

The spin-isospin response of nuclei and applications in astro- and neutrino-physics Remco G.T. Zegers

outline

Electron-captures in astrophysics (Core-collapse supernovae...)

Charge-exchange reactions as a probe of weak transition strengths

Weak transition strengths and electron captures for 45<A<65

Weak transition strengths in unstable nuclei: the case of ⁵⁶Ni

Matrix elements in double beta decay

Current and future research directions in spin-isospin physics with chargeexchange reactions

Litvinova, Brown, Fang, Zegers - to be published

Multi-physics problem

Multi-Dimensional Effects - Asymmetries

Neutrino physics (transport/ oscillations / interactions)

Magnetic fields

Pugmire et al., ORNL

K. Langanke, Physics 4, 91 (2011)

Weak rates in astrophysical phenomena

Core-collapse (Type II) Supernovae

SNR 0103-72.6 Chandra observatory Thermonuclear (Type Ia) Supernovae

SN 1994D ESA/Hubble

s-process r-process neutrino interactions

Crustal processes in accreting neutron stars

electron captures in supernovae

Dominated by allowed (Gamow-Teller) weak transitions between states in the initial and final nucleus:

• No transfer of orbital angular momentum ($\Delta L=0$)

AZX

 $A_{Z-1}X$

- Transfer of spin ($\Delta S=I$)
- Transfer of isospin ($\Delta T=I$)

Due to finite temperature in star, Gamow-Teller transitions from excited states in the mother nucleus can occur

Direct empirical information on strength of transitions [B(GT)] is limited to at best a few lowlying excited states e.g. from the inverse (β -decay) transitions.

Daughter (Z,A)

electron-captures in supernovae

Fermi-Dirac distribution of near degenerate electron gas-function of stellar density & temperature

electron captures in supernovae

ECs on many nuclei play a role

pre-supernova – A~45-65 (pf shell)

collapse stage – A~50-120 (pf+sdg shell)

majority are unstable nuclei

Needed:

Accurate theoretical models to estimate EC rates

Experimental information to guide and test development of theory

electron captures in type II SNa

EC rates based on modern microscopic nuclear models are on average lower than earlier parameterizations

Consequences:

- reduced (10%) central stellar density, entropy and electron fraction
- reduced (20%) mass behind the shock
- increased (15%) neutrino luminosity just after the bounce

Langanke, Martinez-Pinedo Rev.Mod. Phys. 75, 819 (2003)

Accurate EC rates are critical for simulations of core collapse supernova

W.R. Hix Phys. Rev. Lett. 91, 201102 (2003)

Accuracy required: ~30%

nature is kind: nuclear charge-exchange reactions as a probe of weak transition strengths

Charge-exchange reactions connect the same initial and final states as in weak interactions and are mediated through similar spin and isospin transfer operators

Proportionality holds at ~10% level – beam energies must be ~100 MeV/A or above

Applied to a variety of charge-exchange probes: (p,n)/(n,p), (³He,t)/(t,³He),(d,²He),(⁷Li,⁷Be) etc.

Gamow-Teller strengths and CE cross sections

Unlike β -decay CE experiments do not suffer from Q-value restrictions

calibrating the proportionality

The unit cross section is conveniently calibrated using transitions for which the Gamow-Teller strength is known from β -decay.

The unit cross section depends on beam energy, charge exchange probe and target mass number: empirically, a simple mass-dependent relationship is found for given probe

Once calibrated, Gamow-Teller strengths can be extracted model-independently.

Overview of program

Litvinova, Brown, Fang, Zegers - to be published

General spin-isospin response

Multipole decomposition

C. Guess et al., Phys. Rev. C 80, 024305 (2009)

Systematic error in extraction of B(GT)

- Leading uncertainty comes from interference between $\Delta L=0$ and $\Delta L=2$ amplitudes mediated by the $\sigma\tau$ and $T\tau$ parts of the NN-interaction that drives the CE reaction
- Uncertainty increases for small B(GT)
- Can be studied statistically, but corrections on a state-by-state basis are only possible if the transition densities are well-known (some success have been achieved, e.g. ⁵⁸Ni, ¹³C)
- Difference between B(GT)s extracted from different probes (e.g. (p,n) and (³He,t) are indicative of strong L=2 amplitudes mediated via $T\tau$

Charge-Exchange Data

- (n,p) TRIUMF/RCNP
- (d,²He) KVI
- (t,³He) NSCL

Theory

- Configuration-interaction (shell) models
 - KB3G (Poves et al.)
 - GXPFI (Honma et al.)

