 times
the microscopic timescale B/EF, the Fermi time. This establishes that
solitons in fermionic superfluids can exist as stable and long-lived
excitations that do not decay despite strong quantum fluctuations.

Soliton oscillations
The solitons are observed to undergo oscillations in the harmonically
trapped superfluid, demonstrating their emergent particle nature. The
motion is to a high degree deterministic, as soliton positions for different
realizations of the experiment at varying wait times lie on the same
classical sinusoidal trajectory. The force on the soliton is provided by
the trapping force experienced by the atoms missing in the soliton,
Nsmv2

z z:Mv2
z z, where vz 5 2p/Tz, jNsj is the number of missing

atoms, and M 5 Nsm , 0 the bare mass of the soliton. M is negative
as the soliton is a density depletion. Introducing the effective, or
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Figure 1 | Creation and observation of solitons in a fermionic superfluid.
a, Superfluid pairing gap D(z) for a stationary soliton, normalized by the bulk
pairing gap D0, and density n(z) of the localized bosonic (fermionic) state versus
position z, in the BEC (BCS) regime of the crossover, in units of the BEC healing
length (BCS coherence length) j. b, Diagram of the experiment. A phase-
imprinting laser beam twists the phase of one-half of the trapped superfluid by
approximately p. The soliton generally moves at non-zero velocity vsoliton.
c, Optical density and d, residuals (optical density minus a smoothed copy of the
same image) of atom clouds at 815 G, imaged via the rapid ramp method34,
showing solitons at various hold times after creation. One period of soliton
oscillation is shown. The in-trap aspect ratio was l 5 6.5(1). e, Radially integrated
residuals as a function of time revealing long-lived soliton oscillations. The soliton
period is Ts 5 12(2)Tz, much longer than the trapping period of Tz 5 93.76(5) ms,
revealing an extreme enhancement of the soliton’s relative effective mass, M*/M.
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Figure S 1: Imaging solitons. a Optical density, b integrated 1D profiles and c corresponding residuals of a fermionic
superfluid, prepared at 832G, after expansion and rapid ramp to various final magnetic fields Bmin. Without any ramp,
the superfluid at 832G, observed after 9 ms time of flight, does not show a clear signature of the soliton. A 10 ms ramp
to the BEC-side before expansion at 760G reduces interactions but still only reveals a very faint trace of the soliton.
For Bmin < 700G the soliton is revealed. d Sequence of the magnetic field ramp, indicating time of flight (TOF),
final ramp field Bmin and the imaging pulse at 760G. e The maximum depletion detected in the optical density, in
units of the standard deviation σ found outside the soliton. The detection threshold of 2.5 σ is indicated.

Solitons gradually fill in as the interaction strength is tuned from the BEC-regime to the BCS-regime of the
crossover. Indeed, in the BCS regime only a minute fraction ∆0/EF of the gas is Cooper paired, and only this fraction
is missing at the soliton’s center, where the pair wavefunction ∆(z) is maximally depleted. The contrast in the particle
density thus vanishes. Indeed, absorption images of atom clouds at the Feshbach resonance, in-situ or after expansion
(Fig. S 1 a), do not show any observable (! 3%) contrast. Given our signal to noise (1 σ fluctuations corresponding to
a ∼ 3% density ripple) and finite resolution of 3µm, and assuming a soliton width as found from the BdG equation 1,
this gives a lower bound on the soliton filling of 91%. The BdG equations predict a filling of only 20%.

While the soliton is not visible in situ, the modulus of the pair wavefunction itself can be imaged by a rapid
ramp technique similar to what was used for the observation of vortex lattices in the BEC-BCS crossover 2, 3. A
magnetic field ramp to the weakly interacting BEC-regime turns large fermion pairs into molecules. An absorption
image of molecules thus approximately reflects the magnitude of the fermion pair wavefunction before the ramp. In
addition, the ramp reduces the interaction strength and thus increases the coherence (healing) length of the superfluid,

1

which increases the soliton contrast and increases their width.
The rapid ramp is illustrated in Fig. S 1. Starting for example with a superfluid at the Feshbach resonance,

the magnetic field is first quickly ramped over 10 ms to 760 G, on the BEC-side of the Feshbach resonance where
interactions are weaker and fermion pairs are more tightly bound. Next, the cloud is released from the trap. After
1 ms, the magnetic field is rapidly ramped over 1 ms to ∼ 580 G, where interactions are essentially absent and fermion
pairs have fully turned into tightly bound molecules. The molecular cloud further expands for 4 ms at 580G, after
which the magnetic field is re-ramped over 1 ms to 760G. After an additional 2 ms of expansion at 760 G, the
molecules are imaged via absorption imaging.

