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Near and long term goals:

To describe accurately the time-dependent evolution of
externally perturbed Fermi superfluid systems

Tool: a DFT extension to superfluid systems and time-
dependent phenomena (and subsequently we have to
add quantum fluctuations and extend the theory to a
stochastic incarnation)



Why TDDFT?
(not meant for debate during the talk, but for the afternoon and tomorrow discussions)

* Unlike ATDHFB, TDSLDA does not requires introduction of hard to define collective degrees
of freedom and there are no ambiguities arising from defining potential energy surfaces (PES)
and inertias

* Currents are present by default, thus no ambiguity concerning their effects

* Interaction with basically any external probes (weak or strong) easy to implement and
their effect on dynamics already included

e Accuracy of description in terms quantized trajectories with Maslov index corrections is
at the same level of theoretical accuracy of a re-quantization of collective Hamiltonian

* One-body dissipation is automatically included in the formalism and this is a quantum
approach (unlike diffusion models)

* TD equations are a consequence of the action minimum principle and thus the perils of
using minimum of energy trajectories on PES and inertia are not encountered (see talk given
by L. Robledo last week in which he demonstrated errors in time-lives up to 0(103°), thus
errors up to =70 h in action)

e Overall computational effort in TDDSLDA is significantly less that in a ATHFB in a large
collective space (five or more dimensions, which requires 5-9 million of configuration
presently, and more in the future, see talk by A. Sierk last week) and more accurate
numerically

* There are ways to include collective surface hopping and thus the effects of two-body
collisions (surface hopping already studied for more than two decades in chemistry and now
entering the condensed matter filed for normal systems)



Physical systems and processes we are interested in:

v" Collective states in nuclei
v" Nuclear large amplitude collective motion (LACM)
(Induced) nuclear fission

v' Excitation of nuclei with gamma rays and neutrons

v Coulomb excitation of nuclei with relativistic heavy-ions

v" Nuclear reactions, fusion between colliding heavy-ions

v' Neutron star crust and dynamics of vortices and their
pinning mechanism

v Dynamics of vortices, Anderson-Higgs Mode
v" Vortex crossing and reconnection and the onset of quantum
turbulence

v Domain wall solitons and shock waves in collision of
fermionic superfluid atomic clouds



Outline:

= TDSLDA Equations
= Discrete Variable Representation of wave functions
= Calculation of derivatives and use of FFT
= Time propagation
= Calculation of Coulomb interaction
= Treatment of center of mass motion
= @Gauge invariance, coupling to EM-field
= Construction of ground state:
iterative methods vs time-dependent methods
= CPU vs GPU massively parallel implementation
capability computing (not capacity computing)



Nuclear energy density functional

e(F)= 21, ()= A, FW, )+ 21 ()= A WV, ()

2m, 2m,
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Satisfies translational, rotational, isospin, and Galilean invariance, gauge covariance.
The coupling to electromagnetic field (not shown here) is gauge invariant minimal coupling.




Pairing part of the energy density functional

&0, v, =80, PV, [P +1v, ]
p,+p,

+ £, eIV, [ =v,[]

where  g(p,,p,)=g(p,,P,)
and f(p,,p,)=1(p,P,)




TDSLDA equations

hy, (7.) 0 A(7,t)

N

hy, (F.t)-u  -A(F.1) 0

N S Y FPRE S )
0 (R ()

* The system is placed on a large 3D spatial lattice (adequate representation of continuum)
* Derivatives are computed with FEFTW (this insures machine accuracy) and is very fast
* Fully self-consistent treatment with fundamental symmetries respected (isospin,
gauge, Galilean, rotation, translation)

* Adams-Bashforth-Milne fifth order predictor-corrector-modifier integrator
* No symmetry restrictions
* Number of PDEs is of the order of the number of spatial lattice points

— from 10,000s to a fraction of 1,000,000 determined by the dimension of the Hilbert space

3
oc 4(2”—ch —4N NN,

* Initial state is the ground state of the SLDA (formally like HFB/BdG)
* The code was implemented on Jaguar, Titan, Franklin, Hopper, Edison,
Hyak, Athena
* Initially Fortran 90, 95, 2003 ..., presently C, CUDA, and obviously MPI, pthreads, etc.

2wh



Discrete Variable
Representation (DVR)

*Quasi-local (projected delta functions)
'Fn(Xm) X 6mn, <Fm|\4Fn> = 6mnV(Xn)

* Analytic form for Kinetic Energy

* Exponential convergence
*for appropriate potentials, boundary conditions etc.

