Towards Exploring Fundamental Symmetries with Lattice QCD

Brian Tiburzi 14 August 2013

Towards Exploring Fundamental Symmetries with Lattice QCD

- Lattice QCD: compute single and few-body couplings
- Hadronic Parity Violation: isovector and isotensor
- **B Violation**: neutron-antineutron oscillations
- T Violation: nucleon EDMs

Goal: provide a sense of what challenges lattice QCD must confront

Towards Exploring Fundamental Symmetries with Lattice QCD

- Lattice QCD: compute single and few-body couplings
- Hadronic Parity Violation:
 isovector and isotensor
- B Violation: neutron-antineutron oscillations
- T Violation: nucleon EDMs

Goal: provide a sense of what challenges lattice QCD must confront

Quark Interactions to Hadronic Couplings

- **Textbook**: gauge theories defined in perturbation theory
- **QCD**: short distance perturbative, long distance non-perturbative

 $\overline{\psi} \left(D + m_q \right) \psi + \frac{1}{4} G_{\mu\nu} G_{\mu\nu}$ Many Technicalities

Wilson Lattice Action Wilson Fermions

Non-perturbative definition of asymptotically free gauge theories' $\delta_{NN}(k)$

 \mathbf{Q}

Spectrum Interactions

 $M_N \quad \epsilon_b(D)$

Strong interaction observables

Quarks couple to other fundamental interactions: e.g. weak interaction

 $J(x)D(x,0)J(0) = \sum C_i(\mu)\mathcal{O}_i(x,\mu)$ Wilson Operator Product Expansion, Wilson Coefficients, Wilson Renormalization Group

Hadronic weak (& BSM) interactions require all the Wilson brand names

1936-2013

Example: $K \rightarrow \pi\pi$ and $\Delta I = 1/2$ Rule

- Old Puzzle: I = 0 weak decay channel experimentally observed ~500x over I = 2
- Amplitude level: A0 / A2 ~ 22.5 pQCD contributes a factor of ~2 Rest non-perturbative?

PRL 110, 152001 (2013)

• Almost There? C. Lehner,⁵ Q ${\cal A}_0/{\cal A}_2(m_\pi=330\,{
m MeV})=12.0(1.7)$

$\mathcal{A} = \sum_{i} C_{i}(\mu) \langle \pi \pi | \mathcal{O}_{i}(\mu) | K \rangle_{\text{Lattice}}$

Emerging understanding of the $\Delta I=1/2$ Rule from Lattice QCD

P.A. Boyle,¹ N.H. Christ,² N. Garron,³ E.J. Goode,⁴ T. Janowski,⁴ C. Lehner,⁵ Q. Liu,² A.T. Lytle,⁴ C.T. Sachrajda,⁴ A. Soni,⁶ and D. Zhang² (1 7) (The RBC and UKQCD Collaborations)

Theoretical Challenges ΔS = 1 Processes

Usual Suspects: pion ma	ass, lattice spacing, lattice volume	underway
Additional Challenges:	Physical Kinematics	underway
	Multi-Hadron States and Normalization	\checkmark
	Operator Renormalization & Scale Invarian	ce 🗸
	Statistically Noisy Operator Self-Contractions	\checkmark
Can such success	carry over to weak nuclear processes?	

Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current

• Theoretical Challenges $\Delta I = 1$ Processes

Usual Suspects: pion ma	to be done				
Additional Challenges:	Physical Kinematics	partially solved			
	Multi-Hadron States and Normalization	to be done			
	Operator Renormalization & Scale Invariance	e to be done			
	Statistically Noisy Operator Self-Contractions	to be done			
How many lattice advances carry over to weak nuclear processes?					

Particle Physics (B=0) vs. Nuclear Physics (B>0)

Baryons are statistically noisy.... scales exponentially with A

(Un)Physical Kinematics in $N \rightarrow (N\pi)_s$

Lattice states are created on-shell

$$G(\tau) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle N(\vec{x},\tau)N^{\dagger}(0,0) \rangle = Z e^{-\sqrt{\vec{p}^2 + M_N^2} \tau} + \cdots \text{ ground-state saturation}$$

Hadronic transition matrix elements have energy insertion

$$E_N = M_N$$

$$E_{(\pi N)_s} = M_N + m_\pi$$

$$\langle (\pi N)_s | \mathcal{O}_i(\mu) | N \rangle_{\text{Lattice}} = h_{\pi NN}^1(\Delta E)$$

