Real-time Methods for Cooling and Simulating Macroscopic Fermi Systems

Michael McNeil Forbes Institute for Nuclear Theory University of Washington, Seattle (Washington State University, Pullman, 2014)

Goal: Simulate Large Fermi Systems

- Neutron stars
 - Glitching (thousands of vortices pinning on nuclei)
 - Macroscopic dynamic properties
- 10⁶ cold atoms in traps
 - Preparation
 - Imaging
- •Quantum turbulence, vortex tangles

Problem: Fermions are Expensive

• Even Fermionic DFTs too costly:

- How to find ground state?
- Limited to few thousand particles

• How to scale up to study macroscopic systems?

Outline

 Resolving a Mystery: MIT Heavy Solitons
 = Vortex Rings

Fermionic DFT for small systems validates bosonic model for realistic systems

• Fermionic DFTs

- Real-time State Preparation Adiabatic Switching + Quantum Friction
- Real-time extraction of forces
- Modelling Fermions with Bosons
 ETF model (like GPE)

Fermionic Superfluids Universality

Fermionic Superfluids

Nuclei neutrons

Neutron Matter $k_F \sim fm^{-1}$ $a_{nn} = -19 \text{ fm}$ $r_{nn} = 2 \text{ fm}$

Fermi Gas $a = \infty$ $r_e = 0$

Unitary

Cold Atoms $k_F \sim \mu m^{-1}$

and protons

Other Superfluids

- Superconductors (charged + phonons)
- Quarks (gluon interactions, Dark Matter?)
- ³He (p-wave)

Many systems

Tuneable a

 $r_{nn} \sim 0.1 nm$

- different species
- dipole interactions
- optical lattices
- quantum simulators

Fermionic Superfluids Universality

Fermionic Superfluids

Nuclei neutrons and protons

 $k_{
m F} \sim {
m fm}^{-1}$ $a_{nn} = -19 \ {
m fm}$ $r_{nn} = 2 \ {
m fm}$

Neutron Matter

Fermi Gas $a = \infty$ $r_e = 0$

Unitary

Other Superfluids

- Superconductors (charged + phonons)
- Quarks (gluon interactions, Dark Matter?)

• ³He (p-wave)

Cold Atoms

 $\label{eq:kF} \begin{array}{l} k_F \sim \mu m^{-1} \\ \text{Tuneable } \alpha \\ r_{nn} \sim 0.1 \ nm \end{array}$

Many systems

- different species
- dipole interactions
- optical lattices
- quantum simulators

$$\begin{split} & \textbf{Unitary Fermi Gas (UFG)} \\ & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathbb{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

• Take regulator $\lambda \rightarrow \infty$ and coupling $g \rightarrow 0$ to fix s-wave scattering length $a^{-1} \propto (\lambda - g^{-1}) = 0$ (unitary limit)

Universality

• Short distance irrelevant:

- •At long distance (r > R) potentials equivalent $V_1 \equiv V_2$
- Characterized by scattering length α

Universality

• Short distance irrelevant:

- •At long distance (r > R) potentials equivalent $V_1 \equiv V_2$
- Characterized by scattering length α

$$\begin{split} & \textbf{Unitary Fermi Gas (UFG)} \\ & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathbb{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics: • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi_{exp} = 0.370(5)(8)$

• Simple, but hard to calculate! Bertsch Many Body X-challenge
$$\begin{split} & \textbf{Unitary Fermi Gas (UFG)} \\ & \widehat{\mathcal{H}} = \int \left(\widehat{a}^{\dagger} \widehat{a} \mathbb{E}_{a} + \widehat{b}^{\dagger} \widehat{b} \mathbb{E}_{b} \right) - \int V \widehat{a}^{\dagger} \widehat{b}^{\dagger} \widehat{b} \widehat{a} \\ & \mathbb{E}_{a,b} = \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Unitary limit $a = \infty$: No interaction length scale!
- Universal physics:
 - • $\mathcal{E}(\rho) = \xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}$, $\xi=0.376(5)$

• Lithium 6 (⁶Li)

