INT Workshop Seattle 2013

Superheavy Element Research at GSI A Selection of Recent Results

Michael Block

with contributions by

Chris Düllmann, Fritz Hessberger, Dirk Rudolph

Superheavy Elements – Current Status

Superheavy Elements – Current Status

Superheavy Elements – The hottest Topics

Unique Combination for SHE Studies

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

GSI

Courtesy Ch.E. Düllmann

The TASCA Collaboration

ANU Canberra (Australia) LBNL/UCB Berkeley (USA) LLNL Livermore (USA) Vanderbilt U (USA) ORNL Oak Ridge (USA) U Liverpool (UK) U Surrey (UK) U Lund (Sweden) JAEA Tokai (Japan) U Jyväskylä (Finland) U Oslo (Norway) Chalmers U Gothenburg (Sweden) PSI Villigen/U Berne (Switzerland) ITE Warschau (Poland) SINP Kolkata (India) IMP Lanzhou (China)

Courtesy Ch.E. Düllmann

Synthesis, separation and identification of SHE

Element 119 Collaboration

D. Ackermann, M. Block, F.P. Heßberger, A. Hübner, E. Jäger, B. Kindler, J. Krier, N. Kurz, B. Lommel, J. Runke, B. Schausten, J. Steiner, A. Yakushev

EE / Ion source / Accelerator staff

<u>Ch.E. Düllmann</u>, A. Di Nitto, K. Eberhardt, S. Klein, J.V. Kratz, C. Mokry, D. Renisch, P. Thörle-Pospiech, N. Trautmann, N. Wiehl

L.-L. Andersson, X. Derkx, J. Even, J. Khuyagbaatar, V. Yakusheva

R. Grzywacz, D. Miller, J. Roberto, K. Rykaczewski

J.H. Hamilton

N. Esker, J.M. Gates, K.E. Gregorich, H. Nitsche, G.K. Pang

N. Gharybian, J.M. Gostic, R.A. Henderson, K.J. Moody, D.A. Shaughnessy, E.E. Tereshatov

C. Fahlander, U. Forsberg, P. Golubev, D. Rudolph

D.M. Cox, R.-D. Herzberg, A. Mistry

S. Lahiri, M. Maiti

M. Asai, M. Schädel

J.P. Omtvedt, A. Semchenkov

J. Uusitalo

A. Türler, P. Steinegger

M. Wegrzecki

M. Evers, D. Hinde

Univ. Mainz (D)

GSI Darmstadt (D)

JGIL

JOHANNES GUTENBERG

OAK RIDGE

UNIVERSITÄT

LUND

 (\mathbf{f})

ITE

HIM Mainz (D)

67

ORNL / UT Knoxville (USA) Vanderbilt U (USA) LBNL / UC Berkeley (USA)

Lund Univ (S) Univ. Liverpool (UK) SINP Kolkata (IND) JAEA Tokai (J) Univ. Oslo (N) U Jyväskylä PSI / Univ. Berne (CH) ITE Warsaw (PL)

ANU Canberra (AUS)

2012: Element 119 search / Element 117

⁵⁰Ti beam 750 nA_p and ²⁴⁹Bk targets with initial thickness ≈0.44 mg/cm².

2012: Search for element 119

⁵⁰Ti+²⁴⁹Bk⇒Element 119

Status of element 119 search:

- beam dose: $\approx 3.6 \cdot 10^{19}$ particles
- \approx 40 TB of data (analysis is ongoing)
- Sensitivity \approx 70 fb for one event (preliminary)
- Current status of data analysis yields no evidence for detection of element 119

⁵⁰Ti+²⁴⁹Bk Excitation Function

⁵⁰Ti+²⁴⁹Cf Excitation Function

Courtesy Ch.E. Düllmann

First element 117 decay chain from TASCA

Cross Sections for SHE Synthesis

Courtesy Ch.E. Düllmann

The SHIPTRAP collaboration

ASSOCIATION

Importance of Masses for Z > 100

- masses provide absolute nuclear binding energies and allow studies of the shell structure evolution
- high-precision mass measurements provide anchor points to fix decay chains
- benchmark nuclear models

Velocity separator SHIP

SHIPTRAP Setup

Direct

LETTERS

M. Block et al., Nature 463, 785 (2010), M. Dworschak et al., Phys. Rev. C 81, 064312 (2010) E. Minaya Ramirez et al., Science 337, 1183 (2012)

Probing the Strength of Shell Effects @ N = 152

TRIGA-SPEC Setup in Mainz

Probing the Evolution of Shell Effects @ N = 152

Accurate mass measurements with keV precision on long-lived actinides can be performed to provide anchor points and cross check masses obtaiend by other techniques