• Partial solution implemented (due to Beane, Bedaque, Parreno, Savage, NUPHA:747, 55 (2005))

Consequence: remove via chiral extrapolation but then only can determine chiral limit coupling Likely small ~10% at 400 MeV pion mass. Precision demands in nuclear physics not as great as particle physics

• Full solution: determine form factors, extrapolate to zero, e.g. partially twisted BCs

Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current

• Theoretical Challenges $\Delta I = 1$ Processes

Usual Suspects: pion ma	to be done	
Additional Challenges:	Physical Kinematics	partially solved
	Multi-Hadron States and Normalization	to be done
	Operator Renormalization & Scale Invariance	e to be done
	Statistically Noisy Operator Self-Contractions	to be done

How many lattice advances carry over to weak nuclear processes?

Multi-Hadron States and Normalization

Finite volume and infinite volume states have different normalizations

Lellouch, Lüscher, Commun. Math. Phys. 291, 31 (2001)

$${}_{\infty}\langle 2|\mathcal{O}|1\rangle_{\infty} = N_2 N_1 {}_V \langle 2|\mathcal{O}|1\rangle_V = N_2 N_1 (h_{\pi NN}^1)_V$$

Lellouch-Lüscher factor requires two-particle energy

Not Computed

Computed

Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current

• Theoretical Challenges $\Delta I = 1$ Processes

Usual Suspects: pion ma	to be done	
Additional Challenges:	Physical Kinematics	bartially solved
	Multi-Hadron States and Normalization	to be done
	Operator Renormalization & Scale Invariance	to be done
	Statistically Noisy Operator Self-Contractions	to be done

How many lattice advances carry over to weak nuclear processes?

Tree Level

Tree Level

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\sin^2 \theta_W$ Non-Strange

1 vs. Strange

One Loop Results

 $C_i(\mu = 1 \, \text{GeV}) \, / \, C_1^{\text{Tree}}$

(Fierz)

LO

0.264

0.981

-0.592

0

5.97

-2.30

5.12

-3.29

TO

	l	LO
$O_1 = (\bar{u}u - dd)_A (\bar{u}u + dd)_V,$ $O_1 = (\bar{u}u - \bar{d}d) [\bar{u}u + \bar{d}d]$	1	0.403
$O_2 = (uu - aa]_A [uu + aa)_V,$ $O_2 = (\bar{u}u - \bar{d}d)_2 (\bar{u}u + \bar{d}d)_3$	2	0.765
$O_3 = (uu - du)_V (uu + du)_A,$ $O_4 = (\bar{u}u - \bar{d}d)_V [\bar{u}u + \bar{d}d)_A,$	3	-0.463
$O_4 = (uu uu_{JV} [uu + uu)_A,$	4	0
$O_5 = (\overline{u}u - \overline{d}d)_A(\overline{s}s)_V$	5	5.61
$O_6 = (\overline{u}u - \overline{d}d)_A [\overline{s}s)_V$	6	-1.90
$O_7 = (\overline{u}u - \overline{d}d)_V(\overline{s}s)_A$	7	4.74
$O_8 = (\overline{u}u - \overline{d}d]_V[\overline{s}s)_A$	8	-2.67

•

• Discrepancies

DSLS provide only ratios $\alpha_s(m_c)/\alpha_s(m_b) = 1.44$

Using their ratios, I get their values

No heavy quark masses quoted in 1990 **PDG**

Dia, Savage, Liu, Springer PLB **271**, 403 (1991)

Tiburzi, PRD 85 054020 (2012)

Tree Level

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $\sin^2 \theta_W$ Non-Strange

1 vs. Strange

One Loop Results

 $C_i(\mu = 1 \, \mathrm{GeV}) \, / \, C_1^{\mathrm{Tree}}$

	ı	LO	LO	LO. 1992 PDG
$O_1 = (\bar{u}u - \bar{d}d)_A(\bar{u}u + \bar{d}d)_V,$	1	0.403	0.264	0.54(4)
$O_2 = (\bar{u}u - dd]_A [\bar{u}u + dd)_V,$	2	0.765	0.981	0.55(6)
$O_3 = (uu - dd)_V (uu + dd)_A,$ $O_4 = (\bar{u}u - \bar{d}d) [\bar{u}u + \bar{d}d)$	3	-0.463	-0.592	-0.35(3)
$O_4 = (uu - aa]_V [uu + aa)_A,$	4	0 (Fie	erz) O	0
$O_{5} = (\overline{u}u - \overline{d}d) \sqrt{(\overline{s}s)}_{V}$	5	5.61	5.97	5.35(7)
$O_6 = (\overline{u}u - \overline{d}d)_A (\overline{s}s)_V$	6	-1.90	-2.30	-1.57(10)
$O_7 = (\overline{u}u - \overline{d}d)_V (\overline{s}s)_A$	7	4.74	5.12	4.45(8)
$O_8 = (\overline{u}u - \overline{d}d]_V [\overline{s}s)_A$	8	-2.67	-3.29	-2.12(15)