• Dilute neutron matter in neutron stars • $a_{nn} = -19$ fm

- ⁶Li atoms (N \approx 10⁶) cooled in harmonic trap
- Step potential used to imprint a soliton
- Let system evolve
- Image after ramping magnetic field B and expanding
- Observe an oscillating soliton with long period $T\!\!\approx\!\!12T_z$
 - Bosonic solitons (BECS) oscillate with $T \approx \sqrt{2T_z} \approx 1.4T_z$
 - Fermionic solitons (BdG) oscillate with $T \approx 1.7T_z$
 - Interpret as "Heavy Solitons"

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

 $\hbar \vartheta_t(\delta \phi) = \delta V$

Imprint soliton

Step potential phases evolve to π phase shift

Flat domain wall (dark/grey soliton)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

(each image is a different run)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Soliton oscillates back and forth

- ⁶Li atoms (N \approx 10⁶) cooled in harmonic trap
- Step potential used to imprint a soliton
- Let system evolve
- Image after ramping magnetic field B and expanding
- Observe an oscillating soliton with long period $T\!\!\approx\!\!12T_z$
 - Bosonic solitons (BECS) oscillate with $T \approx \sqrt{2T_z} \approx 1.4T_z$
 - Fermionic solitons (BdG) oscillate with $T \approx 1.7T_z$
 - Interpret as "Heavy Solitons"

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

 $\hbar \vartheta_t(\delta \phi) = \delta V$

Imprint soliton

Step potential phases evolve to π phase shift

Flat domain wall (dark/grey soliton)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

(each image is a different run)

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Soliton oscillates back and forth

Trapped Domain Walls

- Bosonic solitons (GPE) have $T \approx \sqrt{2T_z} \approx 1.4T_z$ Busch and Anglin (2000)
- Fermionic solitons (BdG) have $T \approx \sqrt{3T_z} \approx 1.7T_z$ Liao, Brand (2011); Scott, Dalfovo, Pitaevskii, Stringari (2011)
- Experiment sees T $\approx 10T_z 20T_z$ • Order of magnitude larger than theory!

Period depends on: • Aspect ratio $\lambda \in \{3.3, 6.2, 12\}$ • Interaction

Much longer than predicted for domain walls

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Finite temperature:Anti-decay(Negative mass)

Subtle imaging:
Need expansion (turn off trap)
Must ramp to B<700G
~10% depletion

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Domain walls should have snake instability

 They observe something for small aspect ratios

MIT Experiment Interpretation

- "Heavy solitons"
 - Effective mass larger by orders of magnitude
 - Extremely stable (thick) filled domain walls
 - Interpreted as a new quantum phenomenon not described by current theories
- What do fully 3D simulations see?

SLDA Simulations

						-	-		-		-								-														
										-																							
									-							х.	÷	-	_		-	_											
												۰.	4					_														_	
																	-						-	-	-	1	1	<u> </u>					
																	-				1			- 21	~	~	1	1.1		-	21		-
				÷.,	- ·			10				۰.	2			2.	_			20	-	- 4	-47		8	~	1	1.1	1	-	~	-	
	1				•							1				2						2	10		S-1	~	1	11		1.7	-	-	
								• •								-					-	- 10		-	-	-	1	11		1	-	-	
-	*													-		1			9-9		10	-	-	-	-	<u></u>	-	2.7		1	-	-	-
- 1	-						-								1	-	See.		340	1	6	5-0		-	-	-	-	2.			-	-	-
														-	-	-	-	1	55			2	-	_	_	_	_					-	-
	1					2.2	÷							-	-	2	-	20				23	-	_	-	-	-	-			-	-	
														4							22	2.	-	-	-	-	~	~ 1			-	-	
		1																			24		-	_	-	÷	~	1.1				÷.,	-
																					22		10	- 2		-	~	< 1		1.5	×		~ ~
-																-	1.0	1			1.	2.4	1.1	C	<u> </u>	-	~			1.0			
														**	-	-	-	1				-		-		÷	1	0.0			-		-
	÷				•					-			4.7	-	-	-	-	-	-	-		-	-	-	2.		1	3					_
		1				-	-		-				۰.	1	e.	~	-	-	-	-	**	-	-			12	1				-	-	
									-	-					1		-	-	-	• •••	~	-	~	-	-	-	1	× .		1	-		
			•		- 1				-						2			-			-		-	~			~	× .			1.1		1.1
			-					2.4	14									-	-	_		-			~								
																						-											
																	-																