Used in most sophisticated
 weak reaction rate library used
 in astrophysical simulations

- Mean-field (Quasi-particle Random Phase Approximation) P. Möller et al.
- Hybrid (RPA+Shell-model Monte Carlo)

Example ⁵⁸Ni→⁵⁸Co

								I											
										Ge61			Ge64	Ge65	Ge66	Ge67	Ge68	Ge69	Ge70
-	z	Studied in CE study									Ga61	Ga62	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	Ga69
						Zn56	Zn57	Zn58	Zn59	Zn60	Zn61	Zn62	Zn63	Zn64	Zn65	Zn66	Zn67	Zn68	
A						Cu55	Cu56	Cu57	Cu58	Cu59	Cu60	Cu61	Cu62	Cu63	Cu64	Cu65	Cu66	Cu67	
Γ	28			Ni51	Ni52	Ni53	Ni54	Ni55	Ni56	Ni57	Ni58	Ni59	Ni60	Ni61	Ni62	Ni63	Ni64	Ni65	Ni66
		1		Co50	Co51	Co52	Co53	Co54	Co55	Co56	Co57	Co58	Co59	Co60	Co61	Co62	Co63	C064	Co65
			Fe48	Fe49	Fe50	Fe51	Fe52	Fe53	Fe54	Fe55	Fe56	Fe57	Fe58	Fe59	Fe60	Fe61	Fe62	Fe63	Fe64
		Mn46		Mn48	Mn49	Mn50	Mn51	Mn52	Mn53	Mn54	Mn55	Mn56	Mn57	Mn58	Mn59	Mn60	Mn61	Mn62	Mn63
		Cr45	Cr46	Cr47	Cr48	Cr49	Cr50	Cr51	Cr52	Cr53	Cr54	Cr55	Cr56	Cr57	Cr58	Cr59	Cr60	Cr61	Cr62
		V44	V45	V46	V47	V48	V49	V50	V51	V52	V53	V54	V55	V56	V57	V58	V59	V60	
	Ti42	Ti43	Ti44	Ti45	Ti46	Ti47	Ti48	Ti49	Ti50	Ti51	Ti52	Ti53	Ti54	Ti55	Ti56	Ti57			
	Sc41	Sc42	Sc43	Sc44	Sc45	Sc46	Sc47	Sc48	Sc49	Sc50	Sc51	Sc52	Sc53	Sc54	Sc55				
	Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46	Ca47	Ca48	Ca49	Ca50	Ca51	Ca52	Ca53	Ca54				20
	K39	K40	K41	K42	K43	K44	K45	K46	K47	K48	K49	K50	K51	K52	K53	K54			
	20								28										

EC rate comparisons

(t,³He+ γ)-for high precision

- ⁴⁵Sc and ⁴⁶Ti measured
- Using Gretina+S800
 Spectrometer
- Resolutions of a few keV
- Helpful for identification and accurately measuring the location of the lowlying GT transitions

Summary of EC rate study

EC rates based on configuration interaction (shell-model) calculations underestimate the rates based on experimental strengths by about 30%, - GXPFIa interaction is slightly better than KB3G

EC rates based on QRPA calculations are strongly overestimate the rates based on experiment – even at high densities/temperatures, where the fine structure of the strength distribution is of little relevance

Chris Sullivan (NSCL), Remco Zegers (NSCL), Evan O'Connor (CITA), Christian Ott (CalTech)

Weak processes in CCSNe

- GRID is an open source spherically symmetric general relativistic hydrodynamics code
- Implements two moment Boltzmann neutrino transport with analytic closure for all six neutrino species via NuLib
- Designed to study core collapse supernovae (Type lb/c, Type II)
- Currently using 15 solar mass, solar metalicity star from Woosley & Weaver 1995, but can simulate massive stars with M>8Msol
- Rigorous implementation of neutrino/weak interaction microphysics, including:
 - Absorption of nu_e and anti nu_e on neutrinos and protons (resp.)
 - Scattering on neutrons, protons, and heavy nuclei for all species of neutrino
 - Thermal emission of all species from electron-positron annihilation
- Most recently: electron capture on heavy nuclei
 - Full NSE distribution of nuclei using the FRDM mass model for use in calculating neutrino emissivities and opacities.

Similar studies have been performed in the past – the goal of the present study is to perform detailed sensitivity studies to motivate experiments (with rare isotope beams)

strategy

Given that one can only do so many experiments, what is the best strategy for testing theories used to calculate weak reaction rates for astrophysics?

