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Quark Interactions to Hadronic Couplings

Ken Wilson
1936-2013

• Textbook: gauge theories defined in perturbation theory

• QCD: short distance perturbative, long distance non-perturbative

a

Wilson Lattice Action  
Wilson Fermions

Non-perturbative definition of 
asymptotically free gauge theories

ψ (D/+mq)ψ +
1

4
GµνGµν

Strong interaction 
observables

MN �b(D)

Spectrum
Interactions

δNN (k)
Many Technicalities

• Quarks couple to other fundamental interactions: e.g. weak interaction

J(x)D(x, 0)J(0) =
�

i

Ci(µ)Oi(x, µ)

Wilson Operator Product Expansion, Wilson Coefficients, Wilson Renormalization Group

• Hadronic weak (& BSM) interactions require all the Wilson brand names  



Example: K→ππ and ΔI = 1/2 Rule

• Old Puzzle: I = 0 weak decay channel experimentally observed ~500x over I = 2  

• Amplitude level: A0 / A2 ~ 22.5                            
pQCD contributes a factor of ~2                            
Rest non-perturbative?

PRL 110, 152001 (2013)

• Almost There?
A0/A2(mπ = 330 MeV) = 12.0(1.7)

• Theoretical Challenges ΔS = 1 Processes

Usual Suspects: pion mass, lattice spacing, lattice volume

Additional Challenges:

A =
�

i

Ci(µ)�ππ|Oi(µ)|K�Lattice

✓

✓
✓

underway

underway

• Can such success carry over to weak nuclear processes?

Operator Renormalization & Scale Invariance

Multi-Hadron States and Normalization

Statistically Noisy Operator Self-Contractions

Physical Kinematics



Example: N→(Nπ)s and ΔI = 1 Parity Violation

• Old Problem: hadronic neutral weak interaction is the least constrained SM current 

• New experiments:                           
parity violation in 
few-body systems, 
map out NN weak 
interaction?

Signal Found

• Theoretical Challenges ΔI = 1 Processes

Usual Suspects: pion mass, lattice spacing, lattice volume

Additional Challenges:

Operator Renormalization & Scale Invariance

Multi-Hadron States and Normalization

Statistically Noisy Operator Self-Contractions

to be done

• How many lattice advances carry over to weak nuclear processes?

A =
�

i

Ci(µ)�(πN)s|Oi(µ)|N�Lattice

h1
πNN = 1.1(5)× 10−7

⊗

partially solved

to be done

to be done

to be done

PRC 85, 022501 (2012)

Physical Kinematics



Particle Physics (B=0) vs. Nuclear Physics (B>0)

Nucleon Correlation Function

Baryons are statistically noisy.... scales exponentially with A

Signal

Noise^2

�

{Aµ}

�qqq(t)qqq(0)� ∼ e−Mt

�

{Aµ}

�qqq(t)qqq(t)qqq(0)qqq(0)� ∼ e−3mπt ∼ e−(M− 3
2mπ)t

Signal/Noise

Signal

Noise^2

Pion Correlation Function
�

{Aµ}

�qq(t)qq(0)� ∼ e−mπt

�

{Aµ}

�qq(t)qq(t)qq(0)qq(0)� ∼ e−2mπt

Signal/Noise

∼ const

←
←
←

←
→



(Un)Physical Kinematics in N→(Nπ)s

• Lattice states are created on-shell

G(τ) =
�

�x

ei�p·�x�N(�x, τ)N†(0, 0)� = Ze−
√

�p2+M2
N τ + · · ·

• Hadronic transition matrix elements have energy insertion

EN = MN

E(πN)s = MN +mπ

�(πN)s|Oi(µ)|N�Lattice = h1
πNN (∆E)

ground-state saturation

• Partial solution implemented (due to Beane, Bedaque, Parreno, Savage, NUPHA:747, 55 (2005))        

p → nπ+

nπ+ → p
T-invariance

h1
πNN (mπ)

h1
πNN (−mπ)

h1
πNN =

1

2

�
h1
πNN (mπ) + h1

πNN (−mπ)
�
+O(m2

π)

