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What is DFT?

Density Functional Theory:

A variational method that uses
observables as variational
parameters.

§(H — AQ) =0
[k
E = E(Q)

for EQA)=(H) and Q(X)=(Q)

J. D., J. Phys.: Conf. Ser. 312, 092002 (2011)




Which DFT?

S(H—-—AQ) =0 — E = E(Q)

§(H — > \Qr) =0 = E = E(Qy)
§(H — quA(Q)Q(q)) =0 — E = E[Q(q)]

5(H — fdfF’)\(F)p‘(F)) — 0 — E = E[p(7)]
for p(i) = Y, 0(F—7)

J. D., J. Phys.: Conf. Ser. 312, 092002 (2011)

5(H — f fdf’df”)\(f’, 7N p(7, 7)) = 0 = E = E[p(7,7")]




How the nuclear EDF is built?

r( Local energy A

density is a
E[p(F)] — fd’F'H(p(’F)) functit(})’n of

LDA t{ local density y

‘_(Non-local energy\

density is a
Elp(7,7")] = f fd”'d “H(p(T, 7)) function of

Gogny, M3Y, ...

tknon-local density /)

He(p(7, 7)) = V(7 =) |p(Mp(7) — p(7,7)p(7',7)




Configuration representation of the DFT

and TDDFT R
Blol = [ar e +Ho(o®) |
p(7) = D2 i(7) Pt} () 53
S o
T(F) = Zile%(’?) i Vi () é%%
hij = Tij + L'y = OFlp &%
0pji

for h(t) = h(p(?))

0 = [h,p] ihp(t) = [h(t),p(t)]




TDDEFT

VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

Density-Functional Theory for Time-Dependent Systems

Erich Runge and E. K. U. Gross

Institut fiir Theoretische Physik, Johann Wolfgang Goethe-Universitdt, D-6000 Frankfurt, Federal Republic of German
(Received 16 August 1983)

A density-functional formalism comparable to the Hohenberg-Kohn-Sham theory of the
ground state is developed for arbitrary time-dependent systems. It is proven that the single-
particle potential v( T¢) leading to a given v-representable density n( T¢) is uniquely deter-
mined so that the corresponding map v— n1s invertible. On the basis of this theorem, three
schemes are derived to calculate the density: a set of hydrodynamical equations, a stationary
action principle, and an effective single-particle Schrédinger equation.

5(W ()| H — ih((:t _ fdff’/\(fF’, £)p(7)| () = 0

{

E = E[A(7,to = t)] and p(7,t) = p[A(T 1o = t)]

Cited 2600 times

Jacek Dobaczewski




Instantons

PHYSICAL REVIEW C 77, 064610 (2008)

Nuclear fission with mean-field instantons

Janusz Skalski”
Softan Institute for Nuclear Studies, ul. Hoza 69, PL-00681, Warsaw, Poland
(Received 3 December 2007; published 30 June 2008)

We present a description of nuclear spontaneous fission, and generally of quantum tunneling, in terms of
instantons, that is, periodic imaginary-time solutions to time-dependent mean-field equations. This description
allows comparisons to be made with the more familiar generator coordinate (GCM) and adiabatic time-dependent
Hartree-Fock (ATDHF) methods. It is shown that the action functional whose value for the instanton is the
quasiclassical estimate of the decay exponent fulfills the minimum principle when additional constraints are
imposed on trial fission paths. In analogy with mechanics, these are conditions of energy conservation and
the velocity-momentum relations. In the adiabatic limit, the instanton method reduces to the time-odd ATDHF
equation, with collective mass including the time-odd Thouless-Valatin term, while the GCM mass completely
ignores velocity-momentum relations. This implies that GCM inertia generally overestimates the instanton-related
decay rate. The very existence of the minimum principle offers hope for a variational search for instantons. After
the inclusion of pairing, the instanton equations and the variational principle can be expressed in terms of
the imaginary-time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The adiabatic limit of this theory
reproduces ATDHFB inertia.

Jacek Dobaczewski

IFT ), UW




We present a description of nuclear spontaneous
fission, and generally of quantum tunneling, in
terms of instantons, that is, periodic imaginary-
time solutions to time-dependent mean-field
equations. This description allows comparisons
to be made with the more familiar generator
coordinate (GCM) and adiabatic time-dependent
Hartree-Fock (ATDHF) methods. It is shown
that the action functional whose value for the
instanton is the quasiclassical estimate of the
decay exponent fulfills the minimum principle
when additional constraints are imposed on trial
fission paths.




