Total Absorption Spectroscopy Measurements for Applications and Nuclear Structure

Alejandro Algora

IFIC, CSIC-University of Valencia, Spain MTA ATOMKI, Debrecen, Hungary

INT Neutrino Workshop, Seattle, November 2013

$$
ft_f = const' \frac{1}{|M_{if}|^2} = const' \frac{1}{B_{i \to f}} \qquad B_{i \to f} = \frac{1}{2J_i + 1} | \langle \Psi_f | \tau^{\pm} \text{ or } \sigma \tau^{\pm} | \Psi_i \rangle |^2
$$

$$
S_{\beta}(E) = \frac{P_{\beta}(E)}{f(Z', Q_{\beta} - E)T_{1/2}} = \frac{1}{ft(E)} \qquad t_f = \frac{T_{1/2}}{P_f} \quad T_{1/2} = \frac{\ln(2)}{\lambda} = \tau \ln(2)
$$

The problem of measuring the β-feeding

 $\gamma_{\scriptscriptstyle 1}$

• Ge detectors are conventionally used to construct the level scheme populated in the decay G_{ρ}

•From the γ intensity balance we deduce the β-feeding

Experimental perspective: the problem of measuring the β- feeding

 γ_{1}

• What happens if we miss some intensity $\overline{\text{W}}$

Single $\gamma \sim \varepsilon$

Coinc $\gamma_1 \gamma_2 \sim \varepsilon_1 \varepsilon_2$

Pandemonium (The Capital of Hell) introduced by John Milton (XVII) in his epic poem Paradise Lost

John Martin (\sim 1825), presently at Louvre Hardy et al., Phys. Lett. 71B (1977) 307

TAGS measurements

Since the gamma detection is the only reasonable way to solve the problem, we need a highly efficient device:

A TOTAL ABSORTION SPECTROMETER

But there is a change in philosophy. Instead of detecting the individual gamma rays we sum the energy deposited by the gamma cascades in the detector.

A TAS is like a calorimeter!

Big crystal, 4π

 $d = R(B) \cdot f$

Ge detector case: ²⁴Na decay

RISING

Stopped Beam Configuration: 15 clusters, 105 Ge capsules

 $\varepsilon_{p1} = 0.10$ γ₁=1369 keV $\varepsilon_{p2} = 0.06$ γ₂=2754 keV

 $\mathcal{E}_{coinc} = \mathcal{E}_{p1} \cdot \mathcal{E}_{p2}$ $\varepsilon_{coinc} = 0.006$

 $d = R(B) \cdot f$

Analysis

$$
d_i = \sum_j R_{ij} f_j \quad or \quad \mathbf{d} = \mathbf{R} \cdot \mathbf{f}
$$

R is the response function of the spectrometer, *Rij* means the probability that feeding at a level *j* gives counts in data channel *i of the spectrum* The response matrix **R** can be constructed by recursive convolution:

$$
\mathbf{R_j}=\sum_{k=0}^{j-1}b_{j\,k}\mathbf{g_{jk}}\otimes\mathbf{R_k}
$$

gjk: γ-response for *j k* transition \mathbf{R}_{k} : response for level *k* b_{ik} : branching ratio for $j \rightarrow k$ transition

Mathematical formalization by Tain, Cano, et al.

The complexity of the TAGS analysis

Application to the reactor decay heat (and also to neutrino physics)

Fission process energy balance and beta decay

Each fission is approximately followed by 6 beta decays (sizable amount of energy released by the fission products)

James, J. Nucl. Energy 23 (1969) 517

Decay heat: how to determine it?

- Measure it (lacks flexibility and it is costly)
- Try to predict or calculate in the best way
	- Statistical method (the first solution)

 Way and Wigner, Phys. Rev. 73 (1948) 1318 $B(t) = 1.26t^{-1.2}$ *MeV* /*s* $\Gamma(t) = 1.40t^{-1.2}MeV/s$

later, Griffin, Phys. Rev. 134 (1964) B817

• Summation calculations (next slide)

Decay heat: summation **calculations**

$$
f(t) = \sum_{i} \sum_{i} \lambda_{i} N_{i}(t)
$$

 λ_i

 E_{i} Decay energy of the nucleus i (gamma, beta or both)

Decay constant of the nucleus i

$$
\lambda = \frac{\ln(2)}{T_{1/2}}
$$

 N_{\cdot} Number of nuclei i at the cooling time t

Requirements for the calculations: large databases that contain all the required information (half-lives, mean γ- and β-energies released in the decay, ncapture cross sections, fission yields, this last information is needed to calculate the inventory of nuclides)

How the mean energies are determined ?

