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WKB

Transition state theory
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scission

The three regions of shape dynamics





Reassessment of  fundamental concepts

Ground rule:

Constrained HFB with its quasiparticle excitations provides the basis for a 
controllable theory of  LASD.

1) What the barrier?   How precise is its experimental definition?

2)  How reliable is transition state theory?



The Potential Energy Surface  I

The paradox of the FRLDM:

Phenomenologically defined one-body theories are justified by  the HFB
approximation,  but seem to do better than the HFB itself.  



The Potential Energy Surface  II

How many degrees of freedom are needed to specify it?

FRLDM:    five

The SF half-life along the axially symmetric sEF pathway is Tsf =1013.82 s. Triaxial 
effects along sEF reduce it to 109.39 s, and the inclusion of reflection-asymmetric 
shapes (aEF) brings the SF half-life of 306122 down to Tsf =106.22 s, which 
corresponds to an overall reduction of Tsf by about seven orders of magnitude. 

!"#$%&'(")(*)+,"-)./01//&)(*)*1//.(+)#1%#',$)

Phys. Rev. C 87, 024320 (2013) 

Triaxial degrees of freedom can
be important for spontaneous
fission.  PRC87 024320

Is there a third barrier?



Potential energy surface III
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Surface symmetry energy and  fission of neutron-rich nuclei 

x =
ECoul(sph)

2Esurf(sph)

≈ Z2

47A (1− ηI2)

η ≡ −assym
asurf

fissility parameter 

Phys. Rev. C 83, 034305 (2011) 

Essym ∝ (N − Z)2 × surface

Phys. Rev. C 83 034305

Fissility boundary for heavy 
neutron-rich nuclei
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Comparison with RIPL-3 (IAEA) 
data: 

Fission barriers with UNEDF1 
Comparable with the current 

best phenomenology 

“Quality Input for Microscopic Fission Theory”, 
Stockpile Stewardship Quarterly, 2(1), May 2012, p. 6.!

Phys. Rev. C 85 024304
Fission barriers

How well do we know it?



The energy region above the PES:

We have no useful microscopic theory of  the  statistical mechanics of nuclear excitations.

Observed levels densities are incompatible with HF  effective masses.

Weisskopf,  Nucl. Phys. 3 423 



Dynamics I:  subbarrier 

1. Standard approximation: WKB+HFB+cranking
2.   Comment I:   Inertia is dominated by pairing
3.   Comment II:  Better theory is needed for path
 determination.

From abstract of arXiv:1305.0293:

“The experimental trend [of spontaneous fission 
lifetimes] with mass number is reasonably well 
reproduced over a range of 27 orders of magnitude.  
However,  the theoretical predictions suffer from large 
uncertainties...  Modifications of a few percent in the 
pairing correlation strengths strongly modify the 
collective inertias with a large impact in the 
spontaneous fission lifetimes in all the nuclei 
considered.” 



Brack, et al., RMP 44 320 (1972)

Bertsch and Flocard, Phys. Rev. C  43 2200 (1991)

GCM/GOA

HFB+cranking

Analytic on the role of pairing in the dynamics:



Dynamics at the barrier

1. Transition state approximation
2. Showcase examples
3. Nuclear barrier is very complicated
4. A challenge problem for theory



A short history of the transition state approximation

Bohr and Wheeler,  Phys. Rev. 56, 426 (1939)

Prehistory

RRKM chemical reaction theory  1927-1952
Polanyi and Wigner  1928
Weisskopf 1937

Posthistory

Γ =
1

2πρ(E)

�

c

Tc

Hauser-Feshbach   1952



van Wees, et al.
 Phys. Rev. Lett. 60 848 (1988)



The nuclear barrier top is way more complicated.

Does the structure depend only on V(q) or does B(q) play a role as well?

Glaessel, et al. Nucl. Phys.  A256  220 (1976)
Back, et al. Nucl. Phys.  A165 449 (1976)
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Comparison with RIPL-3 (IAEA) 
data: 

Fission barriers with UNEDF1 
Comparable with the current 

best phenomenology 

“Quality Input for Microscopic Fission Theory”, 
Stockpile Stewardship Quarterly, 2(1), May 2012, p. 6.!