Dia, Savage, Liu, Springer PLB **271**, 403 (1991)

Tiburzi, PRD 85 054020 (2012)

10. 1000 DDC

QCD Renormalization of Isovector Parity Violation

Results ('t Hooft-Veltman scheme)

$$\mathcal{L}_{\mathrm{PV}}^{I=1} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

Non-singlet chirality conservation: only 5 independent operators

```
L \otimes L - R \otimes R
```

 $L \otimes R - R \otimes L$

Alleged: 95% probe of hadronic neutral current			$C_i(\mu=1{\rm GeV})$	$/C_1^{\text{Tree}}$		$L \otimes R = R \otimes L$
		i	LO	LO	NLO (Z)	NLO $(Z + W)$
		1	0.403	0.264	-0.054	-0.055
$\sin^2 heta_W$	Non-Strange	2	0.765	0.981	0.803	0.810
		3	-0.463	-0.592	-0.629	-0.627
		4	0 (Fierz)	0	(Fierz) (Fierz)	0
	VS.	5	5.61	5.97	4.85	5.09
		6	-1.90	-2.30	-2.14	-2.55
1	Strange	7	4.74	5.12	4.27	4.51
80 - 100%		8	-2.67	-3.29	-2.94	-3.36
Dynamical C	Question!			 T:b!		

Tiburzi, PRD 85 054020 (2012)

computable in pQCD at high scale

computable on lattice at low scale

• Scale Invariance: requires same renormalization scheme

pQCD 't Hooft-Veltman scheme

5 independent PV operators in chiral basis

Anisotropic Lattice Regularization + Wilson Fermions

14 independent PV operators

Unphysical + unphysical chiral mixing

• Matching calculation required...

Example: $N \rightarrow (N\pi)_s$ and $\Delta I = 1$ Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current

• Theoretical Challenges $\Delta I = 1$ Processes

Usual Suspects: pion ma	to be done	
Additional Challenges:	Physical Kinematics	bartially solved
	Multi-Hadron States and Normalization	to be done
	Operator Renormalization & Scale Invariance	to be done
	Statistically Noisy Operator Self-Contractions	to be done

• How many lattice advances carry over to weak nuclear processes?

Statistically Noisy Operator Self-Contractions

 $G(\tau',\tau) = \langle 0|N(\tau')\mathcal{O}_i(\tau)N^{*\dagger}(0)|0\rangle$

Another notorious difficulty

quark disconnected diagrams

Vector and Axial-Vector self-contractions

Wilson coeffs.

Flavor dependence? ~ \mathcal{M}_q Extend to SU(3) + chiral corrections?

Utilize Fierz redundancy?

 $\overline{s}s$ $\overline{s}\gamma_{\mu}s$ small nucleon strangeness

$$\langle \overline{s}\gamma_{\mu}s \rangle \ll \langle \overline{q}\gamma_{\mu}q \rangle?$$

0.16 from Adelaide

Isotensor Parity Violation $\mathcal{O} = (\overline{q}\tau^3 q)_A (\overline{q}\tau^3 q)_V - \frac{1}{3} (\overline{q}\vec{\tau} q)_A \cdot (\overline{q}\vec{\tau} q)_V$

• Only one operator & without self-contractions

$$\mathcal{L}_{PV}^{\Delta I=2} = \frac{G_F}{\sqrt{2}} C(\mu) \mathcal{O}(\mu)$$

Operator Renormalization

Tiburzi, PRD86: 097501 (2012)

LO	$C(1{ m GeV})/C^{(0)}$	
LO [15]	0.79	1992 PDG
LO	0.70	0.78(1)
NLO	$C(1{ m GeV})/C^{(0)}$]
't Hooft-Veltman	0.58	
Naïve Dim. Reg.	0.74	
RI/MOM	0.77	
$\operatorname{RI}/\operatorname{SMOM}(\gamma_{\mu}, q)$	0.67	
$\operatorname{RI/SMOM}(\gamma_{\mu}, \gamma_{\mu})$	0.75	
RI/SMOM(q, q)	0.73	
$RI/SMOM(q, \gamma_{\mu})$	0.81	

[15] Kaplan Savage, NuPhA 556 (1993)

Wilson fermions still to do...