Instantons

In the adiabatic limit, the instanton method
reduces to the time-odd ATDHF equation, with
collective mass including the time-odd
Thouless-Valatin term, while the GCM mass
completely ignores velocity-momentum
relations. This implies that GCM inertia
generally overestimates the instanton-related
decay rate.




Instantons

World Scientific

www.worldscientific.com

International Journal of Modern Physics E A
Vol. 18, No. 4 (2009) T98-807 P
(©) World Scientific Publishing Company

NUCLEAR FISSION WITHIN THE MEAN-FIELD APPROACH

J. SKALSKI

Soltan Institute for Nuclear Studies, Hoza 69, 00681 Warsaw, Poland
jskalski@fuw. edu.pl

Received November 24, 2008

We discuss the mean-field instanton method for calculating decay rates of the sponte-
neous fission. Based on our recent work, we stress the role of the velocity-momentum
relations which make the instanton action minimal, and the choice of a time-even density
maftrix and a time-odd hermitian operator as special variables making the adiabatic [imit
transparent. We also present an analytic study of a simple model of barrier tunneling,
which illustrates the importance ot the velocity-momentum constraints.

Jacek Dobaczewski

IFT ), UW

w  YVASKYLAN YLIOPISTO




Instantons

PHYSICAL REVIEW C VOLUME 36, NUMBER 5 NOVEMBER 1987
Model for tunneling in many-particle systems

P. Arve and G. F. Bertsch
Department of Physics, Michigan State Universit v, East Lansing, Michigan 48824

J. W. Negele and G. Puddu
Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 29 June 1987)

A model is proposed for studying tunneling in many-particle systems that is simple enough to
solve and realistic enough to test various collective models of multidimensional barrier penetra-
tion. We find that the imaginary time dependent mean-field theory works very well in its domain
of applicability, as does a continuum hopping approximation. The usual cranked mean field ap-
proximation 1s much less reliable.

Jacek Dobaczewski

IFT ), UW




TDDFT quantized

TDDFT corresponds to the time-evolution equation
of a quantum state moving along the manifold
parameterized by p_,(t)

ihp(t) = [(t), p(t)]

Explicit quantum picture is recovered by:

7N

Path integrals Quantization

4 pS

Instantons Collective Hamiltonian




Collective coordinates

Constraint variation of the functional,

E|p| = fd’r‘ T(’f‘) Hp(p(7)) Zu Cu ((Qu> — qu)z

o~

for (Q.) = TI“QMP = Z Q,ijPji

gives the potential energy surface (PES): E(q,,). Use physics
to pick the right constraints! Physics of fission requires (at
least?, at most?,...):

Ql — Q20

axial quadrupole)

Q3 - QSO
Qs

(
Qz — sz (nonaxial quadrupole)
(

axial octupole)

Q. (axial hexadecapole)
N? (neutron pairing)

— Z? (proton pairing)




Microscopic description of the fission Salf-consistent problems Toward class 3 PESs Conclusions

alaTelal s e Tals e alarn "
' I OO0 O0O0000 oo

Class 3 PESs

Continuous regular mesh ?

@ dimensionofaclass3PES: N=1.2.3.4.5.6,...7
o regular mesh + hypercube + N > 2 = huge number of points N,
@ dimension of the TDGCM + GOA hamiltonian matrix: NE

Use a sparse mesh !
@ no hypercube, focus on the physics in any dimension
@ optimal number of points
@ solve the TDGCM + GOA equation with FEM J

N. Dubray - CEA, DAM, DIF 24729




How to solve the ATDDFT equation

ho, p1] + [h1, pol, pol

N

Tt

Raport "P"IBJ No 8/VI1/79/P

Jacek -Dobaczewski

Instytut Fizyki Teoretycznej

Uniwersytetu Warszawskiego

METODA SAMOZGODNA WYZNACZANIA PARAMETROW

BEZWELADNOSCI JADER ATOMOWYCH *

{]. D. and J. Skalski, Nuc. Phys. A369 (1981) 123}

Jacek Dobaczewski




How to solve the ATDDFT equation
th(po, po| = [[ho, p1] + [P1, pol; po

L[QO,CRO] = "10@4 3.46
lub dla kilku zmiennych kolektywnych (3.33)