Mean energies and Pandemonium

The beginning …

We got interested in the topic after the work of Yoshida and coworkers (Journ. of Nucl. Sc. and Tech. 36 (1999) 135)

239Pu example (similar situation for 235,238U)

Detective work: identification of some nuclei that could be blamed for the anomaly 102,104,105Tc

Cooling Time $t(s)$

The "famous" list WPEC-25 (IAEA working group)

37 nuclides, of which 23 were given first priority, reports by A. Nichols et al. (IAEA).

New feature: IGISOL + trap-assisted spectroscopy

TAS experimental setup at Jyväskylä

All results published up to now

 Q_{β} ⁽¹⁰²*Tc* \rightarrow ¹⁰² *Ru*) = 4532*keV* Q_{β} ⁽¹⁰¹*Nb* \rightarrow ¹⁰¹ *Mo*) = 4569*keV*

Impact of the results for ²³⁹Pu: electromagnetic component

Motivated by Yoshida *et al.* (Journ. of Nucl. Sc. and Tech. 36 (1999) 135) and WPEC-25

Impact of the results for ²³⁹Pu: electromagnetic component

Motivated by Yoshida *et al.* (Journ. of Nucl. Sc. and Tech. 36 (1999) 135) and WPEC-25

Impact of the results for 235U

Results of QRPA calculations $105M$ o, T_{1/2}(exp) = 35.6 s

Reactor neutrino experiments: summation calculations

$$
N(E_v) = \sum_n Y_n(Z, A, t) \cdot \sum_i b_{n,i}(E_0) \underbrace{\varphi_v(E_v, E_0^i, Z)}_{i}
$$

 Y_n Number of beta decays per unit time of fragment with Z , A (cumm. Yield) b_{n,I} branching ratio of the i branch with maximum electron energy $\mathsf{E}_{\mathsf{0}}^{\mathsf{i}}$ Pv neutrino spectrum of the i branch with maximum electron energy $\mathsf{E}_{\mathsf{0}}^{\mathsf{i}}$

Some additional impact of our data

Algora et al., PRL 105.202501 Dolores Jordan, PhD thesis, 2010

Ratio between 2 antineutrino spectra built with and without the 102,104,105,106,107Tc,105Mo, 101Nb TAS data

Another application: prediction of the neutrino spectrum from reactors for non-proliferation

 $\overline{v} + p \rightarrow e^{+} + n$ (threshold 1.8 MeV)

•Relevance for non-proliferation studies (working group of the IAEA). Neutrino flux can not be shielded. Study to determine fuel composition and power monitoring. Non-intrusive and remote method.

•**Approved proposal to study some nuclides related to this problem (IGISOL, trap assisted TAS) (Fallot, Tain, Algora)**

Motivation of recently analyzed cases: ⁸⁷Br, ⁸⁸Br

- Priority one in the IAEA list
- Moderate fission yields
- Pandemonium cases ?
- Interest from the structure point of view: vicinity of n closed shell
- Competition between gamma and neutron emission above the Sn value

87Br: meas. spectrum + contaminants + analysis

Deduced feedings from 87Br decay

87Br feedings and mean energies (very preliminary !)

 Q_{β} =6817(5) keV Sn= 5515.4(8) $T_{\frac{1}{2}}$ =55.65(13) s Pn $(^{87}Br) = 2.52(7)\%$ Cum fiss. $(^{235}U) = 0.02$ Cum fiss. $(^{239}Pu) = 0.005$

Univ. of Jyvaskyla, Finland CIEMAT, Spain UPC, Spain Subatech, France Univ. of Surrey, UK MTA ATOMKI, Hungary PNPI, Russia LPC, France IFIC, Spain GSI, Germany **Collaboration**

Special thanks to the students working in the project: E. Valencia, A. -A. Zakari-Issoufou, S. Rice, D. Jordan (not an student anymore) Discussions with and slides from: J. L. Tain, M. Fallot, A. Porta, A. Sonzogni are acknowledged

Nuclear Shapes

Experimentally how do we deduce nuclear shapes ?