I) Perform experiments on nuclei that are particularly abundant in the stellar environment

2) Perform experiments on nuclei that can tell us something fundamental about the theorertical calculations

⁵⁶Ni – satisfies both conditions! However, ⁵⁶Ni is unstable ($T_{1/2}$ =6 days)

⁵⁶Ni

Independent particle model:

- ⁵⁶Ni is doubly magic
- GT involves $f_{7/2} \rightarrow f_{5/2}$
- Due to large p-n residual interaction, ⁵⁶Ni is not magic
- Shell-model calculations with the KB3G interaction and the GXPF1a interaction both predict that the probability of a closed $(f_{7/2})^{16}$ configuration is ~65%.

kinematics

Normal kinematics

At q~0, outgoing neutron is fast.

From its properties (angle, energy) one can "easily" determine the excitation energy and center-of-mass scattering angle.

Residual is not detected (two-body kinematics)

Inverse kinematics

At q~0, outgoing residue is fast – almost
impossible to detect its properties with sufficient precision.

Neutron is very slow – hard to detect. However, if feasible one can reconstruct the excitation energy and center-of-mass scattering angle.

Advantage: neutron is not stopped in target

Problem...

To extract the Gamow-Teller strength of relevance for electron-captures, we need an (n,p)-type charge-exchange experiment in inverse kinematics with rare-isotope beams....

The charge-exchange group at NSCL has successfully developed the ⁷Li,⁷Be reaction in inverse kinematics for that purpose – but not suitable for experiments with A>35 (In the future, $(d,^{2}He)$ in inverse kinematics might become feasible

However: because of isospin symmetry, one can use a (p,n)-type probe instead! isospin symmetry

										Ge61			Ge64	Ge65	Ge66	Ge67	Ge68	Ge69	Ge70	
z									Ga61	Ga62	Ga63	Ga64	Ga65	Ga66	Ga67	Ga68	Ga69			
					Stable			Zn57	Zn58	Zn59	Zn60	Zn61	Zn62	Zn63	Zn64	Zn65	Zn66	Zn67	Zn68	
		A	1				Cu55	Cu56	Cu57	Cu58	Cu59	Cu60	Cu61	Cu62	Cu63	Cu64	Cu65	Cu66	Cu67	
28 Ni51 Ni52 Ni53						Ni54	Ni55	Ni56	Ni57	Ni58	Ni59	Ni60	Ni61	Ni62	Ni63	Ni64	Ni65	Ni66		
				Co50	Co51	Co52	Co53	Co54	Co55	656	Co57	Co58	C059	Co60	Co61	Co62	Co63	C064	Co65	_
			Fe48	Fe49	Fe50	Fe51	Fe52	Fe53	Fe54	Fe55	Fe56	Fe57	Fe58	Fe59	Fe60	Fe61	Fe62	Fe63	Fe64	
		Mn46		Mn48	Mn49	Mn50	Mn51	Mn52	Mn53	Mn54	Mn55	Mn56	Mn57	Mn58	Mn59	Mn60	Mn61	Mn62	Mn63	
		Cr45	Cr46	Cr47	Cr48	Cr49	Cr50	Cr51	Cr52	Cr53	Cr54	Cr55	Cr56	Cr57	Cr58	Cr59	Cr60	Cr61	Cr62	
		V44	V45	V46	V47	V48	V49	V50	V51	V52	V53	V54	V55	V56	V57	V58	V59	V60		
	Ti42	Ti43	Ti44	Ti45	Ti46	Ti47	Ti48	Ti49	Ti50	Ti51	Ti52	Ti53	Ti54	Ti55	Ti56	Ti57				
	Sc41	Sc42	Sc43	Sc44	Sc45	Sc46	Sc47	Sc48	Sc49	Sc50	Sc51	Sc52	Sc53	Sc54	Sc55					_
	Ca40	Ca41	Ca42	Ca43	Ca44	Ca45	Ca46	Ca47	Ca48	Ca49	Ca50	Ca51	Ca52	Ca53	Ca54				20	
	K39	K40	K41	K42	K43	K44	K45	K46	K47	K48	K49	K50	K51	K52	K53	K54				
	20								28											

Gamow-Teller strengths

GT strengths from GXPFIA/J provide better results than from KB3G for ⁵⁶Ni (⁵⁵Co) Difference between KB3G and GXPFIA:

- KB3G weaker spin-orbit and pn-residual interactions \rightarrow GT strength resides at lower E_x
- KB3G lower level density \rightarrow GT strength less spread
- Improvements to the most up-to-date weak reaction rate library based on calculations with the KB3G interaction are possible, probably at the level of ~30%.

