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What to expect from this presentation

◮ For the story so far, please refer to the presentation by Paul-Henri Heenen.

◮ Distinguish ”exact” GCM solving the Hill-Wheeler-Griffin equation from
solving an md collective Bohr-type Hamiltonian derived via GOA

◮ ”Exact” symmetry restoration and exact GCM allow to benchmark
approximate schemes used to describe fission dynamics (error bars)

◮ (Exact) GCM is not only a theory for collective motion, but also describes

◮ coupling of single-particle degrees of freedom and collective degrees of
freedom

◮ the collective motion of excited quantum-mechanical states

◮ using time-reversal invariance breaking HFB states (n-quasiparticle
blocking, constraint on 〈Ĵi 〉, . . . ) extends the range of applicability and
the predictive power of symmetry-restored GCM

◮ exact GCM can only be done in a controlled way with Hamiltonians

without density dependences and without making approximations and/or
generalizations, which requires a new class of pseudo-potential-generated
EDFs as opposed to the currently used general EDFs.
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Commercial break

Long-term goals of our project:

◮ universal microscopic model for characteristic low-lying states of nuclei . . .

◮ . . . and large-amplitude dynamics of nuclei . . .

◮ . . . irrespective of their mass and N − Z . . .

◮ . . . their having even or odd N or Z . . .

◮ . . . using a universal effective interaction / energy density functional.
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GCM based on ”angular-momentum optimized” states

Limitations of the existing implementations of the method as (implicitely)
outlined in the talk by Paul-Henri Heenen

◮ even-even nuclei only

◮ collective states only

◮ excitation spectra too spread out

What is the missing physics?

◮ explicit coupling of single-particle degrees of freedom to collective motion

How to introduce the missing physics?

◮ Use HFB states breaking intrinsic time-reversal invariance as basis states
for the projected GCM

◮ cranked HFB states describe the alignment of single-particle states with
the rotation axis and the weakening of pairing with increasing J

◮ blocked n-quasiparticle HFB states describe single-particle excitations
(non-adiabatic states in general, K isomers, odd-A nuclei, odd-odd nuclei)

+ adjustment of improved energy functionals
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Symmetry restoration

particle-number projector

P̂N0 =
1

2π

∫ 2π

0

dφN e
−iφNN0

︸ ︷︷ ︸

weight

rotation in gauge space
︷ ︸︸ ︷

e
iφN N̂

angular-momentum restoration operator

P̂
J
MK =

2J + 1

16π2

∫ 4π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ D∗J
MK (α, β, γ)

︸ ︷︷ ︸

Wigner function

rotation in real space
︷ ︸︸ ︷

R̂(α, β, γ)

K is the z component of angular momentum in the body-fixed frame.
Projected states are given by

|JMq〉 =
+J∑

K=−J

fJ (K) P̂J
MK P̂

Z
P̂

N |q〉 =
+J∑

K=−J

fJ (K) |JMKq〉

fJ (K) is the weight of the component K and determined variationally

Axial symmetry (with the z axis as symmetry axis) allows to perform the α and
γ integrations analytically, while the sum over K collapses, fJ (K) ∼ δK0
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Configuration mixing by the symmetry-restored Generator Coordinate

Method

Superposition of projected self-consistent mean-field states |MF(q)〉 differing in a set of
collective and single-particle coordinates q

|NZJMν〉 =
∑

q

+J∑

K=−J

f
NZ
J,κ (q,K) P̂J

MK P̂
Z
P̂

N |MF(q)〉 =
∑

q

+J∑

K=−J

f
NZ
Jν (q,K) |NZ JM qK〉

with weights f NZJν (q,K).

δ

δf ∗Jν(q,K)

〈NZ JMν|Ĥ|NZ JMν〉

〈NZ JMν|NZ JMν〉
= 0 ⇒ Hill-Wheeler-Griffin equation

∑

q′

+J∑

K ′=−J

[
HNZ

J (qK , q′
K

′)− E
NZ
J,ν INZ

J (qK , q′
K

′)
]
f
NZ
J,ν (q

′
K

′) = 0

with

HJ(qK , q′K ′) = 〈NZ JM qK |Ĥ |NZ JM q′K ′〉 energy kernel
IJ(qK , q′K ′) = 〈NZ JM qK |NZ JM q′K ′〉 norm kernel

Angular-momentum projected GCM gives the

◮ correlated ground state for each value of J

◮ spectrum of excited states for each J
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Necessary developments

◮ technical: solve sign problem in Onishi’s formula for the overlap!

◮ conceptual: what kind of functionals to use?