SHIPTRAP Results on Nuclear Structure

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

SHIP – SHE Spectroscopy Collaboration:

GSI, Darmstadt

D.Ackermann, M.B., S.Heinz, <u>F.P.Hessberger</u>, S.Hofmann, B.Kindler, I.Kojouharov, J.Khuyagbaatar, B.Lommel

Helmholtz Institut Mainz

L.-L.Andersson, E. Minaya, M. Laatiaoui

Comenius University Bratislava, Slovakia

S. Antalic, Z.Kalininova

Ernst-Moritz-Arndt Universität Greifswald, Germany

C. Droese

University Jyväskylä, Finland M.Leino, J.Uusitalo

JAEA Tokai, Japan K. Nishio

FLNR – JINR Dubna, Russia

A.G.Popeko, A.Yeremin

Theory Support:A. Sobiczewski (NCNR Warsaw, Poland)E. Litvinova (EMMI Darmstadt, Germany; MSU East Lansing, USA)D. Vretenar, Lu Bingnan (Univ. Zagreb, Croatia)

Playground for Nuclear Structure Investigations in the Transfermium Region

Decay schemes of odd-mass Md-isotopes (simplified)

Courtesy F.P. Hessberger

Masses of odd-A N-Z = 51 Nuclei Symbiosis of Mass Measurements and Spectroscopy

Courtesy F.P. Hessberger

Masses of even-even N-Z = 48 and N -Z = 50 Nuclei

Courtesy F.P. Hessberger

Development of 2n-Separation energies towards deformed neutron shell at N = 162

Courtesy F.P. Hessberger

The TASISpec / TASCA E115 Collaboration

PHYSICAL REVIEW LETTERS

111, 112502 (2013)

Spectroscopy of Element 115 Decay Chains

X-ray Fingerprinting of an Element

Moseley's Law, 1913

 $E(K_{\alpha}) \sim f(K_{\alpha}) \sim (Z-1)^2$

H.G.J. Moseley, Phil. Mag. 26, 1024 (1913)

X-ray energies predicted down to 0.1 keV precision for superheavy elements (QED!)

R. Bemis *et al.*, PRL31, 647 (1973) (observed 15 a-photon events)

X-ray Fingerprinting of Element 115

Highly efficient multi–coincidence spectroscopy set–up for TASCA's very compact focal plane image

1 Implantation DSSSD (1024 pixels) 4 box–DSSSDs (1024 pixels) => ~80% α –detection efficiency

4 Ge Clover (4*4 crystals)
1 Ge Cluster (7 crystals)
=> ~40% γ-detection eff. at 150 keV

L-L Andersson et al., NIM A 622, 164 (2010) L.G. Sarmiento et al., NIM A 667, 26 (2011)

Virtually constructed with GEANT4 simulation package

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

TASISpec – in Virtual GEANT4 Space

Some Experimental Numbers

Results – ²⁸⁷115 (4n-channel)

22 chains (out of 30) of ours are compatible with the
31 chains (out of 37) associated with the 3n channel ²⁸⁸115 by Oganessian *et al.*

22 chains (out of 30) of ours are compatible with the
31 chains (out of 37) associated with the 3n channel ²⁸⁸115 by Oganessian *et al*.

Courtesy D. Rudolph

 T1/2 = 0.16($\frac{3}{2}$) s

 Step 1
 $Q_{\alpha} \sim 10.7 \text{ MeV}$
 ~ 290 $E_{\alpha} = 10.3$

 = 105(1) = 105(1)

 0 = 284113

GEANT4 simulations: 100000 decays, normalized to number of a's

Courtesy D. Rudolph

GEANT4 simulations: 100000 decays, normalized to number of a's

Summary and Outlook

- GSI / Mainz: Broad SHE research program covering Nuclear Structure Studies, Atomic Physics and Chemistry investigations
- High-precision mass measurements probe shell effects at N=152
- Decay spectroscopy allows detailed understanding of structure of SHN
- First a-g-spectroscopy of E115 performed ray fingerprinting is feasible
- Event compatible with earlier reported sta on E117 observed
- Focus 2011/12: Search for new elements 119 & 120
 - ²⁴⁹Cf(⁵⁰Ti,xn)^{299-x}120: one-exent TASCA limit is <160 fb
 - ²⁴⁹Bk(⁵⁰Ti,xn)^{299-x}119: one event TASCA limit is <70 fb
- Progressing beyond Z=128 necessitates 10 fb sensitivity
- Additional gain in sensitivity by cw-linac possible (beam intensity x 10)
- Laser resonance ionization spectroscopy of ²⁵⁴No planned in 2014