M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011), Phys. Rev. C 86, 034324 (2012)

K. Langangke, Physics 4, 91 (2011)

CERN Courier, Jan/Feb 2012

Litvinova, Brown, Fang, Zegers - to be published

¹³²Sn(p,n) planned

CI-jj7a: Configuration Interaction model in $0g_{9/2}$, $0g_{7/2}$, $1d_{5/2}$, $1d_{3/2}$, $2s_{1/2}$, $0h_{11/2}$ and $0h_{7/2}$ space (Alex Brown) QRPA: two quasiparticle pn-QRPA following procedure by Tubingen group for many double beta decay cases (D.L. Fang)

RRPA: self-consistent relativistic RPA (RRPA) calculation (E. Litvinova)

RTBA: relativistic (quasiparticle) time blocking approximation (RTBA) including IpIh+phonon couplings (E. Litvinova)

Electron-capture rates on nuclei – summary/outlook

Validity of various theoretical approaches has been tested through a variety of chargeexchange experiments. The ⁵⁶Ni(p,n) experiment in inverse kinematics was critical in pinpointing the strengths and weaknesses of different models.

The development of different weak rate libraries to more accurately test sensitivities in astrophysical models is an important next step-effort started

The next frontiers: : nuclei with mass A>65 and nuclei far from the valley of stability – experiments with unstable nuclei are critical

With the successful development of the (p,n) reaction in inverse kinematics a new tool to study the spin-isospin response of unstable nuclei has been created with applications in astrophysics and beyond-various other proposals planned/carried out, e.g. ¹³²Sn.

Double beta decay

 $[T_{1/2}^{2\nu}(0^+ \to 0^+)]^{-1} = G^{2\nu}(Q_{\beta\beta}, Z) |M_{GT}^{2\nu}|^2$

$$M_{GT}^{2\nu} = \sum_{j} \frac{\langle 0_{f}^{+} \parallel \sum_{k} \sigma_{k} \tau_{k}^{-} \parallel 1_{j}^{+} \rangle \langle 1_{j}^{+} \parallel \sum_{k} \sigma_{k} \tau_{k}^{-} \parallel 0_{i}^{+} \rangle}{E_{j} - E_{0} + Q_{\beta\beta}/2}$$
Phases?
$$|M_{j}(\mathrm{GT}^{\pm})|^{2} = B_{j}(\mathrm{GT}^{\pm})$$

$$\underbrace{|M_{j}(\mathrm{GT}^{\pm})|^{2}}_{2\nu\beta\beta} = B_{j}(\mathrm{GT}^{\pm})$$

$$[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^2 \langle m_\nu \rangle^2$$

The case of ¹⁵⁰Nd

¹⁵⁰Nd(³He,t) and ¹⁵⁰Sm(t,³He) data

Multipole Decomposition

Comparison with QRPA calculations

Calculations by Fang, Rodin et al.

New probes to achieve channel selectivity

How to isolate isovector non-spin transfer channels?

¹⁰Be, ¹⁰B+ γ reaction

By gating on the 1.74 \rightarrow 0.718 MeV transition after the ¹⁰Be, ¹⁰B reaction, one can isolate **non spin transfer reactions**

Alternative to p,p' reaction but with the additional advantage that only isovector amplitudes contribute, instead of isovector and isoscalar amplitudes. In addition, one would avoid orbital contributions.

Application would not only be limited the $\Delta L=0$ strengths, but also focus on $\Delta L=1$ strengths which is important for neutral-current neutrino interactions in astrophysical scenario

Preliminary plans for experiments at RCNP using Grand-Raiden+Clover Array

See e.g. Austin et al., NPA 719, 233c (2003)

Thanks!

The NSCL Charge-Exchange Club*

Graduate students

Jared Doster

Postdocs

Shumpei Noji

Other group members

Sam Austin Daniel Bazin

Sam Lipschutz Amanda Prinke Michael Scott Chris Sullivan LeShawna Valdez Rhiannon Meharchand Jenna Deaven Carol Guess Wes Hitt Meredith Howard

Masaki Sasano George Perdikakis Arthur Cole Cedric Simenel Yoshihiro Shimbara

...and our local and outside collaborators, in particular Alex Brown, the NSCL gamma group (Alexandra Gade, Dirk Weisshaar), Ed Brown, Sean Liddick, Andreas Stolz, Yoshi Fujita (Osaka U.), Dieter Frekers (U. Muenster), Hide Sakai (RIKEN), Lew Riley (Ursinus), G.Martinez-Pinedo (GSI), M. Horoi (CMU), Gretina collaboration, A1900 and CCF staff, and many others!

*Current members in italics