◮ practical: how to construct the model space of N-body states?
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Solving the sign problem in MR EDF

Overlap from Pfaffian formula, Benôıt Avez & M. B., PRC 85 (2012) 034255
α, β held fixed at some values, γ varied

lowest blocked one-quasiparticle state in 25Mg

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

24Mg cranked to I = 8~

Im
(〈
φ
a
|φ

b
〉)

Re (〈φa|φb〉)

Starting point was work by Robledo, PRC 79 (2009) 021302; Robledo, PRC 84
(2011) 014307. Similar expressions derived in Bertsch & Robledo, PRL108
(2012) 042505.
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Multi-reference energy density functional methods

Multi-reference (MR) EDF is the extension of single-reference (SR) EDF
analogous to GCM being an extension of HFB

◮ HF/HFB: Slater determinant/HFB state as basic building block

E
HFB
q = 〈SRq|Ĥ |SRq〉

◮ SR EDF: density matrices of a Slater determinant/HFB state as building
blocks

ESR
q = ESR

q [ρqq, κqq, κ
∗
qq] , where ρqq = 〈SRq|ρ̂|SRq〉 etc

◮ GCM: coherent superposition of Slater determinants/HFB states

|MRµ〉 =
∑

q

fµ(q) |SRq〉

⇒ Eµ = 〈MRµ|Ĥ |MRµ〉 =
∑

q,q′

f
∗
µ (q) 〈SRq|Ĥ |SRq′〉 fµ(q

′)

◮ MR EDF: transition density matrices between a Slater determinant/HFB
states as building blocks

EMR
µ =

∑

q,q′

f
∗
µ (q) EMR

qq′ [ρqq′ , κqq′ , κ
∗
qq′ ] fµ(q

′) where ρqq′ = 〈SRq|ρ̂|SRq′〉
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What kind of functionals to use? Problems with existing ones

◮ pure particle-number projection
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What kind of functionals to use? Problems with existing ones

◮ pure particle-number projection

◮ first hints from Hamiltonian-based
approaches: Dönau, PRC 58 (1998)
872; Almehed, Frauendorf, Dönau,
PRC 63 (2001) 044311; Anguiano,
Egido, Robledo NPA696 (2001) 467

◮ First analysis in a strict energy density
functional (EDF) framework and of
EDF-specific consequences by
Dobaczewski, Stoitsov, Nazarewicz,
Reinhard, PRC 76 (2007) 054315

◮ Further analysis of the EDF case by
Lacroix, Duguet, Bender, PRC 79
(2009) 044318; Bender, Duguet,
Lacroix, PRC 79 (2009) 044319;
Duguet, Bender, Bennaceur, Lacroix,
Lesinski, PRC 79 (2009) 044320;
Bender, Avez, Duguet, Heenen,
Lacroix, in preparation
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The origin of the problem in a nutshell

◮ All standard energy density functionals (EDF) used for mean-field models
and beyond do not correspond to the expectation value of a Hamiltonian
for at least one of the following reasons:

◮ density dependences
◮ the use of different effective interactions in the particle-hole and pairing

parts of the energy functional
◮ the omission, approximation or modification of specific exchange terms

that are all introduced for phenomenological reasons and/or the sake of
numerical efficiency.

◮ consequence: breaking of the exchange symmetry (”Pauli principle”)
under particle exchange when calculating the energy, leading to
non-physical interactions of a given nucleon or pair of nucleons with itself,
or of three nucleons among themselves etc.

◮ the resulting self-interactions and self-pairing-interactions remain (usually)
hidden in the mean field

◮ in the extension to symmetry-restored GCM, these terms cause
◮ discontinuities and divergences in symmetry-restored energy surfaces
◮ breaking of sum rules in symmetry restoration
◮ potentially multi-valued EDF in case of standard density-dependencies
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Functionals corresponding to “true Hamiltonians” vs. “true” functionals

True contact pseudo-potential t0 (1 + x0P̂σ) δ(r− r′)

E =

∫

d
3
r
{

3
8
t0 ρ

2
0(r)−

1
8
t0 (1 + 2x0) ρ

2
1(r)−

1
8
t0 (1− 2x0) s

2
0(r)

− 1
8
t0 s

2
1(r) +

1
8
t0 (1 + x0) s̆0(r) · s̆

∗
0 (r) +

1
8
t0 (1− x0) ρ̆1(r) ρ̆

∗
1(r)

}

(see Perlinska et al. PRC 69 (2004) 014316 for definition of s̆0(r) and ρ̆1(r))

Contact functional:

E =

∫

d
3
r
{

C
ρ
0 [ρ0, . . .] ρ

2
0(r) + C

ρ
1 [ρ0, . . .] ρ

2
1(r) + C

s
0 [ρ0, . . .] s

2
0(r)

+C
s
1 [ρ0, . . .] s

2
1(r) + C

s̆
0 [ρ0, . . .] s̆0(r) · s̆

∗
0 (r) + C

ρ̆
1 [ρ0, . . .] ρ̆1(r) ρ̆

∗
1 (r)

}

Coulomb interaction e2

|r−r′|

E =
1

2

∫∫

d
3
r d

3
r
′ e2

|r − r′|

[

ρp(r)ρp(r
′)− ρp(r, r

′)ρp(r
′, r) + κ∗

p (r, r
′)κp(r, r

′)
]

Approximate Coulomb functionals

E =
e2

2

∫∫

d
3
r d

3
r
′ ρp(r)ρp(r

′)

|r − r′|
−

3e2

4

(
3

π

)1/3∫

d
3
rρ4/3p (r)
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Forgotten constraints in general functionals

Hamiltonian

Ĥ =
∑

ij

a
†
i t

(1)
ij aj+

1

2!

∑

ijkl

a
†
i a

†
j v

(2)
ijkl al ak+

1

3!

∑

ijklmn

a
†
i a

†
j a

†
k v

(3)
ijklmn an am al+· · ·

Energy

〈Ĥ〉 =
∑

ij

t
(1)
ij 〈a†i aj 〉+

1

2!

∑

ijkl

v
(2)
ijkl 〈a

†
i a

†
j al ak〉+

1

3!

∑

ijklmn

v
(3)
ijklmn 〈a

†
i a

†
j a

†
k an am al〉

=
∑

ij

t
(1)
ij ρ

(1)
ji +

1

2!

∑

ijkl

v
(2)
ijkl ρ

(2)
lkji +

1

3!

∑

ijklmn

v
(3)
ijklmn ρ

(3)
nmlkji + · · ·

For BCS/Bogoliubov-type product states

ρ
(2)
lkji = ρ

(1)
lj ρ

(1)
ki − ρ

(1)
li ρ

(1)
kj + κ∗

ij κkl

ρ
(3)
nmlkji = . . .
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Second problem: non-analytical density dependences

Non-viability of non-integer density
dependencies

◮ in symmetry restored GCM, the local
densities ρqq

′

(r) are in general complex

◮

[
ρqq

′

(r)
]α

is a multi-valued
non-analytical function

◮ spurious contribution from branch cuts
(see Duguet et al. PRC 79 (2009)
044320 for complex plane analysis)

◮ (partial) workaround when conserving
specific symmetries: use
particle-number projected densities for
density dependence instead

Duguet, Lacroix, M. B., Bennaceur, Lesinski, PRC 79 (2009) 044320
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What to do?

1. constructing the EDF as expectation value of a strict Hamiltonian. New
problem: numerically very costly due to Coulomb exchange & pairing; no
available parameterizations of high quality (the difficulties to construct
such parametrizations was the main motivation to use EDFs in the 1970s).

2. construct the EDF from a density-dependent Hamiltonians with special
treatment of the density entering density dependent terms for which
numerically efficient high-quality parameterizations can be easily
constructed. Problem: numerically very costly due to Coulomb exchange
& pairing; cannot be defined for all possible confifuration mixing [Robledo,
J. Phys. G 37 (2010) 064020].

3. introducing a regularization scheme of the EDF that allows for the use of
(almost) standard functionals [Lacroix, Duguet, & Bender, PRC 79 (2009)
044318] for which numerically efficient high-quality parameterizations can
be easily constructed [Washiyama, Bennaceur, Avez, Bender, Heenen, &
Hellemans, PRC 86 (2012) 054309]. Problem: complicated formalism.

We tried the last option first.
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The regularisation: it almost works

Usual number of Euler and gauge angles:

M. B., B. Avez, T. Duguet, P.-H. Heenen, D. Lacroix, unpublished
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The regularisation: it almost works

Usual number of Euler and ridiculously large number of gauge angles:

M. B., B. Avez, T. Duguet, P.-H. Heenen, D. Lacroix, unpublished

⇒ dependence on the discretization that becomes visible only when using
unreasonably fine discretizations

M. Bender, CEN de Bordeaux Gradignan MREDF



Particle-number restoration of 31Mg

<jz>π ≈

<jz>π ≈

<jz>π ≈
<jz>π ≈
<jz>π ≈
<jz>π ≈
<jz>π ≈

<jz>π ≈

<jz>π ≈

<jz>π ≈
<jz>π ≈
<jz>π ≈
<jz>π ≈
<jz>π ≈

B. Bally, B. Avez, M. B., P.-H. Heenen (unpublished)

All states are constructed as blocked one-quasiparticle HFB states
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Non-regularized MR EDF with general functionals can give unphysical spectra