Dissipative Dynamics

1.  Standard approximation: Kramers’ formula
2. Mechanisms of dissipation
    a. Wall formula
    b. 2-B dissipation
3. Fluctuations from multidimensional Schrodinger dynamics?         



Kramers’ formula

where  D is a diffusion coefficient and        is the barrier frequency.

Γ = K
ω0

2π
e−EB/T

ωB

Dissipative limit   (Smoluchowski  Eq.):

Γ = D

√
k0kB

2πT
e−EB/T k is curvature of PES 

Cha and Bertsch, Phys. Rev. C 46 306 (1992)

A microscopic theory for 2-body D: Bush, Bertsch, and Brown,  Phys. Rev. C 45 1709 (1992)

Comes out too small

Predicts a very strong temperature dependence.

One-body dissipation

 The wall formula correctly describes the damping of ripples on the surface of a Fermi liquid, 
 treated in the time-dependent Hartree-Fock approximation.
Bertsch and Esbensen, Phys. Lett. 161B  248 (1985).

But:  wall formula is wrong for L=1 and L=2 modes of a spherical nucleus.

Not reliable

What is the temperature dependence of D? 

K =

�
1 +

�
T

2IωBD

�2
�
− T

2IωBD



A personal goal for LASD

Define and evaluate a test model for large-amplitude 
inertial dynamics.  The model must be simple enough 
to be accurately solvable numerically.  It must be rich 
enough to exhibit differences in approximate 
treatments of the dynamics.   The leading approximate
treatments:
cranking
GCM/GOA
GCM/DB
ATDHFB
and not forgetting  Im(T)HF.

Comments:
0)  The percent difference between exact and approximate
    could be taken as a contribution to the systematic
     error in applications of the approximate inertias.
1)  I would welcome off-line discussion of the test model.
2)  A corresponding model for dissipative dynamics would be 
    even more interesting, but I believe it is beyond our 
    computational resources.



The outside world 

Fission recycling:  can we calculate fission properties reliably enough
to be informative about the r-process environment?   See Arcone’s
simulation on the home page.

How accurately do we know the neutrino spectrum from
fission products of reactors?  The “neutrino anomaly” is
the subject of a workshop in week 7 of the program. 

NNSA (National Nuclear Security Administration)



Experimental needs:   Example 1
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A.M.	  Vinodkumar	  et	  al.,	  Phys.	  Rev.	  C	  87,	  044603	  (2013)



Production of Heavy Elements in 
Complete Fusion Reactions 

•  We need to know three spin-dependent quantities: (a) the 
capture cross section, (b) the fusion probability and (c) the 
survival probability, and their isospin dependence.  Our 
understanding of PCN, the fusion/quasifission competition, is 
extremely POOR.  (no real clue) 

where 

Experimental Needs: Example  II

Production of heavy elements in complete fusion reactions

W.  Loveland, J. Phys. Conf.  Series 420 012004 (2013).



“Scission” neutrons 
•  In spontaneous and thermal neutron 

induced fission, some investigators 
report that up to 30% of the prompt 
neutrons are emitted isotropically 
rather than being correlated with the 
direction of motion of the fission 
fragments.  How can we understand 
these “scission” neutrons? Can they 
really be emitted isotropically? 

Experimental Needs:   Example III

N. Carjan, Phys. Rev. C82 014617 (2010).



Cultural

1.  critical assessment (a.k.a. error bars)
2.  computer codes
3.  collaboration



NEUTRON MATTER FROM CHIRAL EFFECTIVE FIELD . . . PHYSICAL REVIEW C 88, 025802 (2013)
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FIG. 7. (Color online) Neutron-matter energy per particle as a
function of density including NN , 3N , and 4N forces to N3LO. The
three overlapping bands are labeled by the different NN potentials
and include uncertainty estimates due to the many-body calculation,
the low-energy ci constants, and by varying the 3N/4N cutoffs (see
text for details). For comparison, we show the results for the RG-
evolved NN EM 500 MeV potential including only N2LO 3N forces
from Ref. [4].

At saturation density, we obtain for the energy per particle

E

N
(n0) = 14.1 − 21.0 MeV. (17)

This range is based on different NN potentials, a variation of
the couplings c1 = −(0.75–1.13) GeV−1 and c3 = −(4.77–
5.51) GeV−1, and on the 3N /4N -cutoff variation ! = 2–
2.5 fm−1. In addition, the uncertainty in the many-body
calculation is included, as discussed above.