Solitons can be identified easily in the absorption images by eye. However, to automize soliton detection we
implemented the following method. For each absorption image, we first generate a residual profile by subtracting a
smoothened version of the optical density profile from the actual optical density profile. We determine the standard
deviation of fluctuations σ and identify a depletion in the residual profile as a soliton if its depth is greater than 2.5 σ.

We have found the rapid ramp technique necessary to reveal solitons in the strongly interacting regime, which
is another indication of their strong filling, next to their slow period and enhanced relative effective mass. To show the
importance of the rapid ramp, we have varied the final field of the rapid ramp Bmin between 500 and 832 G. The depth
of the maximum depletion, normalized by σ, is shown in Fig S 1. For ramp fields Bmin < 650G solitons are clearly
revealed.

Speed of sound measurement

The phase imprinting not only changes the
phase of the superfluid, but also perturbs the
density, creating a sound wave. Fig. S 2 shows
the evolution of the cloud profile during the
first 100 ms after a phase imprinting pulse at
the Feshbach resonance. A sound wave is seen
to propagate away from the potential barrier.
It disappears at the edge of the atom cloud,
after about 40 ms. Adjusting for the expan-
sion during time of flight, the speed of sound
is found to be 8.8 mm/s, agreeing with the
expectation for the zero-temperature speed of
sound c =

√
ξ/3 vF with ξ = 0.37, to within

2%. Note that the soliton sequences shown in
the main text start 400 ms after the phase im-
print, long after the initial sound wave has dis-
appeared.
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Figure S 2: Speed of
sound measurement.
a Integrated 1D density
profiles after rapid ramp
and time of flight, for the
first 100 ms after applying
the phase imprinting pulse
at the Feshbach resonance,
at 832G. A sound wave is
clearly observed. b same
as a), with a line marking
the sound wave.

Snake Instability
Planar solitons in three dimensions are not only thermodynamically unstable towards accelerating, but also dynam-
ically unstable towards shape excitations - the so-called “snake” instability 4–8. This excitation of the soliton plane
along the radial direction grows exponentially until the soliton decays into vortices. This is suppressed in elongated
trap geometries. In weakly interacting BECs, solitons are expected to become dynamically unstable when the chem-
ical potential µ of the condensate becomes larger than ≈ 2.4!ω⊥, where ω⊥ is the radial trapping frequency 4. The
solitons in our strongly interacting fermionic superfluid appear to be much more robust, as they are long-lived even
when the chemical potential µ ≈ 35!ω⊥. Still, we were able to observe the snake instability by reducing the trap
aspect ratio to about 3. Examples are shown in Fig. S 3 where the depletion revealed by the rapid ramp no longer
follows a straight line but rather a wavy trajectory, characteristic of the snake instability 6–8.
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Conclusion
• Virtually all aspects of the MIT experiment are 
explained by vortex rings:
Long periods, dependence on aspect ratio and interaction strength, anti-decay at 
finite temperature, imaging after expansion and dependence on Bmin

• Combined approach:
• for large systems validated with 
• Efficient realtime methods for cooling, analyzing

• Quantum Friction
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Pinning Force

Thermodynamics

•Well defined:
(unlike vortex mass)

•Accessible from 
dynamic simulations

•Extract from
stirring simulations
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Conclusion
• Virtually all aspects of the MIT experiment are 
explained by vortex rings:
Long periods, dependence on aspect ratio and interaction strength, anti-decay at 
finite temperature, imaging after expansion and dependence on Bmin

• Combined approach:
• for large systems validated with 
• Efficient realtime methods for cooling, analyzing

• Quantum Friction, Pinning force

• Details validate reliability of s for dynamical 
simulations of defects etc. in neutron stars.
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