B. Bally, B. Avez, M. B., P.-H. Heenen, unpublished

J K weight Enonreg regul Ereg

1 1 0.001006 −234.071 10.037 −244.108
3 1 0.001809 −259.183 −15.481 −243.702
5 1 0.001820 −234.818 7.531 −242.349
7 1 0.001797 −244.332 −2.848 −241.484
9 1 0.001271 −267.849 −28.332 −239.517

11 1 0.000902 −201.965 35.172 −237.137
13 1 0.000544 −336.901 −100.352 −236.549

3 3 0.039376 −247.137 −0.032 −247.105
5 3 0.030730 −243.247 0.467 −243.714
7 3 0.023390 −240.805 1.395 −242.199
9 3 0.013372 −238.060 1.948 −240.007

11 3 0.007914 −234.473 3.548 −238.021
13 3 0.004087 −232.805 4.150 −236.956

5 5 0.000015 −582.874 −371.932 −210.942
7 5 0.000014 −103.953 94.559 −198.512
9 5 0.000010 −127.945 95.658 −223.603

11 5 0.000007 860.956 1075.711 −214.755
13 5 0.000004 −530.816 −334.758 −196.058

7 7 0.000005 790.818 977.088 −186.270
9 7 0.000004 −2215.259 −1916.331 −298.928

11 7 0.000003 −3657.395 −3321.042 −336.353
13 7 0.000002 −4077.760 −3715.879 −361.881
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Regularized MR EDF using general functionals also can give unphysical results

◮ Non-convergence of combined N and J

projection (on a very small scale, though)
(not shown)

◮ non-diagonal regularized MR EDF kernels can
be decomposed on unphysical particle numbers
(i.e. components that have strictly zero norm),
including negative particle numbers

◮ small components (still) take unphysical
values when regularising which can be
demonstrated using a cranking constraint to
vary the size of K = 1 components

◮ example shown in plots: K decomposition in
projection on J = 2
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Again: What to do?

1. constructing the EDF as expectation value of a strict Hamiltonian. New
problem: numerically very costly due to Coulomb exchange & pairing; no
available parameterizations of high quality (the difficulties to construct
such parametrizations was the main motivation to use EDFs in the 1970s).

2. construct the EDF from a density-dependent Hamiltonians with special
treatment of the density entering density dependent terms for which
numerically efficient high-quality parameterizations can be easily
constructed. Problem: numerically very costly due to Coulomb exchange
& pairing; cannot be defined for all possible confifuration mixing [Robledo,
J. Phys. G 37 (2010) 064020].

3. introducing a regularization scheme of the EDF that allows for the use of
(almost) standard functionals [Lacroix, Duguet, & Bender, PRC 79 (2009)
044318] for which numerically efficient high-quality parameterizations can
be easily constructed [Washiyama, Bennaceur, Avez, Bender, Heenen, &
Hellemans, PRC 86 (2012) 054309]. Problem: complicated formalism.

At last, we try the first option.
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How to construct a suitable Hamiltonian?

◮ We need a Skyrme Hamiltonian (without density dependence)
◮ there no existing parametrization that gives simultaneously

◮ realistic ”standard” nuclear matter properties
◮ repulsive spin-spin interaction
◮ attractive pairing

which was the reason to introduce density dependences etc. in the 1970s.

First try: SLyMR0

v̂ = t0

(

1 + x0P̂σ

)

δ̂r1r2

+
t1

2

(

1 + x1P̂σ

)(

k̂
′ 2

12 δ̂r1r2 + δ̂r1r2 k̂
2

12

)

+ t2

(

1 + x2P̂σ

)

k̂
′

12 · δ̂r1r2 k̂12

+ iW0 (σ̂1 + σ̂2) · k̂
′

12 × δ̂r
1
r
2
k̂12

+ u0

(

δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)

+ v0

(

δ̂r1r3 δ̂r2r3 δ̂r3r4 + δ̂r1r2 δ̂r3r2 δ̂r2r4 + · · ·
)

J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013
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First try: standard two-body + gradient-less 3-body & 4-body

◮ it is impossible to fullfil the usual nuclear
matter constraints , to have stable
interactions and attractive pairing