All these dark slides are from an INT talk, given on April 8, 2013 by M.M. Forbes and based
on our paper A. Bulgac and M.M. Forbes, Phys. Rev. C 87, 051301(R) (2013)



Phase-Space Coverage

Area of Strip = 27h

Littlejohn et al. J. Chem. Phys. 116 (2002) 8691

DVR basis slices phase
space into strips

Efficient coverage of
typical rectangular
“model spaces” with
simple IR and UV

cutoffs



Phase-Space Coverage

For convergence:

* Must cover same
semi-classical phase
space

* Consider modeling
the Morse (left)
potential with HO
basis (right)

Littlejohn et al. ). Chem. Phys. 116 (2002) 8691



Standard pvr Basis
An(x) x Fa(x) x Ln(x)

*Projected delta-functions: An(x)
* Let (x|xn) = 8(x—xn), then ”An> — PMn)

*Interpolating functions: La(x)

* [f) = 2nf(xn) |Ln)

* Orthonormal basis functions: Fn(x)
¢ (leFn) = Omn



Projected Delta
Functions

P= ) [k (K

k<kc
(XIxn) = 8(x —xn )
An) = Plxn)
Fn) = ’An>
1A

V(AnlAn)




Non-trivial
Consistency of Abscissa

T

Abscissa must be
nodes of Am(x)

Am[xn) — 5mn/Wn

0

orthogonal

Y '
;:‘

X polynomials



Interpolating Functions

Just evaluate f(xn)
at the abscissa:

) = 2_nfn [Fn)
— Zn f[xn) H—n)




Integration Weights

*Wn = ]/(AnlAn) — ]/An(Xn)
‘Ln(x) = wnl/2 Fo(x) = Wi An(x)

* Gaussian quadrature wights for functions in basis:
*(flg) = 2o Wn f*(xn)g(xn)

*But... make sure to integrate functions in basis (or add
more abscissa)



Diagonal
Potential Energy

<Fm‘v“:n> ~ 6mnv(xm)

*Not exact, but eigenvalues and eigenvectors
still have exponential convergence

*No overlap integrals needed

*Trivial 3 and 4-body operators



Analytic Kinet

thZ

Krnn — Fm -
(Fim| 2m

“:'n> y K'mn — <

*Include singularities here
* They can spoil convergence

Fm|2m dr2 12

ic Energy

h2 42 v2_1




DVR Examples

*Fourier basis (rearrangement): use FFTW

: (N—1)/2

sink¢e (X — Xq ) 1 T (x—x
()= S =N 2 &

N'sin =55 m=—(N—-1)/2

22 (—1)m—™ cos Xe(Xm—Xn)

Km#n — LZ

- 2 kc‘(xm_xn) )
Sin N

e ]
Ko = (1= — ).
3a? ( NZ)




DVR Examples

*Sinc function basis
*Kmn dense (but only in each dimension)

Ln(x)::ﬂnc(kcfx——xn))

2(—1)m- o
Kmyén — (

Xm — xn)z,

In 3D the sparcity of the Hamiltonian matrix is =1/N?,
where N is the number of lattice points in 1D



DVR Examples

*Bessel Function Basis: Spherical/Cylindrical symmetry
2

" kezvn)l (zvn)?’

]‘v (Zvn) — O) Wn

Fn(r) — (_] )TH_ kZCTZ 0 ,]*v (kc'r)a
i — 8]{% —1 )ﬂl_nz'\’nz\”ﬂ-

FIG. 2. Plots of the Bessel DVE. functions F, (r) for K=1 and for selected

(
(
k2 2(v% —1 | N
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DVR Examples

*Bessel Function Basis: Spherical/Cylindrical symmetry
*In principle: one basis for each 1

*|n practice (3D):
*use 1=0, for even 1
‘use =1, for odd 1

*(may need extra point to represent
densities etc.)

FIG. 2. Plots of the Bessel DVE. functions F, (r) for K'=1 and for selected
wvalues of » and n.




Simple Implementation

*MATLAB

N =32;

n =(1:N);

[k,I] = meshgrid(n,n);

a =1; % lattice constant

x =a*(-N/2:1:N/2-1)';
V =xA72/2; %potential
p =2%pi/L*(-N/2:1:N/2-1);

Tk = 2%(-1).Mk-I)./((sin(pi*(k-1)/N)).A2 + eps)/NA2;
Tk =Tk - diag(diag(Tk));

Tk = (Tk + eye(N)*(1+2/N”"2)/3)*pir2/ar2/2;

H =Tk +diag(V);

energy = eig(H);