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]: 32x32x128

Friday, October 18, 13

SLDA Simulations

CONTRACT OF THE OWNER 1111111 A LEANNER LA

Vortex Ring Oscillation

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Vortex Rings

$$E \sim \frac{mn\kappa^2}{2} R \ln \frac{R}{l_{coh}}, \qquad \nu = \frac{dE}{dp} \sim \frac{\kappa}{4\pi} \frac{1}{R} \ln \frac{R}{l_{coh}}$$

• Thin vortex approximation in infinite matter (follows essentially from Biot-Savart law)

• Approximately valid for rings near core (but not too near)

Near-Harmonic Motion

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Vortex Rings in a Trap

$$M_{\rm I} = \frac{F}{\dot{\nu}} \sim 8\pi^2 \text{mnR}^3 \left(\ln \frac{R}{l_{\rm coh}} \right)^{-1}$$
$$M_{\rm VR} = \text{mN}_{\rm VR} \sim \text{mn} 2\pi R \pi l_{\rm coh}^2$$

- M_I : Inertial (kinetic mass) differs significantly from
- $\label{eq:MVR} \mbox{Mass depletion} \quad \frac{T}{T_z} \sim \sqrt{\frac{M_I}{M_{VR}}} \sim \frac{2R/l_{coh}}{\sqrt{\ln(R/l_{coh})}}$

Vortex Rings in a Trap

- Behaviour depends on $T \sim R/l_{coh} \sim k_F R$
- Large traps have long periods ($k_F R \sim 20$ for experiment)
- Small (narrow) approach domain wall $T \approx \sqrt{2T_z}$ Formula does not apply
- Depends on l_{coh}

Characterizes dependence on scattering length

Vortex Rings in a Trap

$$\begin{split} \mathcal{M}_{\mathrm{I}} &= \frac{\mathsf{F}}{\dot{\nu}} \sim 8\pi^2 \mathrm{mn} \mathrm{R}^3 \left(\mathrm{ln} \, \frac{\mathsf{R}}{\mathsf{l}_{\mathsf{con}}} \right)^{-1} \\ \mathcal{M}_{\mathrm{VR}} &= \mathrm{mN}_{\mathsf{VR}} \sim \mathrm{mn} \, 2\pi \mathrm{R} \, \pi \mathrm{l}_{\mathsf{con}}^2 \end{split}$$

- M_I : Inertial (kinetic mass) differs significantly from
- M_{VR} : Mass depletion
- Long periods

$$\frac{T}{T_z} \sim \sqrt{\frac{M_I}{M_{VR}}} \sim \frac{2R/l_{coh}}{\sqrt{ln(R/l_{coh})}}$$

Does MIT measure vortex rings?

• Reproduces all qualitative dependences:

✓Long periods
 ✓Anti-decay at "finite temperature"
 ✓Dependence on aspect ratio and interaction strength

But MIT sees domain walls, not rings

Yefsah et al. Nature 499 (426) 2013 [arXiv:1302.4736]

Friday, October 18, 13

Imaging Vortex Rings (small ring)

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Friday, October 18, 13

Imaging Vortex Rings (small ring)

x [micron]

200

300

100

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

-100

-200

Friday, October 18, 13

100

y [micron]

-50

-100

-300

Image after expansion (integrated average)

Image after expansion (simulate noise)

Imaging Vortex Rings (large ring)

Ramp

800

750

Image

Image after expansion (integrated average)

Image after expansion (simulate noise)

Image after expansion borderline B_{min}=702G

Image after expansion borderline $B_{min}=702G$

Explains Dependence on B_{min}

Yefsah et al. Nature 499 (426) 2013

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013)

Explains Dependence on B_{min}

Yefsah et al. Nature 499 (426) 2013

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013)

Explains Dependence on B_{min}

Yefsah et al. Nature 499 (426) 2013

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013)

Solitions? Rings!

Vortex rings explain мгт experiment • Long periods

- Dependence on aspect ratio and interaction
- Imaging limitations
- Validates DFT

SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \mathbf{\tau}, \mathbf{v}) = \alpha \frac{\mathbf{\tau}}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10m\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Three densities: $n \approx \langle a^{\dagger}a \rangle, \tau \approx \langle \nabla a^{\dagger} \nabla a \rangle, \nu \approx \langle ab \rangle$
- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)

Bdg: contained in SLDA

$$\begin{split} & \langle \widehat{v}\widehat{a}^{\dagger}\nabla\widehat{a} \rangle + \langle \nabla\widehat{b}^{\dagger}\nabla\widehat{b} \rangle & \langle \widehat{a}^{\dagger}\widehat{b}^{\dagger} \rangle \langle \widehat{b}\widehat{a} \rangle \\ \mathcal{E}(n,\tau,\nu) &= \alpha \frac{\tau}{m} + \beta \frac{(3\pi^2 n)^{5/3}}{10m\pi^2} + g_{\text{eff}}\nu^{\dagger}\nu \end{split}$$

- Variational: $\mathcal{E} = \langle H \rangle$ (minimize over Gaussian states)
- Bogoliubov-de Gennes (вdg) contained in slda
- Unit mass ($\alpha = 1$)
- No Hartree term ($\beta=0$)
 - (No polaron properties)

SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \mathbf{\tau}, \mathbf{v}) = \alpha \frac{\mathbf{\tau}}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10m\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Three densities: $n \approx \langle a^{\dagger}a \rangle, \tau \approx \langle \nabla a^{\dagger} \nabla a \rangle, \nu \approx \langle ab \rangle$
- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)

SLDA: Superfluid Local

Forbes, Gandolfi, Gezerlis (2012)

TDDFT (TDSLDA)

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

• No diagonalization needed for evolution Just apply Hamiltonian Use FFT for kinetic term

• Efficient real-time evolution the scales well

Distribute wavefunctions over nodes Utilize GPUS

TDDFT (TDSLDA)

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + U & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - U \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

• Computational challenge: Finding initial (ground) state?

Root-finders requires repeated diagonalization of s.p. Hamiltonian

- Slow and does not scale well
- Only suitable for small problems or if symmetries can be used

State Preparation?

- How to find initial (ground) state?
- Root-finders repeatedly diagonalize s.p. Hamiltonian Slow and does not scale well
- Imaginary time evolution? Non-unitary: spoils orthogonality of wavefunctions
 - Re-orthogonalization unfeasible (communication)

$$\begin{array}{l} Quantum \ Friction \\ V_t \propto - \frac{\hbar \vec{\nabla} \cdot \vec{j}_t}{\rho_t} = \frac{\hbar \dot{\rho}_t}{\rho_t} \propto \frac{-\Im(\psi_t^\dagger \nabla^2 \psi_t)}{\rho_t} \end{array}$$

- Unitary evolution (preserves orthonormality)
- Easy to compute: local time-dependent potential Acts to remove local currents
- Couple with quasi-adiabatic state preparation Bulgac, Forbes, Roche, and Wlazłowski (2013) [arXiv:1305.6891]

$$\begin{array}{l} Quantum \ Friction \\ V_t \propto - \frac{\hbar \vec{\nabla} \cdot \vec{j}_t}{\rho_t} = \frac{\hbar \dot{\rho}_t}{\rho_t} \propto \frac{-\Im(\psi_t^\dagger \nabla^2 \psi_t)}{\rho_t} \end{array}$$

• Consider evolution with potential $H+V_t$:

 $\partial_t E = -i \operatorname{Tr} ([H,\rho] \cdot V_t)$

•Therefore $V_t = i[H,\rho]^{\dagger}$ guarantees $\partial_t E \leqslant 0$

Non-local potential equivalent to "complex time" evolution Not suitable for fermionic problem

• Diagonal version is a local potential: $V_t = diag(i[H,\rho]^{\dagger})$

State Preparation

Quantum Friction

Potential counteracts currents

Use with dynamics to minimize energy

Harmonic oscillator with an excited state

Friday, October 18, 13

Quantum Friction

Harmonic oscillator with an excited state

Potential counteracts currents

Use with dynamics to minimize energy

Quantum Friction

Harmonic oscillator with an excited state

Potential counteracts currents

Use with dynamics to minimize energy

$\begin{array}{l} Quantum \ Friction \\ V_t \propto - \frac{\hbar \vec{\nabla} \cdot \vec{j}_t}{\rho_t} = \frac{\hbar \dot{\rho}_t}{\rho_t} \propto \frac{-\Im(\psi_t^\dagger \nabla^2 \psi_t)}{\rho_t} \end{array}$

- General method: (works for many problems) Needs a good initial state to ensure reasonable occupation numbers
- Easy to compute: local time-dependent potential Acts to remove local currents
- Couple with quasi-adiabatic state preparation Bulgac, Forbes, Roche, and Wlazłowski (2013) [arXiv:1305.6891]

TDDFT (TDSLDA)

$$\iota \partial_{t} \Psi_{n} = H[\Psi] \Psi_{n} = \begin{pmatrix} \frac{-\alpha \nabla^{2}}{2m} - \mu + \mathcal{U} & \Delta^{\dagger} \\ \Delta & \frac{\alpha \nabla^{2}}{2m} + \mu - \mathcal{U} \end{pmatrix} \begin{pmatrix} u_{n} \\ v_{n} \end{pmatrix}$$

- Still Computationally expensive: Need to evolve each hundreds of thousands of wavefunctions
- Possible for moderate systems (nuclei) using supercomputers, resonances, induced fission etc.
 Maybe cold atoms (if axially symmetric etc.)
 Probably not for neutron stars (glitching dynamics)

A Tale of Two Simulations

• ETF: (Effective Thomas Fermi model)

• "Bosonic" DFT simulation of dimers

Gross-Pitaevskii equation (GPE) tuned to model the unitary Fermi gas (UFG) Quantum hydrodynamics

- Easy to compute
- SLDA: (Superfluid Local Density Approximation)
 - Fermionic Kohn-Sham DFT

Like нгв or вdg mean-field theory with tuned parameters

• Hard to compute, but more accurate

Comparison

With Rishi Sharma [arXiv:1308.4387]

Fermions **SLDA TDDFT**

Gross Pitaevskii model

0.4

0.3

0.2

0.1

30

25

20

15

20

10

30

Bulgac et al. (Science 2011)

Friday, October 18, 13

30

25

20

10

5

00

10

20

¥[⊥] 15

•Fermions:

- Simulation hard!
- Evolve 10⁴–10⁶ wavefunctions
- Requires supercomputers

•GPE:

- Simulation much easier!
- Evolve 1 wavefunction
- Use supercomputers to study large volumes

Friday, October 18, 13

GPE model for UFG

$$\mathsf{E}[\Psi] = \int \mathsf{d}^{3}\vec{\mathbf{x}} \, \left(\frac{|\nabla\Psi(\vec{\mathbf{x}})|^{2}}{4\mathsf{m}_{\mathsf{F}}} + \mathsf{V}_{\mathsf{F}}(\vec{\mathbf{x}})\rho_{\mathsf{F}} + \xi\mathcal{E}(\rho_{\mathsf{F}})\right)$$

$$i\partial_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \varepsilon(\rho_F)] \right) \Psi$$

- •Think:
 - Boson = Fermion pair (dimer)
- Galilean Covariant (fixes mass)
- Match Unitary Equation of State

$$\begin{split} \rho_F &= 2 |\Psi|^2 \\ \mathcal{E}_{FG} \propto \rho_F^{5/2} \\ \varepsilon_F &= \mathcal{E}_{FG}'(\rho_F) \propto \rho_F^{3/2} \end{split}$$

GPE model = Extended Thomas Fermi (ETF)

$$E[\Psi] = \int d^{3}\vec{\mathbf{x}} \left(\frac{|\nabla\sqrt{\rho_{F}}|^{2}}{8m_{F}} + V_{F}(\vec{\mathbf{x}})\rho_{F} + \xi \mathcal{E}_{FG}(\rho_{F}) \right)$$

• Vortices etc. appear as kinks in $\sqrt{\rho_F}$

GPE model for UFG

$$\mathsf{E}[\Psi] = \int \mathsf{d}^{3}\vec{\mathbf{x}} \left(\frac{|\nabla \Psi(\vec{\mathbf{x}})|^{2}}{4\mathsf{m}_{\mathsf{F}}} + \mathsf{V}_{\mathsf{F}}(\vec{\mathbf{x}})\rho_{\mathsf{F}} + \xi \mathcal{E}(\rho_{\mathsf{F}}) \right)$$

$$i\partial_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \epsilon(\rho_F)]\right)\Psi$$

- Dynamics are much easier than SLDA
 Only one wavefunction to evolve
- Contains superfluid hydrodynamic equations
- Match to low-energy physics
Matching Theories: The Good

- Galilean Covariance (fixes mass/density relationship)
- Equation of State
- Hydrodynamics
 - speed of sound (exact)
 - phonon dispersion (to order q³)
 - static response (to order q²)

Linear Response

With Rishi Sharma [arXiv:1308.4387]

Data from Joseph, Thomas, Kulkarni, and Abanov PRL (2011)

2D GPE simulation

GPE vs. Experiment

Ancilotto, L. Salasnich, and F. Toigo (2012)

Matching Theories: The Bad

- ETF has $\rho = 2|\Psi|^2$ • Density vanishes in core of vortex • Implies $\int |\Psi|^2$ conserved (Conservation of coarse-grained $\int |\Psi|^2$ provides a measure of validity)
- No "normal state"
 - Two fluid model needed?
 - Coarse graining (transfer to "normal" component)

With Rishi Sharma [arXiv:1308.4387]

Vortex Structure

With Rishi Sharma [arXiv:1308.4387]

Defect motion

- Like GPE, the ETF has $T \approx \sqrt{2T_z} \approx 1.4T_z$ for domain walls
 - Fermionic theories (SLDA, BdG) have $T \approx 1.7T_z$
 - Consistent with occupation of fermionic cores (fermionic walls are heavy)
- ETF vortex rings have period 1.8 shorter than experiment. Consistent when compared with SLDA.

TABLE II. Benchmark of the ETF periods to the SLDA periods for sizes $24 \times 24 \times 96$, $32 \times 32 \times 128$, and $48 \times 48 \times 128$.

Size	$T_{ m ETF}$	T_{SLDA}	$T_{ m SLDA}/T_{ m ETF}$
$24 \times 24 \times 96$	$1.4T_z$	$1.7T_z$	1.2
$32 \times 32 \times 128$	$1.6T_z$	$1.9T_z$	1.2
$48 \times 48 \times 128$	$1.9T_z$	$2.6T_z$	1.4

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013) [arXiv:1306.4266]

Disagreement with MIT experiment?

• Periods slightly underestimated

- Will probably be resolved with full SLDA simulation
- Fringe pattern does not exactly match
 - •Again, likely resolved by full SLDA

Fringe Pattern

Yefsah et al. Nature 499 (426) 2013

Bulgac, Forbes, Kelley, Roche, Wlazłowski (2013)

Conclusion

• Virtually all aspects of the MIT experiment are explained by vortex rings:

Long periods, dependence on aspect ratio and interaction strength, anti-decay at finite temperature, imaging after expansion and dependence on B_{min}

Solitions? Rings!

Vortex rings explain мгт experiment • Long periods

- Dependence on aspect ratio and interaction
- Imaging limitations
- Validates DFT

Conclusion

• Virtually all aspects of the MIT experiment are explained by vortex rings:

Long periods, dependence on aspect ratio and interaction strength, anti-decay at finite temperature, imaging after expansion and dependence on B_{min}

- Combined approach:
 - ETF for large systems validated with SLDA
 - Efficient realtime methods for cooling, analyzing
 - Quantum Friction

Pinning Force

$\frac{\mathrm{d}E}{\mathrm{d}t} = -\vec{v}\cdot\vec{F}$

Bulgac, Forbes, Sharma PRL 110 (2013) 241102 [arXiv: 1302.2172]

Thermodynamics

• Well defined: (unlike vortex mass)

 Accessible from dynamic simulations

 Extract from stirring simulations

Conclusion

- Virtually all aspects of the MIT experiment are explained by vortex rings:
 - Long periods, dependence on aspect ratio and interaction strength, anti-decay at finite temperature, imaging after expansion and dependence on B_{min}
- Combined approach:
 - ETF for large systems validated with SLDA
 - Efficient realtime methods for cooling, analyzing
 Quantum Friction, Pinning force
- Details validate reliability of DFTs for dynamical simulations of defects etc. in neutron stars.