({R“MO(R:;) ’ 3,47

BLJ =2f5ﬂ55‘4

[I. D. and J. Skalski, Nuc. Phys. A369 (1981) 123}




CDC Cyber 170 . series

60-bit 40MHz CPU
256 kwords memory of 12-bit words

{ http://en.wikipedia.org/wiki/CDC_Cyber}




How to solve the ATDDFT equation

th(po, po| = [[ho, p1] + [P1, pol; po

40—

20

By
_fi

T 1 T T T T T T T ]

ATDHFB cran
BB BB

Rys. 5.6 . Zaleznosc od deformacji roéz-
nicy migdzy parametrem masowym Bgy po=-
liczonym w metodzie ATDHFB i w modelu
ruchu wymuszonego (sily Skyrme a SIV)

{]. D. and J. Skalski, Nuc. Phys. A369 (1981) 123}




Perturbation expansion of p

For a perturbation expansion of the density matrix,
p = po+ p1+ p2+ ..., projectivity of the density matrix,
p? = p, up to second order gives:

(po + p1+ p2)° = po + p1 + p2,

which in zero, first, and second order reads:

Pg Po — pga
pPop1 + p1po = p1 = [|P1s Pols Pol 1
pop2 + p1p1 + p2p0 = p2 = [[p2; pol; po] + 5llP15 Pol; P1]-

Therefore, in the particle-hole (p-h) basis, the density matrices po,
p1, and ps have very specific structures:
—pip1 s Py )
)

_(1,0) _(Oaﬁi) _

Po 0,0)> M 51,0 |2 P2 P2 5 P1P]
where p; and ps are rectangular matrices having only p-h matrix
elements.

s+5 . 5




Perturbation expansion of energy

For the perturbation expansion of the energy, one has:

Elp| = Elpo + p1 + p2] = E[po] + Zwaa]i[l)]

+ lz 82E[p] (P1ij _|_X) (pr.arir + X,)
2 iji,jlapijapi'j’ P1,ij ;i) (P15 T+ P

where all derivatives are taken at p = po. We now define the mean
fields at zero and first order:

O°E|p]
17 19

(P1,i5 + P2,ij)

P1,i’5"

which gives the prturbation expansion of the energy,
E|p| = Ey + E; + E,, for

Ey = E|po], FE.=Trhopi, FE>=Trhops+ %TI“ hipi-




Perturbation expansion of energy

By using the perturbation expansion of the density matrix, one has:

E, = Tr [ho, po]|po, p1],
Ey = Tr [ho, po]|pos p2]| + %Tl" p1 [[ho, p1] + [P1, po], po)-
We see that the second term of E5 contains the stability operator Mg
which is a linear operator in the space of first-order corrections p;:
MOpl = [[hOa pl] + [hla pO]a pD] ¢

When expanded in the p-h indices My gives the standard RPA matrix.
With respect to the scalar product (p}|p1) = Tr p/"p1, the stability
operator is hermitian, M/ = M.

At the stationary density pg, given by the solution of the self-consis-
tent equation [hg, pg] = 0, we have

E,=0 , E;=,(pi|M]p1).




Adiabatic expansion of p

We look for solutions of the TDDFT equations in the form of series
expansion:

p(t) = po(t) + p1(t) + p2(t) + ...,

where every next term is “of the next order in velocities”. Proposals
of how to define the "next order in velocities" are plenty. Let us
begin with the simplest one:

po = po(q.(t)), (preseleced collective path)
p = exp(ix)poexp(—ix), (Baranger & Vénéroni)

for a hermitian and time-even small x, Tr{x"x} << 1. For trans-
parency, we drop the time arguments, since p, pg, and x all depend
on time only through q,(¢t). Classical trajectories q,(t) are never
looked upon — see quantization. We then obtain:

P = Po i[XapO] - %[Xa [Xa pO]] T ey

that is, p1 = [X, po] (time odd) and p» = —3[x, [X, po]] (time even).
J eki)ikfizewk @




Adiabatic TDDFT equation (ATDDFT)

By inserting the adiabatic expansion p = pg + p1 + p2 into the
TDDFT equation thp = [h(p), p|, one obtains:

ithpo + thp, + thps = [h(po + p1 + p2), po + p1 + p2],

where the perturbation expansion of h(p) gives

Oh(p)
h(p) = h(po+ p1+ p2) =ho+ ) .. Opi (Prij + P2.i5)
1]
9%h(p)
+ 2Ziji’j’apijapi’j’ (P1,i5 + %) (P1,i7jr + PX)
= ho + h1 + ho.

This allows us to split the TDDFT equation into the time-odd and
time-even parts. After droping higher-order terms, we obtain

thpo = [ho, p1] + [P1, pPol,
thp, = [h'()a PO] T [hOa P2] + [h’la Pl] + [h29 PO]-

[YVASKYLAN YLIOPISTO |




ATDDFT equation

th{po, po] = [[ho, p1] + [h1, po], Po]
ihg |92, po| = Mop:

p2

E; = 5(p1|Mo|p1) = 3B¢* = 2B

B = (*}|Mo|) = mTY pl[%zoapO]

N

ATDDFT mass parameter




How to solve the ATDDFT equation
th[po, po] = [[hos p1] + [R1, po], po)

1) For several collective variables use the chain rule:

o= .2

2) Work in the particle-hole basis:

thpopn = (€p — €n)P1ph + hi1ph

3) Use the fixed-point method and iterate:




How to solve the ATDDFT equation

thO ,ph — (ep — eh)pg?p—lf_zl) T h’(aph
(0)

pl,ph — O .
(1) tho,ph
pl,ph —

€Epr — €p

(0po/0q)ph|”

B1) — h2zph

Cranking mass parameter

(1), (2), (3), infinity = ATDDFT(B) mass parameter




How to solve the ATDDFT(B) equation

S
ot
-

=2

Q

®
|

(Ba — (—Ep))Rilag’ + Hiags
(1) ihRO,a)@

E, + E;

27),22 ‘(8720/8‘1)0/3'2
- ap Ea _I' E,B

s
“i—l
Q
X
|

A~
-
N—

Cranking mass parameter

(1), (2), (3), infinity = ATDDFT(B) mass parameter




Quantization

816 BORIS PODOLSKY

momenta, we obtain the expression for A in the quantum-mechanically
correct form

-3
I
=
Il
=

g

H= g ipeg Py peg U (19)

1
2u 1

..z
!
H

L]

f

In the classical case, when the order of factors is immaterial, this reduces
to the usual form

==

=)
=

1 =
2

H = g prpst+ U (20)

=
-

=1 s=1

ZMVB_1/4ﬁMB1/2BMVﬁVB_
for B = det(B")

DD | =

ek
N [B. Podolsky, Phys. Rev. 32, 812 (1928)}




Can TDDFT penetrate the barrier?

Homework exercise for the proud owners and users of
the TDDFT codes:

axial

Energy
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Can TDDFT penetrate the barrier?

Homework exercise for the proud owners and users of
the TDDFT codes:

axial

Energy




Is TDDFT classical or quantal?

Exact many-body time-dependent Schrodinger equation expressed in
a complete basis of time-independent many-body states:

ih|W(t)) = H[¥(t)) for [¥(2)) =D an(t)|¥n).

This gives the evolution equations for the time-dependent probability
amplitudes a,(t),

ihan(t) = ) Hpmam(t),

where matrix elements H,,,, = (¥,|H|¥,,) define the classical hamil-
tonian H(a*, a), which governs the classical equations of motion,

oH

H(a™, a) := ana* nm@m — tha, =

" Baj;.
Classical Hamilton equations of motion are obtained for real and
imaginary parts of the probability amplitudes:




Can TDDFT penetrate the barrier?

Does TDDFT see any barrier at all? What barrier?
e Consider the PES defined in the standard way:

q = TrQp,
E(q) = min E[p] for {T*TpT = p,
’ p = p°

This pertains to q := gpgs = Tr Qp
e Consider the value of g during the TDDFT evolution:

T*pT # p=ps +p-,
p = p?
— Tr — Tr for
q Qp Qp-I— T+p:|:T — :|:p:|:,
p+ = pL+p> #pi

This pertains to q := qrpprr = Tr Qp+




Can TDDFT penetrate the barrier?

Does TDDFT see any barrier at all? What barrier?

® gprs has nothing to do with grpprr.

e p, does not belong to the class of dnsity matrices over which the
PES was minimized.

e When TDDFT arrives at the “classical turning point”, E=E(q),
that 1s, ¢ = grpprr = gpEs, the TDDFT Slater determinant has
nothing to do with the PES Slater determinant.

Why wouldn’t TDDFT go through?




Thank you

Jacek Dobaczewski
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Can TDDFT penetrate the barrier?

Homework exercise for the proud owners and users of
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