*Python

class DVR1D(object):
r"""Sinc function basis for non-periodic functions over
an interval *xo +- L/2" with "N" points."™
def __init__(self, N, L, xo=0.0):
L = float(L)
selfN=N
self.L =L
self.xo = xo
self.a=L/N
self.n = np.arange(N)
self.x = self.xo + self.n*self.a - self.L/2.0 + self.a/z2.0
self.k_max = np.pi/self.a

def H(self, V):
""'Return the Hamiltonian with the give potential."
_m = self.n[:, None]
_n=self.n[None, :]
K = 2.0%(-1)**(_m-_n)/(_m-_n)**2 /self.a**2
K[self.n, self.n] = np.pi**2/3/self.a**2
K*=o0.5 #p*2/2/m
V = np.diag(V(self.x))
return K + V



HO Eigentstates with
DVR basis

Ho potential with
optimally tuned DVR
basis

Bulgac & Forbes arXiv:1301.7354



N=L=30

Optimal phase space coverage
* 5 energies to machine precision
* 24 reasonable energies (10%)
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N=L=40

Optimal phase space coverage
*8 energies to machine precision
* 32 reasonable energies (10%)
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Difficulties with HO Basis

*Large Radius of HO wavefunctions introduce artifacts
*Need large number of states to correct
*(Requires HO wavefunction to high precision!)

Grasso and Urban, BCS Code Our Unitary HO Basis Code

Grasso and Urban, PRA, 68, 033610 (2003)



Difficulties with HO Basis

* Tails (turning points) spoil large r behaviour




DVR Solves the Problem

* Tails spoil large r behaviour

Our code with HO Basis Our code with DVR Basis




Difficulties with HO Basis
Complex Convergence

*Subtle convergence issues:

*IR needs subtle properties of HO wavefunctions
Furnstahl, Hagen, & Papenbrock PRC 86 (2012) 031301(R)
More, Ekstrom, Furnstahl, Hagen, & Papenbrock arXiv:1302.3815

*UV convergence?
*Emperical: E(Auv)=E«+Ao exp(—2A2uv/A?)
Furnstahl, Hagen, & Papenbrock PRC 86 (2012) 031301(R)
*Where does this Gaussian behaviour come from?



Simple Convergence

IR convergence:
* Periodic Box (images)
* Lowest many-body

threshold
* Band theory

UV convergence:
* Fourier analysis

0 51015202530 5 10 15 20
L/a ke/a™ !

Both are simple
exponentials

Bulgac & Forbes arXiv:1301.7354



IR Convergence

*Band theory

* Exponential (think “tunneling”) with scale set by
lowest many-body dissociation threshold
*e.g. s-wave two-body threshold

A exp[—Z\/ZMQ(L))L/h

E(L) = Eq + -




UV Convergence

* Follows from Fourier analysis

E(ke) = B + Aexp(—2ke1o)

* Exponential (not Gaussian)
*Recall “emperical” formula for HO basis:

E(Auv) = Eo + A exp(—2A%,y/A?)



Exact Diagonalization
(“Triton” and "Alpha”)

Vo v=etomsmediile” 2 Use DVR for relative coords.

.?“’.-'_‘“tl’l.l'tlﬂ“ .-

2G

Directly solve 6D and gD
Schrédinger Eq.

Lanczos iterations
* No matrices O(N In N)
Several minutes on laptop
Hilbert space to 87=10%
= *a=0.5to1.5fm
L' (fm™) * A=300 to 930 MeV/c

SRS e S e YO ] MATLAB code about 200 lines



DVR: an Efficient basis

* Quasi-local
’ <Fm’an> - SmnV(Xn)
*fn = f(xn)/wn

* Good phase-space coverage

*Easy to implement
* Straightforward convergence properties

* An efficient alternative to HO basis?



Why we use FFTW to compute derivatives?

Why it is practical:
The amazing speed of FFT

Try:
(a) FFT a three dimensional array A(i, j, k)
(b) Multiply two arrays C(i, j, k) = A(i, j, k) B(i, j, k)

Hardware System FFT mesh % mesh =~
P-I11, 750 MHz Linux FFTW 642 2.4 1283
Origin 3800 Irix SCSL 643 28 1283
Origin 3800 Irix FFTW 643 32 1283
ltanium I Altix SCSL 643 51 1283
ltanium | Altix FFTW 643 7.0 1283

From a talk given by E. Krotscheck



Time propagation

Equation(s) to be solved numerically: ? = f(1)

y(t) - stands for a vector representing the values of all qpwfs at all points in space
Discretize time ?,,t,,t,,...

Y, =X@,), 1, = f(2,),...

Adams-Bashforth-Milne method

(effectively 6th order, minimizes discretization and roundoff errors)

A
pn+1:yn+2ynl 4é(119f 99f +69f ,—17f_,)

161

pn+1_ﬁ(pn )

+ At
Cpp1 = L zyn_l + 48 (17mn+1 +55f,+ 3/, +fn—2)

yn+1 +1 170

(p n+l n+1 )

Only 2 evaluations (shown in red) of the right-hand side per ste



Characteristics of the 3D spatial lattice

2p.L
21h

3
) = 800,000

Number of quantum states o< 4(

for L = 60 fm

Lattice constant

p.=hk, = I =~ 600MeV /¢
Ax

Ax =1fm

2 2.2
=P L T a00mey
2m  2mAx

Time-step

EAtY
Error of finite difference formulas o< I: f& (x)Ax]5 :( Ch t) =107°...107"

= At =0.07---001fm/c
Number of time steps




potentials,

< stationary code specific — > optimization info .
tlme dependent code I n It :
observable data hys I Cs —p i : :

Static

o
-time dependent
wave functions,
potentials (gases), .
some scalars

Dynamic

I .
post analysis,
—— learn,refine

observables(t)

v full diagonalization of Hermitian matrices 409,600x409,600 on JaguarPF (for 238U, 40x40x64 lattice)
(required about 5.1 wall-time hours on 97% of the machine for one iteration)
v'  Performance on Jaguar:

Static: ins/wall-time = 1.37e19/18,393= 7.45e14
flops/wall-time=9.42e16/18,393= 5.12e12, PEs = 217,800
TD: ins/wall-time = 7.11e17/2,031= 3.50e14

flops/wall-time= 1.89e16/2,031= 9.3e12, PEs = 136,628
v' excellent weak and strong scaling
v very fast 1/0 and checkpoint/restart capabilities
v" number of coupled nonlinear time-dependent 3D PDEs for 228U = 546,512



Our old code on Jaguar in 2010

195250

1

4%, 62%

T G
A
()"-1

Figure 8. Ny=N,=N.=72 TD-SLDA Strong Scaling Example. The floating point efficiency goes
down as a function of increasing processes. However, a speed-up is measured in each case.




Size of the nuclear problem (present):

Spatial lattice size N,N,N, = 323... 643 (on GPUs powers of 2 are preferable)
4-component quasiparticle (complex) wave functions
Number of quasiparticle wave functions = N,N, N,/2
Number of bytes per time step to represent qpwfs = 2x1012

total memory required (wfs, TD derivatives, potentials, etc.) = 50x10*?
Number of time-steps = 0(108) (typically an order of magnitude or more less than the
number of configurations needed for a PES in ATDHFB)

This is one of the largest Direct Numerical Simulation problems ever attempted
and requires capability computing (HFB with constraints is a typical example of
capacity computing)

Capability vs capacity [edii]

From Wikipedia: Supercomputers generally aim for the maximum in capability computing rather
than capacity computing. Capability computing is typically thought of as using the
maximum computing power to solve a single large problem in the shortest amount
of time. Often a capability system is able to solve a problem of a size or complexity
that no other computer can, e.g. a very complex weather simulation application.[sal

Capacity computing in contrast is typically thought of as using efficient
cost-effective computing power to solve a small number of somewhat large
problems or a large number of small problems, e.g. many user access requests to
a database or a web site.®®) Architectures that lend themselves to supporting
many users for routine everyday tasks may have a lot of capacity but are not
typically considered supercomputers, given that they do not solve a single very
complex problem. !




CPU vs GPU on Titan ——— = 15 speed-up
(likely an additional factor of 4 possible)

643 spatial lattice
2-component quasiparticle wave functions (no spin-orbit coupling)

e Slightly imbalanced version:

137062 2-component wave functions
» CPU version - 27.90 sec for 10 time steps

4096 nodes = 16x4096 = 65,536 PEs (2 and 3 qpwfs per PEs)
» GPU version — 1.84 sec for 10 time steps

4096 nodes = 4096 PEs (one per node) + 4096 GPUs

 Balanced version

131072 2-component wave functions
» CPU version - 23.96 sec for 10 time steps

4096 nodes = 16x4096 = 65,536 PEs (exactly 2 gpwfs per PEs)
» GPU version — 1.65 sec for 10 time steps

4096 nodes = 4096 PEs (one per node) + 4096 GPUs

GPUs are less prone to suffer from load imbalanced



A new method to construct the ground state which eschews

big matrix diagonalization:

adiabatic switching with _gquantum friction

il (x,t) = H(x,t)+ U(x,t)| W (x,1)
E=(Y|H|¥)

E= <‘P|H|‘P>+%Im<‘1’|HU|‘P>

if Uec—hV-j=hp = E<(¥|H|¥)

We choose U =-3

e h * == -
J<r>=#m2wn(r,t>wn<r,r>

Main advantage:

Replace iterative procedure which requires
O(N?3) operations for diagonalization with

time evolution which requires only O(N? In(N))
operations per time step.

Total energy [MeV]

2000 4000 6000 8000 10000
time [fm/c]

FIG. 2. (Color online) The total instantaneous energy of
a system of twenty non-interacting neutrons evolving from
an initial 3D harmonic oscillator potential to a final sym-
metrized Woods-Saxon potential. The curves correspond to
quasi-adiabatic evolution with friction (1 —s;)Hp + s H1 + U,
for various switching periods T' (two-thirds of the simulation
time) and just friction Hi + U for the remaining third of
the simulation. That the energy is constant during this time
demonstrates that the ground state has been reached. Note:
there are three curves for the longest T' corresponding to dif-
ferent simulations with {24°, 32% 40%} lattices of 1 fm spacing:
this demonstrates the infrared (IR) convergence.




wilhqwmnlflicﬁmTzF 0 ———
5l cosemes o
100
adiabatic switching, Teg= 10—
50
100
250
1000

FIG. 3. (Color online) Ground state preparation of a trapped
kthree-dimensional UFG gas from a translationally invariant
(effectively two-dimensional) solution. The ground state can
be prepared purely using adiabatic switching (solid lines) but
the switching period can be dramatically reduced with local
quantum friction. Ey = %.’VEF, where N is number of parti-
cles and £ is Fermi energy in the center of initial solution.
(See also the movie in [24].)




A nucleus under the influence of an external projectile can move outside the simulation box.

A simple coordinate transformation and change in EOM maintains the nucleus at all times in
the center of the box:

iV (7,t)= H(F ,0)¥Y(¥,t)
R(t)= j &rlYFE 7
O(F,1)=exp(iR(t)- p)V(F.1) =V (F + R(t).t)

j &r|®F, ) F=0

ih®d(7,t) = H(F,t)@(?,t)—%- p O(F 1)




Calculation of the Coulomb potential
Problem: In a box with periodic boundary conditions one should avoid the contribution
from image charges. Here the simulation box is yellow, a few images are blue.

Define a charge distribution which is non-vanishing only in the yellow box, and vanishing in
blue boxes. 1
Replace the Coulomb interaction with

il L
— T
: Proton charge

otherwise
formfactor

Calculations.
_dx 1- cos(x/EkL)
2

X F} (k)



Volune
=5

0.113
0.07421
0.03r1

®-2.308-13
Max: 0.1484
Mirx 2.350=-13

—
Time(fm/c) Vobume

0047
003534
002386

oonnre

2.350e-13




Coulomb excitation of GDR with relativistic heavy-ions computed in TDSLDA
l. Stetcu et al.






Real-time induced fission of 229Cf computed in TDSLDA
l. Stetcu et al.



Collision of two superfluid clouds, cca 720 fermions (order parameter)
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Construction of ground state (adiabatic switching with quantum friction), generation of a
domain wall using an optical knife, followed by the spontaneous formation of a vortex ring.
Aproximately 1270 fermions on a 48x48x128 spatial lattice, = 260,000 complex PDEs,

= 309,000 time-steps, 2048 GPUs on Titan, 27.25 hours of wall time (initial code)



Papers we published so far on SLDA and TDSLDA
(stars indicate papers with significant nuclear physics content):

arXiv:1306.4266

* arXiv:1305.6891

* Phys. Rev. Lett. 110, 241102 (2013)

* Phys. Rev. C 87 051301(R) (2013)

* Ann. Rev. Nucl. Part. Phys. 63, 97 (2013)
* Phys. Rev. C 84, 051309(R) (2011)

Phys. Rev. Lett. 108, 150401 (2012)
Science, 332, 1288 (2011)

J. Phys. G: Nucl. Phys. 37, 064006 (2010)
Phys. Rev. Lett. 102, 085302 (2009)

Phys. Rev. Lett. 101, 215301 (2008)

* J.Phys. Conf. Ser. 125, 012064 (2008)
arXiv:1008.3933 chapter 9 in Lect. Notes Phys. vol. 836
Phys. Rev. A 76, 040502(R) (2007)

* Int. J. Mod. Phys. E 13, 147 (2004)

Phys. Rev. Lett. 91, 190404 (2003)

* Phys. Rev. Lett. 90, 222501 (2003)

* Phys. Rev. Lett. 90, 161101 (2003)

* Phys. Rev. C 65,051305(R) (2002)

* Phys. Rev. Lett. 88, 042504 (2002)

Plus a few other chapters in various books.