+O(m2
π)

• Full solution: determine form factors, extrapolate to zero, e.g. partially twisted BCs

Consequence: remove via chiral extrapolation but then only can determine chiral limit coupling

Likely small ~10% at 400 MeV pion mass.                                                             
Precision demands in nuclear physics not as great as particle physics
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Physical Kinematics



←

Multi-Hadron States and Normalization

• Multi-Hadron operator not used... Matrix element evaluated by a trick

ground-state saturation

Method requires this condition to hold for lattice parameters

three-quark operator 
for odd-parity N

four-quarks + antiquark

MN∗ > MN +mπ

(Nπ)s

G∗(τ) = �0|N∗(τ)N∗†(0)|0� = Ze−E(Nπ)sτ + · · ·

= Ze−E(Nπ)sτ + Z �e−E∗τ + · · ·

←

←
←

←
←

←

←

→

Unfortunately likely Z << Z’

• Finite volume and infinite volume states have different normalizations 

|1�∞ = N1|1�V
|2�∞ = N2|2�V Not needed for spectrum

∞�2|O|1�∞ = N2N1 V �2|O|1�V = N2N1(h
1
πNN )V

Lellouch, Lüscher, Commun. Math. Phys. 291, 31 (2001)

ComputedNot Computed

∞�n|n�∞ = N2
n V �n|n�V = N2

ne
−Enτ + · · ·

Lellouch-Lüscher factor requires two-particle energy
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Operator Renormalization and Scale Invariance

A =
�

i

Ci(µ)�(πN)s|Oi(µ)|N�

computable in pQCD at high scale computable on lattice at low scale
µ = 90 GeV µ = 1− 2 GeV

mQ

ΛQCD

MZ ,MW

Oi

Tree Level



Operator Renormalization and Scale Invariance

A =
�

i

Ci(µ)�(πN)s|Oi(µ)|N�

computable in pQCD at high scale computable on lattice at low scale
µ = 90 GeV µ = 1− 2 GeV

mQ

ΛQCD

MZ ,MW

Tree Level

log
M2

Z

p2

log
µ2

p2

log
M2

Z

p2
= log

µ2

p2
− log

µ2

M2
Z

One Loop

Oi

δC(µ) ∼ −αs(µ) log
µ2

M2
Z

70’s Donoghue, McKellar, . . . , 90’s Dia Savage Liu Springer



One Loop Results 

Dia, Savage, Liu, Springer PLB 271, 403 (1991)

L
I=1
PV =

�

i

Ci(µ)Oi(µ)

(Fierz)

Operator Renormalization and Scale Invariance

Ci(µ = 1 GeV) /CTree
1

Tiburzi, PRD 85 054020 (2012)

Non-Strange 

vs. Strange

sin2 θW

1

O5 = (uu− dd)A(ss)V

O6 = (uu− dd]A[ss)V

O7 = (uu− dd)V (ss)A

O8 = (uu− dd]V [ss)A

Tree Level 

• Discrepancies

DSLS provide only ratios

αs(mc)/αs(mb) = 1.44

**Using their ratios, 
I get their values**

No heavy quark masses 
quoted in 1990 PDG
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1
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LO: 1992 PDG

0.54(4)

0.55(6)

−0.35(3)

0

5.35(7)

−1.57(10)

4.45(8)

−2.12(15)

Tiburzi, PRD 85 054020 (2012)



Operator Renormalization and Scale Invariance

A =
�

i

Ci(µ)�(πN)s|Oi(µ)|N�

computable in pQCD at high scale computable on lattice at low scale
µ = 90 GeV µ = 1− 2 GeV

Tree Level

log
M2

Z

p2

log
µ2

p2

One Loop

Oi

Two Loop
αs(1 GeV) ∼ 0.4



QCD Renormalization of Isovector Parity Violation

Results (‘t Hooft-Veltman scheme)

Tiburzi, PRD 85 054020 (2012)

L
I=1
PV =

�

i

Ci(µ)Oi(µ)

Alleged: 95% probe of 
hadronic neutral current 

Non-singlet chirality conservation: 
only 5 independent operators

Non-Strange 

vs. 