Better proving ground for Lattice QCD?

$$\mathcal{L}_{NN} = [\vec{\nabla} p^{\dagger} \cdot \vec{\sigma} \, \sigma_2 \, p^*] \cdot [n^T \sigma_2 \, n] + \dots$$

s- to p-wave NN interaction

Operator matrix element between two hadrons (beyond current reach?)

 πN interactions

 $\mathcal{L}_{\pi\pi N} + \mathcal{L}_{\pi\gamma N}$ External fields could ``substitute" for pions

> πPV Isotensor pion interactions exist

Lattice compute parameters DDH potential? ... inevitably leads to chiral parity violating potential

Fundamental Symmetries and Lattice QCD

- Lattice QCD: Wilsonian machinery turns high-scale interactions (both SM & *Beyond*) into QCD-scale hadronic couplings
- After decades of dedicated work, trustworthy results emerging e.g. $K \rightarrow \pi\pi$

Theory Needs for Next-Decade Lattice QCD?

• Hadronic Parity Violation:

πN-coupling more or less challenging than K→ππ?
Methods for coupling to pions?
NN-interactions?
Isovector parity-violating lattices?

Fundamental Symmetries and Lattice QCD

- Lattice QCD: Wilsonian machinery turns high-scale interactions (both SM & *Beyond*) into QCD-scale hadronic couplings
- After decades of dedicated work, trustworthy results emerging e.g. $K \rightarrow \pi\pi$

Theory Needs for Next-Decade Lattice QCD?

• Hadronic Parity Violation:

πN-coupling more or less challenging than K→ππ?
Methods for coupling to pions?
NN-interactions?
Isovector parity-violating lattices?

Fundamental QCD Interaction Needed to Explore Fundamental Symmetries

Lellouch-Lüscher Factor

- Single Particle Energy Quantization: $E = \sqrt{\vec{p}^2 + M^2}$ $\vec{p} = \frac{2\pi}{T}\vec{n}$
- Two Particle Energy Quantization:

 $E_{\text{total}} = \sqrt{k^2 + M^2} + \sqrt{k^2 + m^2} \qquad \vec{P} = 0$ $n\pi - \delta_0(k) = \phi(k)$ (known function for a torus)

• One-to-Two Particle Amplitude:

 $|\mathcal{M}_{\infty}|^{2} = \frac{8\pi V^{2} M E_{\text{total}}^{2}}{k^{2}} \left[\delta'(k) + \phi'(k)\right] |\mathcal{M}_{V}|^{2}$

Generalization for energy insertion:

Lin, Martinelli, Pallante, Sachrajda, Villadoro **NuPhB:**650, 301 (2003) Kim, Sachrajda, Sharpe **NuPhB:**727, 218 (2005)

Auxiliary Fields for Isovector Parity Violation

• Perhaps only a Gedankenexperiment until exascale computers materialize

E.g. $\mathcal{O} = (\overline{q}\gamma_{\mu}\gamma_{5}\tau^{3}q)(\overline{q}\gamma_{\mu}q) \longrightarrow -a[\overline{q}\gamma_{\mu}(\gamma_{5}\tau^{3}-b\cdot 1)q]^{2} \frac{P\otimes\tau^{1}}{\tau^{3}-\text{chiral symmetry}}$

Introduces PC and PV four-quark operators

Integrate in auxiliary field
$$\Delta \mathcal{L} = \sigma^2 + ia \sigma \left[\overline{q} \gamma_\mu \left(\gamma_5 \tau^3 - b \cdot 1 \right) q \right]$$

No sign problem $\gamma_5 \otimes \tau^1$ -Hermiticity

• Can implement all isovector PV operators in sign-problem-free ways Continuum limit, parameter tuning (!?!?)

$$\langle p | \mathcal{L}_{PV}^{I=1} | \pi n \rangle = h_{\pi}^{1} \quad \rightarrow \langle p | \pi^{+}(x) | n \rangle_{\sigma}$$

Other PV observables:

Nucleon anapole moment: just calculate anapole form factor **PV NN interactions from PV part of NN correlators**

Bodies buried in gauge field generation