What can beta decay offer ?

In any question related to nuclear shapes, you should remember that the answer is always model dependent

Experimentally how the shapes of nuclei are determined ?

- Nuclear electric quadrupole moments
- Nuclear radii measurements by means of isotope shifts (muonic atoms, laser spectroscopy)
- Nuclear spectroscopy methods (lifetime meas., fast-timing, electronconversion measurements, etc.)

What can beta decay offer apart from spectroscopy …

One alternative, based in the pioneering work of I. Hamamoto, (Z. Phys. A353 (1995) 145) later followed by studies of P. Sarriguren *et al*., Petrovici *et al*. is related to the dependency of the strength distribution in the daugther nucleus depending on the shape of the parent. It can be used when theoretical calculations predict different B(GT) distributions for the possible shapes of the ground state (prolate, spherical, oblate).

P. Sarriguren *et al*., Nuc. Phys. A635 (1999) 13

Lucrecia: the TAS at ISOLDE (CERN) (Madrid-Strasbourg-Surrey-Valencia)

- A large NaI cylindrical crystal 38 cm Ø, 38cm length
- An X-ray detector (Ge)
- $A \beta$ detector
- Possibility of collection point inside the crystal

Some earlier examples (proposals of B. Rubio, P. Dessagne, W. Gelletly, et al.)

E. Nácher *et al. PRL 92 (2004) 232501 and PhD thesis Valencia Ground state of 76Sr prolate (β2 ~0.4) as indicated in Lister et al., PRC 42 (1990) R1191*

E. Poirier *et al., Phys. Rev. C 69, 034307 (2004) and PhD thesis Strasbourg Ground state of 74Kr:(60±8)% oblate, in agreement with other exp results and with theoretical calculations (A. Petrovici et al.)*

IS440 results: 192Pb example

Thesis work of M. E. Estevez 2012, and M. E. Estevez *et al.* in preparation. Theory from PRC 73 (2006) 054317

Results consistent with spherical picture, but less impressive than in the A≈80 region. Similar situation for 190Pb. *Possible explanation, the spherical character of the Pb nuclei, but requires further testing.*

 E. Estevez, J .L. Tain, B. Rubio, E.Nácher, J. Agramunt, A. B. Perez, L. Caballero, F. Molina, D. Jordan, A. Krasznahorkay, M. Hunyadi, Zs. Dombrádi, W. Gelletly, P. Sarriguren, O. Moreno, M. J. G. Borge, O. Tengblad, A. Jungclaus, L. M. Fraile, D. Fedosseev, B. A. Marsh, D. Fedorov, A. Frank, A. Algora

Conclusions

- I hope I have shown you that total absorption measurements can contribute to a better assessment of the decay heat in nuclear reactors.
- We are running a research program related to this topic, that can also have an impact in nuclear structure and astrophysics (not discussed here) and in neutrino physics applications
- The technique can be used for testing nuclear models, which can also be of relevance for neutrino physics applications

THANK YOU

Institute of Nuclear Research (MTA ATOMKI), Debrecen, Hungary

EUROPEAN PHYSICAL SOCIETY - EPS HISTORIC SITE THE NEUTRINO EXPERIMENT AT MTA ATOMKI

USING A CLOUD CHAMBER LOCATED IN THIS BUILDING, IN 1956 J. CSIKAI AND A. SZALAY PHOTOGRAPHED BETA-DECAY EVENTS. IN SOME CASES THE ANGLE BETWEEN THE TRACKS OF THE ELECTRON AND THE RESIDUAL NUCLEUS IMPLIED THE EMERGENCE OF AN UNDETECTED THIRD PARTICLE IN THE DECAY. THUS CONFIRMING THE EXISTENCE OF THE NEUTRINO, THE **DEBRECEN NEUTRINO EXPERIMENT LAID A BRICK OF THE FOUNDATION OF MODERN PHYSICS.**

 ${}^6He \rightarrow {}^6Li + e^- + \overline{V}$