As shown in Fig. 7, our results are consistent with previous
calculations based on RG-evolved NN interactions at N3LO
and 3N interactions at N2LO [4]. These calculations adopted
a conservative ci range but are based on the EM 500 MeV NN
potential only, which results in a narrower band compared
to the N3LO band. In Ref. [3], we compared our results to
calculations based on lattice EFT [22] and quantum Monte
Carlo at low densities [48], as well as to variational methods
[49] and auxiliary field diffusion Monte Carlo [50] based on
phenomenological NN and 3N potentials and found that they
are also consistent with the N3LO band. However, the latter
calculations do not provide theoretical uncertainties.

In Fig. 8 we compare the convergence from N2LO to
N3LO in the same calculational setup. For this comparison,
we consider only the EGM potentials with cutoffs 450/500
and 450/700 MeV, since no EM N2LO potential is available.
This leads to an N3LO energy range of 14.1–18.4 MeV per
particle at n0. For the N2LO band in Fig. 8, we have estimated
the theoretical uncertainties in the same way and found an
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FIG. 8. (Color online) Neutron-matter energy per particle as a
function of density at N2LO (upper blue band that extends to the
dashed line) and N3LO (lower red band). The bands are based on
the EGM NN potentials and include uncertainty estimates as in
Fig. 7.

energy of 15.5–21.4 MeV per particle at n0. The two bands
overlap but the range of the band is reduced only by a factor
of 2/3, which is larger than the 1/3 expected from the EFT
power counting. We attribute this to " effects (as discussed
above). This can be improved by including the " in chiral EFT
explicitly or by going to N4LO [43].

Finally, it is important to construct NN potentials at N2LO
and N3LO covering the range of the ci values. At N3LO,
we expect that the differences in the ci can be absorbed
partly by Q4 contact interactions in the fits to NN scattering.
In addition, the many-body-calculation uncertainties can be
reduced further by including the N3LO many-body forces
beyond the Hartree-Fock level.

V. APPLICATIONS

A. Symmetry energy and its density derivative

The symmetry energy Sv and its density derivative L pro-
vide important input for astrophysics [51]. To calculate these,
we need to extend the neutron-matter energy to asymmetric
matter. For the energy per particle ε, we follow Ref. [52] and
take an expression that includes kinetic energy plus interaction
energy that is quadratic in the neutron excess 1 − 2x, where x
is the proton fraction,

ε(n̄, x) = T0
[ 3

5

[
x

5
3 + (1 − x)

5
3
]
(2n̄)

2
3 − [(2α − 4αL)x(1 − x)

+αL]n̄ + [(2η − 4ηL)x(1 − x) + ηL]n̄
4
3
]
, (18)

025802-9

An example of a theoretical calculation that includes an assessment of
its reliability:  equation of state of neutron matter.



Computer codes

Nature 482 485 (2012).

Examples:

Bonche, Flocard and Heenen, CPC 171
Dobaczewski, et al., CPC 102-183
Robledo & Bertsch, PR C84



Benchmark test calculation of a four-nucleon bound state
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In the past, several efficient methods have been developed to solve the Schrödinger equation for four-
nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel
Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green’s function
Monte Carlo, the no-core shell model, and the effective interaction hyperspherical harmonic methods. In this
article we compare the energy eigenvalue results and some wave function properties using the realistic AV8!
NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to
calculate the four-nucleon bound state.
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Collaboration

18 authors,   7 different calculational methods

very different techniques and the complexity of the nuclear
force chosen. Except for NCSM and EIHH, the expectation
values of T and V also agree within three digits. The NCSM
results are, however, still within 1% and EIHH within 1.5%
of the others, but note that the EIHH results for T and V are
obtained with bare operators. The uncertainty in the NCSM
results is of the same size, i.e., 1 MeV, as that for the GFMC.
Finally, the given radii are also in very good agreement.
The HH calculation includes about 4500 states with L

!l1"l2"l3!6. The states with L!6 give a contribution to
the binding energy of approximately 0.04 MeV. It is to be
noticed that the HH spin-isospin states "#

(H) having L!6 but
constructed with the H-type Jacobi coordinates are linearly
dependent on those considered in the expansion and there-
fore it is unnecessary to include them. The contribution of
"#
(K) $and "#

