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Microscopic description of the fission

Two-step approach :

1 Production of microscopic potential energy surfaces (PES)
Hartree-Fock-Bogoliubov code using a two-center oscillator basis
effective nucleon-nucleon interaction Gogny D1S
N-dimensional PESs
results : statical properties of the fragments

2 Wave packet propagation
TDGCM method with GOA
initial state : eigenstate of an extrapolated first well
microscopic inertia tensor (GCM)
results : statistical properties of the fragments

N. Dubray - CEA, DAM, DIF 4 / 29
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Formalism - HFB2CT

δ〈ϕ|Ĥ − λNN̂ − λZ Ẑ −
∑

i

λiQ̂i0|ϕ〉 = 0

Constrained Hartree-Fock-Bogoliubov method:
D1S Gogny parametrization
self-consistent mean and pairing fields
two-center harmonic oscillator basis

Constraints:
neutron and proton numbers N et Z

〈ϕ|N̂|ϕ〉 = N
〈ϕ|Ẑ |ϕ〉 = Z

q10 to avoid spurious center of mass motion
multipolar moments qi0

〈ϕ|Q̂i0|ϕ〉 = qi0
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Formalism - TDGCM + GOA

General GCM state with N different degrees of freedom {q1, . . . ,qN} :

|ψ(t)〉 ≡

(
N∏
i

∫
dqi

)
f (q1, . . . ,qN , t)|φ(q1, . . . ,qN)〉

Variational principle:

∂

∂f ∗

∫ t2

t1
〈ψ(t)|

(
Ĥ − i~

∂

∂t

)
|ψ(t)〉 = 0

Using the Gaussian Overlap Approximation (GOA), we obtain a
Schrödinger-like equation:

Ĥcollg(t) = i~
∂

∂t
g(t)

with

Ĥcoll = −~2

2

N∑
i,j

∂

∂qi
Bij ∂

∂qj
+ V̂
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Results - PESs

N. Dubray et al., Phys. Rev. C 77, 014310 (2008).
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Results - Fragment deformation 〈Q̂20〉
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Results - Fragment mass distribution for 238U

H. Goutte et al., Phys. Rev. C 71, 024316 (2005).
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Problem 1 - Convergence
Problem: the HFB solver does not converge.
Consequence: the HFB solution is bad.
Symptom: the convergence quantity is too high.

Problem 2 - Minimization
Problem: the HFB solver converges to a local minimum.
Consequence: the HFB solution is bad.
Symptom: none at the time of calculation.

Problem 3 - Discontinuity
Problem: two solutions close in the constraint deformation
subspace are not close in the full deformation space.
Consequence: a dynamical description using these points is
missing a part of the physics (wrong barrier, saddle point, . . . ).
Symptom: none easily visible.
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PES classes

Class Convergence Minimization Discontinuity
0 maybe maybe maybe
1 OK maybe maybe
2 OK OK maybe
3 OK OK OK

N. Dubray - CEA, DAM, DIF 13 / 29
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The density-distance operator

We define the density-distance operator

Dρρ′(|ψ〉, |ψ′〉) ≡
∫

dτ3|ρ(~r)− ρ′(~r)|

where ρ(~r) and ρ′(~r) are the total local densities of the states |ψ〉 and
|ψ′〉.

N. Dubray - CEA, DAM, DIF 14 / 29
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4-lines long algorithm to clean a PES

all solutions with a too high convergence value are marked as
"bad",
all solutions with a too high maximum density distance value
AND with their energy being higher than the corresponding
partner’s energy are marked as "bad",
all solutions marked as "bad" are recalculated from the
neighboring solution with the lowest energy that has not been
used for the same calculation before,
recalculate the density distances and restart.

this algorithm can be used during or after the production of a
N-dimensional PES.
if there is no fatal convergence problem and if all valleys have
been discovered, the result is at least a class 2 PES.

N. Dubray - CEA, DAM, DIF 15 / 29
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Example of a PES cleaning
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Example of a PES cleaning
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Important remark

We call a good point a solution that does not change when taking a
bigger deformation subspace with the same symmetries.

If there has been no fatal convergence problem and if all valleys have
been discovered,

a class 2 PES can have wrong or missing saddle points,
a class 3 PES has only good points (minima, saddle points,
etc. . . ).

N. Dubray and D. Regnier, Comp. Phys. Comm. 183, 2035 (2012).
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Symmetric "scission" of 256Fm - class 2
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Symmetric "scission" of 256Fm - densities
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Symmetric barrier of 240Pu - class 2
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Symmetric barrier of 240Pu - densities
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Symmetric barrier of 240Pu - class 3
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Class 3 PESs

Continuous regular mesh ?
dimension of a class 3 PES: N = 1,2,3,4,5,6, . . . ?
regular mesh + hypercube + N > 2 = huge number of points Np

dimension of the TDGCM + GOA hamiltonian matrix: N2
p

Use a sparse mesh !
no hypercube, focus on the physics in any dimension
optimal number of points
solve the TDGCM + GOA equation with FEM

N. Dubray - CEA, DAM, DIF 24 / 29
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Class 3 PES (q20,q30,q40) for 240Pu

N. Dubray - CEA, DAM, DIF 25 / 29
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Solving the TDGCM + GOA on a sparse mesh

Generalized Finite Element Method
N-dimensional delaunay triangulation
piecewise linear function approximation
very good numerical stability (Runge-Kutta + Jacobi method)
analytical vertices manipulation (derivation, integration. . . )

N. Dubray - CEA, DAM, DIF 26 / 29
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Conclusions

Publishing class 2 PESs should be the minimum (4-lines !).

Dynamical considerations are not valid on class 0,1,2 PESs.

A class 3 N-dimensional PES has the same good saddle points,
paths. . . as any extended (N + x)-PES.

N. Dubray - CEA, DAM, DIF 28 / 29
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Perspectives - fission description

In a near future, we plan to have

a fully-automatic production of class 3 sparse N-PESs,

a code to solve the TDGCM + GOA equation on sparse N-PESs
with FEM (almost done, cf. video).

N. Dubray - CEA, DAM, DIF 29 / 29
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