◮ no ”best fit” possible

◮ very bad performance compared to standard
general functionals
J. Sadoudi, M. Bender, K. Bennaceur, D. Davesne, R. Jodon, and T. Duguet, Physica Scripta T154 (2013) 014013
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SR & MR EDF using SLyMR0: the example of 24Mg

SR EDF (cranked HF & HFB+LN) using
SLy4

SR EDF (cranked HF & HFB+LN) using
SLyMR0

⇒ SLyMR0 is not completely desastrous for the description of this phenomenon
⇒ deformation of HF and HFB+LN is very different for SLyMR0
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Decomposition

P
R
E
L
IM
IN
A
R
Y

⇒ projection from cranked HFB states compresses the (collective) excitation
spectrum
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Decomposition
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Odd-A nuclei with SLyMR0: The example of 25Mg

”False vacuum” (non-blocked HFB ground

state with 〈N̂〉 = 13, 〈Ẑ〉 = 12)

Lowest 1 qp state
B. Bally, B. Avez, M. B., P.-H. Heenen (to be published)

Blocked HFB 1-quasiparticle state, where
blocked particle has 〈jz 〉 ≈ 5/2

Blocked HFB 1-quasiparticle state, where
blocked particle has 〈jz 〉 ≈ 3/2
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First ”beyond-mean-field” results for odd-A nuclei with SLyMR0

5

2

+

Lowest projected J = 5/2+, Z = 12, N = 13 state

3

2

+

Lowest projected J = 3/2+, Z = 12, N = 13 state

3

2

−

Lowest projected J = 3/2−, Z = 12, N = 13 state

5

2

−

Lowest projected J = 5/2−, Z = 12, N = 13 state
Benjamin Bally, Benôıt Avez, M. B., P.-H. Heenen (to be published)
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First ”beyond-mean-field” results for odd-A nuclei with SLyMR0

Benjamin Bally, Benôıt Avez, M. B., P.-H. Heenen (to be published)

◮ projected GCM based on 100 blocked 1qp states with positive parity and
60 blocked 1qp states with negative parity

◮ usually several blocked 1qp states of each parity per deformation
◮ 6144 non-redundant combinantions of Euler angles, 9× 9 gauge angles

⇒ 5× 107 states of positive parity, 3× 107 states of negative parity
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First ”beyond-mean-field” results for odd-A nuclei with SLyMR0

Convergence of the lowest states with Jπ = 1/2+, 3/2+, 5/2+ when adding
states to the basis
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First ”beyond-mean-field” results for odd-A nuclei with SLyMR0

Benjamin Bally, Benôıt Avez, M. B., P.-H. Heenen (to be published)

Data from Nuclear Data Sheets 110 (2009)
1691

◮ ”band 1”

◮ spectroscopic quadrupole moment Qs

of the 5/2+ ground state:
Exp: 20.1± 0.3 e fm2

Calc: 23.25 e fm2

◮ magnetic moment µ of the 5/2+

ground state in nuclear magnetons:
Exp: −0.855
Calc: −1.054
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Ongoing improvements: 3-body terms of 2nd order in gradients

◮ most general central Skyrme-type 3-body force up to 2nd order in
gradients has been constructed by J. Sadoudi with a dedicated formal
algebra code

v̂123 = u0

(

δ̂r1r3 δ̂r2r3 + δ̂r3r2 δ̂r1r2 + δ̂r2r1 δ̂r3r1

)

+
u1

2

[

1 + y1P
σ
12

] (

k̂12 · k̂12 + k̂
′

12 · k̂
′

12

)

δ̂r1r3 δ̂r2r3

+
u1

2

[

1 + y1P
σ
31

] (

k̂31 · k̂31 + k̂
′

31 · k̂
′

31

)

δ̂r3r2 δ̂r1r2

+
u1

2

[

1 + y1P
σ
23
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Jeremy Sadoudi, Thomas Duguet, Jacques Meyer, M. B., to be submitted anytime soon

◮ first preliminary fits underway
◮ construction of most general spin-orbit + tensor 3-body force of 2nd order

in gradients is underway
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Take-away messages

◮ Extension of MR EDF to angular-momentum-optimized reference states
◮ improved moments of inertia for high-J collective states
◮ collectivity of ”non-collective” excited states
◮ odd-A nuclei (and, along the same lines, to odd-odd nuclei)

◮ At time being, there is no known scheme to safely handle general EDFs in
a multi-reference framework.

◮ Using Hamiltonians is the strategy to follow. This shifts the problem from
constructing a consistent MR EDF framework for general functionals to
constructing treatable and performant pseudo-potentials.

Publications are in preparation.

M. Bender, CEN de Bordeaux Gradignan MREDF
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