(H)) to the binding energy with L%8 has been
estimated to be approximately 0.01 MeV.
The errors quoted for the GFMC results are just the

Monte Carlo statistical errors. Various tests show that the
energy is converged to at least this accuracy for changes in
&' or the maximum ' . There should be no other sources of
systematic error in this simple test case.
The NCSM binding energy result is based on extrapola-

tion from calculations using the three-body effective interac-
tion in model spaces up to Nmax!16 in the HO frequency
range ()!16–43 MeV. The mean values of different opera-
tors, evaluated for Nmax!16 consisting of 2775 basis states
and ()!28 MeV, were computed using effective operators
as the use of bare operators is completely insufficient, in
particular for the Vc(r) and T. Note that we have here
*Teff+"*Veff+ close, but not exactly equal to *Heff+ , due to
approximations used. Overall, the NCSM results are less ac-
curate than the other methods. The NCSM convergence rate
is rather slow for the AV8!. However, the method is flexible
to handle also nonlocal realistic potentials like the CD-Bonn
with a faster convergence rate due to a softer repulsive core.
The advantage of the method is its applicability to the p-shell
nuclei.
The EIHH calculation is carried out with Kmax!20 $about

3000 HH states,. The error estimate is based on the conver-
gence with respect to Kmax , i.e., difference of results for
Kmax!18 and 20. An inspection of Table I shows that Eb and
radius are converged to a very high precision (Eb : 0.04%;
radius: 0.007%, not shown in Table I,. On the contrary *T+

and *V+ still change by about 1% from Kmax!18 to Kmax
!20. Of course, by construction of the EIHH method, also
*T+ and *V+ have to converge to the true result. In order to
have a higher precision one can proceed in two ways: $i,
increase of Kmax , $ii, use of effective operators. Particularly
advantageous is the use of effective operators, since it allows
us to make rather precise calculations with a small number of
basis functions $see discussion of EIHH result for Fig. 1,. As
Table I shows it is not necessary to use effective operators
for long-range observables like the radius, while observables
that contain short range information $high momentum con-
tributions,, like *T+ and *V+, should, in principle, be calcu-
lated with effective operators.
A more detailed test of the wave function is to evaluate

the expectation values of the eight individual potential en-
ergy operators in Eq. $24,. The results are shown in Table II.
The agreement is, in general, rather good and well within

TABLE II. Expectation values of the eight potential operators in
Eq. $24, in MeV.

Method *Vc+ *V'+ *V-+ *V-'+

FY 16.54 #5.038 #9.217 #57.55
CRCGV 16.54 #5.035 #9.215 #57.51
SVM 16.54 #5.036 #9.213 #57.51
HH 16.57 #5.034 #9.255 #57.59
GFMC 16.5$5, #5.03$6, #9.21$7, #57.3$5,
NCSM 16.16 #4.92 #9.77 #57.89

Method *Vt+ *Vt'+ *Vb+ *Vb'+

FY 0.707 #69.06 10.79 #15.50
CRCGV 0.708 #68.99 10.60 #15.30
SVM 0.707 #69.03 10.78 #15.49
HH 0.702 #69.03 10.76 #15.46
GFMC 0.71$3, #68.8$5, 10.62$15, #15.40$15,
NCSM 0.68 #69.13 11.23 #15.80

TABLE I. The expectation values *T+ and *V+ of kinetic and
potential energies, the binding energies Eb in MeV, and the radius in
fm.

Method *T+ *V+ Eb !*r2+

FY 102.39$5, #128.33$10, #25.94$5, 1.485$3,
CRCGV 102.30 #128.20 #25.90 1.482
SVM 102.35 #128.27 #25.92 1.486
HH 102.44 #128.34 #25.90$1, 1.483
GFMC 102.3$1.0, #128.25$1.0, #25.93$2, 1.490$5,
NCSM 103.35 #129.45 #25.80$20, 1.485
EIHH 100.8$9, #126.7$9, #25.944$10, 1.486

FIG. 1. Correlation functions in the different calculational
schemes: EIHH $dashed-dotted curves,, FY, CRCGV, SVM, HH,
and NCSM $overlapping curves,.

H. KAMADA et al. PHYSICAL REVIEW C 64 044001

044001-6

An example:


