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Goal: Simulate Large
Fermi Systems

* Neutron stars
* Glitching (thousands of vortices pinning on nuclei)

* Macroscopic dynamic properties

* 10°¢ cold atoms in traps
* Preparation

*Imaging

* Quantum turbulence, vortex tangles
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Problem:
Fermions are Expensive

* Even Fermionic DFTs too costly:
*How to find ground state?

* Limited to few thousand particles

*How to scale up to study macroscopic systems?
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Outline

* Resolving a Mystery:
MIT Heavy Solitons
= Vortex Rings

Fermionic DFT for small systems

validates bosonic model for realistic systems

*Fermionic DFTS

* Real-time State Preparation
Adiabatic Switching + Quantum Friction

* Real-time extraction of forces

* Modelling Fermions with Bosons
*ETF model (like GPE)
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Fermionic Superfluids
Universality

Fermionic Superfluids

Neutron Matter Unitary Cold Atoms

kr ~ fm™! Fermi Gas kr ~ um-!
Nuclei am=-19 fm a= oo Tuneable a
neutrons Tnn = 2 1m Te =0 Tnn ~ 0.1 nm
and protons Many systems
o different species
Other Superﬂuids e dipole interactions

e optical lattices

e Superconductors (charged + phonons) :
e quantum simulators

e Quarks (gluon interactions, Dark Matter?)
e 3He (p-wave)
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Fermionic Superfluids
Universality

Fermionic Superfluids

Unitary Cold Atoms

Fermi Gas kr ~ pm-’
a= o0 Tuneable a
Te = O Tnn ~ O.] nm

Many systems
o different species
e dipole interactions
e optical lattices
e quantum simulators
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Unitary Fermi Gas (UFG)

T — (a*aEa+6*6Eb)— va'b ba
J

y

2
P Ha = Hb
E — R —
a,b 5 Ha b, H+ 5

* Take regulator A—o0 and coupling g—0 to fix s-wave
scattering length a=' o< (A-g~') = 0 (unitary limit)
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Universality

*Short distance irrelevant:
* At long distance (r>R) potentials equivalent Vi=V>
* Characterized by scattering length a
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Unitary Fermi Gas (UFG)

T — (a*aEa+6*6Eb)— va'b ba
J

y

2
P Ha = Hb
E — R —
a,b 5 Ha b, H+ 5

* Unitary limit a=o0: No interaction length scale!

* Universal physics:
*E(p) = &Erc(p) ox P73, Eep= 0.370(5)(8)

*Simple, but hard to calculate!
Bertsch Many Body X-challenge
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Unitary Fermi Gas (UFG)

T — (a*aEa+6*6Eb)— va'b ba
J

y

p° . W, = HaE
om a,by T 9

Ea,b —

* Unitary limit a=o0: No interaction length scale!

* Universal physics:
*&(p) = &Cra(p) ox p2/3, £=0.376(5)

+ Lithium 6 (SLi)

* Dilute neutron matter in neutron stars
*Unn = —]9 fm

Friday, October 18, 13



MI'T Experiment

*5Li atoms (N~10°) cooled in harmonic trap

* Step potential used to imprint a soliton

* Let system evolve

* Image after ramping magnetic field B and expanding

* Observe an oscillating soliton with long period T~121,
* Bosonic solitons (BECs) oscillate with TaV 2T~ 1 4T,
* Fermionic solitons (BdG) oscillate with T~1.7T1;

* Interpret as “Heavy Solitons”

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Friday, October 18, 13



MI'T Experiment

hoi(dp) = dV

Imprint soliton

Step potential
phases evolve to
7t phase shift

Flat domain wall
(dark/grey soliton)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment

(each image is a different run)

Soliton oscillates
back and forth

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment

hoi(dp) = dV

Imprint soliton

Step potential
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MI'T Experiment

(each image is a different run)

Soliton oscillates
back and forth

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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Trapped Domain Walls

* Bosonic solitons (GPE) have T~V 2T, ~1.4T,

Busch and Anglin (2000)

* Fermionic solitons (BdG) have T~V3T, ~1.7T,

Liao, Brand (2011); Scott, Dalfovo, Pitaevskii, Stringari (2011)

*Experiment sees I ~ 101, - 201,
* Order of magnitude larger than theory!
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MI'T Experiment

Period depends on:
* Aspect ratio
AE{3.3, 6.2, 12}

*|nteraction

Much longer than
: predicted for

Interaction parameter, 1/k-a dom ain Wa”S
Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment

Finite temperature:
* Anti-decay
*(Negative mass)

Position (R;g)

g

|_
<
c
Q
=
@
O
o

Position (R;g)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment

Subtle imaging:
*Need expansion

- _ (turn off trap)

RN - \lust ramp to
B<700G

*~10% depletion

Magnetic Field (G)
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Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment

Domain walls should
have snake instability

* They observe
something for small
aspect ratios

100um

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]
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MI'T Experiment
Interpretation

* “Heavy solitons”

* Effective mass larger by orders of magnitude

* Extremely stable (thick) filled domain walls
*Interpreted as a new quantum phenomenon
not described by current theories

*What do fully 3b simulations see?
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SLDA Simulations

v

-t = e R W L A

P o o o oy

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]:
32X32x128
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SLDA Simulations
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ortex Ring Oscillation

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Vortex Rings

. mnKZRl R ¥ dE k1 . R
~ n _ —_— — A~ _
2 lcoh ) dp 47t R lcoh

* Thin vortex approximation in infinite matter

(follows essentially from Biot-Savart law)

* Approximately valid for rings near core

(but not too near)
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Vortex Ring Motion

Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)
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Vortex Ring Motion

Self-interaction

Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)
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Vortex Ring Motion

Buoyant force

Magnus e

Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)
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Vortex Ring Motion

Buoyant force Magnus e
’\

Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)
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Near-Harmonic Motion

Vortex trajectory for R=0.20R, and A =3.3 Axial Position vs time (7'=8.6 T))

200 400 600 800 1000 1200 1400 1600
Axial Position vs time (7=9.9 T)

=50

_1000 200 400 600 800 1000 1200 1400 1600

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Vortex Rings in a ‘Irap

F R\
M; = — ~ 8&1*mnR?> (In )
A% lcoh

2

MVR — mNVR ~ mn 27tR Tdcoh

* M1: Inertial (kinetic mass) differs significantly from

* Mlvg: Mass depletion | M ZR/lcoh

— N

* Long periods 1, Myvr \/'n(R/lcoh)




Vortex Rings in a ‘Irap

* Behaviour depends on T ~ R/lcon ~ krR
* Large traps have long periods (krR ~ 20 for experiment)

* Small (narrow) approach domain wall T~V2T,

Formula does not apply

* Depends on lcoh

Characterizes dependence on scattering length
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Vortex Rings in a ‘Irap

F R\
M; = — ~ 8&1*mnR?> (In )
V [

MVR — mNVR ~ mn 27tR 7'[12

con

* M1: Inertial (kinetic mass) differs significantly from

* Mlvr: Mass depletion T M ZR/ICOh

— N

* Long periods 1, Mvr \/'n(R/lcoh)




Vortex Ring Motion

Self-interaction

Vortex ring motion (here in the presence of “thermal” noise, hence the inverse decay)
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Does MIT measure
vortex rings?

* Reproduces all qualitative dependences:
vLong periods
Y Anti-decay at “finite temperature”
vDependence on aspect ratio and interaction strength
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But MIT sees
domain walls, not rings

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]




Imaging Vortex Rings
(small ring)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Imaging Vortex Rings
(small ring)

t= 0.11ms

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Image after expansion
(integrated average)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]




Image after expansion
(simulate noise)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Imaging Vortex Rings
(large ring)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Image after expansion
(integrated average)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]




Image after expansion
(simulate noise)

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Image after expansion
borderline Bmin=702G

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]




Image after expansion
borderline Bmin=702G

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Explains Dependence
ON Bmin
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Yefsah et al. Nature 499 (426) 2013 Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013)
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n

Solitions?

Residuals (% of peak 1D profile)

A
A

HHT

N
=3
=3

Vortex rings explain
MIT experiment
* Long periods

* Dependence on
aspect ratio and

Interaction
Vortex trajectory for R=0.30R | and A=3.3 Axial Position vs time (7'=9.9 T.) o I m agi n g | i m itati O n S
@ : *Validates DFT

=50

_1000 200 400 600 800 1000 1200 1400 1600
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SLDA: Superfluid Local
Density Approximation

T (37121 )°/3
< — |

| geﬁ\/T\/

* Three densities:
n~(ata), ™~(VatVa), v~(ab) EEles

* Three parameters:

* Effective mass (m/«)
*Hartree ([3), Pairing (g)

Forbes, Gandolfi, Gezerlis (201 2)




BdG: contained in sLDA

(Valva) + (Vb vb) S

(@'v') (ba)
T

EMn,T,v) = 00— | geﬁvTv
m

*Variational: E=(H) (minimize over Gaussian states)
*Bogoliubov-de Gennes (BdG) contained in SLDA
* Unit mass (ax=1)

*No Hartree term (3=0)
*(No polaron properties)
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SLDA: Superfluid Local
Density Approximation

T (37121 )°/3
< — |

| geﬁ\/T\/

* Three densities:
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SLDA: Superfluid Local

/

[LLLLL L

Forbes, Gandolfi, Gezerlis (201 2)
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TDDFT (TDSLDA)

A VE: t
u—+ U JAY Un
oV = HWW, = [ 2m ;
e = ( A Wau—u>(>

2m

* No diagonalization needed for evolution
Just apply Hamiltonian

Use FFT for kinetic term

* Efficient real-time evolution the scales well

Distribute wavefunctions over nodes

Utilize gpPuUs
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TDDFT (TDSLDA)

—aV? +
W W, = HWY, = (2m _HTH A o
A ~— 4+ u—U

2m

* Computational challenge: Finding initial (ground) state?

Root-finders requires repeated diagonalization of s.p. Hamiltonian
Slow and does not scale well

Only suitable for small problems or if symmetries can be used
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State Preparation?

* How to find initial (ground) state?

* Root-finders repeatedly diagonalize s.p. Hamiltonian

Slow and does not scale well

* Imaginary time evolution?

Non-unitary: spoils orthogonality of wavefunctions

Re-orthogonalization unfeasible (communication)
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Quantum Friction

Ve o WV e hpe =TV
Pt Pt Pt

* Unitary evolution (preserves orthonormality)

* Easy to compute: local time-dependent potential

Acts to remove local currents

* Couple with quasi-adiabatic state preparation
Bulgac, Forbes, Roche, and Wlaztowski (2013) [arXiv:1305.6891]
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Quantum Friction

Ve o WV e hpe =TV
Pt Pt Pt

* Consider evolution with potential H+V;:
OtE = —i Tr ([H,p]Vt)

* Therefore Vi = i[H,p]T guarantees 0:E < O

Non-local potential equivalent to “complex time” evolution

Not suitable for fermionic problem

* Diagonal version is a local potential: Vi = diag(i[H,p]T)
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State Preparation
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Quantum Friction

Potential counteracts
currents

Use with dynamics to
minimize energy

Harmonic oscillator with an excited state

Friday, October 18, 13



Quantum Friction

ey =i Potential counteracts
currents

Use with dynamics to
minimize energy

Harmonic oscillator with an excited state
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Quantum Friction

ey =i Potential counteracts
currents

Use with dynamics to
minimize energy

Harmonic oscillator with an excited state

Friday, October 18, 13



Quantum Friction

Ve o WV e hpe =TV
Pt Pt Pt

* General method: (works for many problems)

Needs a good initial state to ensure reasonable occupation numbers

* Easy to compute: local time-dependent potential

Acts to remove local currents

* Couple with quasi-adiabatic state preparation
Bulgac, Forbes,Roche, and Wlaztowski (2013) [arXiv:1305.6891]
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TDDFT (TDSLDA)

—aV? +
u—+ U JAY Un
o V.. = HWY,, = [ 2m )
. = ( A Wau—u>(>

2m

* Still Computationally expensive:

Need to evolve each hundreds of thousands of wavefunctions

* Possible for moderate systems (nuclei) using
supercomputers, resonances, induced fission etc.

Maybe cold atoms (if axially symmetric etc.)

Probably not for neutron stars (glitching dynamics)
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A Tale of
Two Simulations

* ETF: (Effective Thomas Fermi model)
* “Bosonic” DFT simulation of dimers

Gross-Pitaevskii equation (GPE) tuned to model the unitary Fermi gas (UFG)

Quantum hydrodynamics

*Easy to compute

* SLDA: (Superfluid Local Density Approximation)
* Fermionic Kohn-Sham DFT

Like HFB or BdG mean-field theory with tuned parameters

*Hard to compute. but more accurate

Friday, October 18, 13



Comparison

With Rishi Sharma [arXiv:1308.4387]

Fermions Gross Pitaevskii
SLDA TDDFT model

Time e= 733 Tmp. 606 t=894.477/eF, frame=1657

Potential (eF) Density (n )

Fermi Potential (eF) Density (n_0)

Delta (eF) Arg(Delta)

Bulgac et al. (Science 2011)
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*Fermions: *GGPE:

* Simulation hard! * Simulation much easier!
* Evolve 104-10¢ wavefunctions * Evolve 1 wavefunction
* Requires supercomputers * Use supercomputers to study

large volumes

Time ‘r'mT = 606 t=894.477/eF, frame=1657
step D >
Potential (eF) ensity (n )

6 . ,
Fermi Potential (eF) Density (n_0)

O <!

Delta (eF) Arg(DeIta)

0.28
0.24
' 0.20
0.16
0.12
0.08
0.04
0.00

-15-10 -5 0 S5 10 15 —15105051015
Energy/eF

95
90

Bulgac et al. (Science 2011)
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GPE model for UFG

V12
E[W] :Jd3>_é <|V;P(X)| | VF(Y)PFJr&E(PF))
Mr

vZ
10 ¥ = ( yo— 2[VF + Ee(pﬂ]) Wy
Mmr

* Think:
*Boson = Fermion pair (dimer) o = 2[W|*
5/2
* Galilean Covariant (fixes mass) CFG X PF

er = i (pr) < pp'”
* Match Unitary Equation of State : FGAFT g
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GPE model = Extended
Thomas Fermi (ETF)

8111]:

2
EY] = Jdgf (\Vf\ VE(X)prF + £5FG(PF)>

*Vortices etc. appear as kinks in \/pF




GPE model for UFG

V12
E[W] :Jd3>_é <|V;P(X)| | VF(Y)PFJr&E(PF))
Mr

vZ
10 ¥ = ( yo— 2[VF + Ee(pﬂ]) Wy
Mmr

* Dynamics are much easier than sLDA
* Only one wavefunction to evolve

* Contains superfluid hydrodynamic equations

* Match to low-energy physics
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Matching Theories:
The Good

* Galilean Covariance (fixes mass/density relationship)
* Equation of State

* Hydrodynamics
*speed of sound (exact)
* phonon dispersion (to order g3)
* static response (to order g?)

With Rishi Sharma [arXiv:1308.4387]
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Linear Response

With Rishi Sharma [arXiv:1308.4387]
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GPE vs. Experiment




Matching Theories:
The Bad

*ETF has p=2|¥|?
* Density vanishes in core of vortex

* Implies | WI2 conserved

(Conservation of coarse-grained w2

provides a measure of validity)

*No “hormal state”

* Two fluid model needed?
* Coarse graining (transfer to “normal” component)

With Rishi Sharma [arXiv:1308.4387]
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Vortex Structure

With Rishi Sharma [arXiv:1308.4387]
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Defect motion

* Like GPE, the ETF has T~V 2T.A~1.4T, for domain walls
* Fermionic theories (SLDA, BdG) have T=1.71;

* Consistent with occupation of fermionic cores
(fermionic walls are heavy)

* ETF vortex rings have period 1.8 shorter than
experiment. Consistent when compared with sLDA.

TABLE II. Benchmark of the ETF periods to the SLDA periods
for sizes 24 x 24 x 96, 32 x 32 x 128, and 48 x 48 x 128.

Size TETF TsLpA Tsitoa/TeTF

24 x 24 x 96 1.47, 1.7T 1.2
32 X 32 X 128 1.67", 1.97, 1.2
48 X 48 x 128 1.97, 2.67, 1.4

Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013) [arXiv:1306.4266]
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Disagreement with
MIT experiment?

* Periods slightly underestimated
* Will probably be resolved with full sLbA simulation

* Fringe pattern does not exactly match
* Again, likely resolved by full sLba
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Fringe
Pattern

N

Integrated 1D profile

Residuals (% of peak 1D profile)

hown

tii]

~200 0 20 ~200 0 200 —200 —150 —100 —-50 0 50 100 150 200
Axial Position (um) Axial Position (um) [um]
X

Yefsah et al. Nature 499 (426) 2013 Bulgac, Forbes, Kelley, Roche, Wlaztowski (2013)
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Conclusion

*Virtually all aspects of the MIT experiment are

explained by vortex rings:

Long periods, dependence on aspect ratio and interaction strength, anti-decay at

finite temperature, imaging after expansion and dependence on Bmin

Image Credit
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Conclusion

*Virtually all aspects of the MIT experiment are

explained by vortex rings:

Long periods, dependence on aspect ratio and interaction strength, anti-decay at

finite temperature, imaging after expansion and dependence on Bmin

* Combined approach:
*ETF for large systems validated with sLDA

* Efficient realtime methods for cooling, analyzing
* Quantum Friction
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Pinning Force  dE ;

Thermodynamics

* Well defined:
(unlike vortex mass)
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* Accessible from
dynamic simulations

e Extract from

stirring simulations
Bulgac, Forbes, Sharma PRL 110 (2013) 241102 [arXiv: 1302.2172]
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Conclusion

*Virtually all aspects of the MIT experiment are
explained by vortex rings:

Long periods, dependence on aspect ratio and interaction strength, anti-decay at

finite temperature, imaging after expansion and dependence on Bmin

* Combined approach:
*ETF for large systems validated with sLDA
* Efficient realtime methods for cooling, analyzing
* Quantum Friction, Pinning force

* Details validate reliability of bFTs for dynamical
simulations of defects etc. in neutron stars.
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