Strange

sin2 θW

1

80 - 100%     
Dynamical Question!

L⊗R−R⊗ L

L⊗ L−R⊗R

(Fierz) (Fierz) (Fierz)

Ci(µ = 1 GeV) /CTree
1



Operator Renormalization and Scale Invariance

A =
�

i

Ci(µ)�(πN)s|Oi(µ)|N�

computable in pQCD at high scale computable on lattice at low scale
µ = 90 GeV µ = 1− 2 GeV

• Scale Invariance: requires same renormalization scheme

pQCD ‘t Hooft-Veltman scheme

5 independent PV operators in chiral basis

Anisotropic Lattice Regularization + Wilson Fermions

14 independent PV operators

• Matching calculation required...

Unphysical + unphysical chiral mixing
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Physical Kinematics



Statistically Noisy Operator Self-Contractions

G(τ �, τ) = �0|N(τ �)Oi(τ)N
∗†(0)|0�

(a) + (b)

(b)

O5 = (uu− dd)A(ss)V

O6 = (uu− dd]A[ss)V

O7 = (uu− dd)V (ss)A

O8 = (uu− dd]V [ss)A

Another notorious difficulty

small nucleon strangeness

quark disconnected diagrams

Vector and Axial-Vector self-contractions

Wilson coeffs.

sin2 θW

1

Utilize Fierz redundancy?

ss sγµs

Flavor dependence?    ~mq

Extend to SU(3) + chiral corrections? 

�sγµs� � �qγµq�?

0.16 from Adelaide



Isotensor Parity Violation

• Only one operator & without self-contractions

O = (qτ3q)A(qτ
3q)V − 1

3
(q�τ q)A · (q�τ q)V

Tiburzi, PRD86: 097501 (2012)

[15] Kaplan Savage, NuPhA 556 (1993)

Operator Renormalization

Better proving ground for Lattice QCD?
L
∆I=2
PV =

GF√
2
C(µ)O(µ)

LNN = [�∇p† · �σ σ2 p
∗] · [nTσ2 n] + . . .

s- to p-wave NN interaction

Operator matrix element between                 
two hadrons (beyond current reach?)

LππN + LπγN

πN interactions

External fields could ``substitute’’ for pions

πPV
Isotensor pion interactions exist 

0.78(1)
1992PDG

Wilson fermions still to do...

Lattice compute parameters DDH potential?
... inevitably leads to chiral parity violating potential 
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Theory Needs for Next-Decade Lattice QCD?

• Lattice QCD: Wilsonian machinery turns high-scale interactions              
(both SM & Beyond) into QCD-scale hadronic couplings
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Fundamental QCD Interaction Needed to Explore Fundamental Symmetries
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Methods for coupling to pions?                                                                            
NN-interactions?                                                                                           
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Lellouch-Lüscher Factor

• Two Particle Energy Quantization:

• Single Particle Energy Quantization: E =
�

�p 2 +M2 �p =
2π

L
�n

Etotal =
�
k2 +M2 +

�
k2 +m2 �P = 0

nπ − δ0(k) = φ(k)

|M∞|2 =
8πV 2ME2

total

k2
[δ�(k) + φ�(k)] |MV |2

(known function for a torus)

• One-to-Two Particle Amplitude:

Kim, Sachrajda, Sharpe NuPhB:727, 218 (2005)

Generalization for energy insertion: Lin, Martinelli, Pallante, Sachrajda, Villadoro NuPhB:650, 301 (2003)



Auxiliary Fields for Isovector Parity Violation

• Perhaps only a Gedankenexperiment until exascale computers materialize

O =
�
qγµγ5τ

3q
�
(qγµq)E.g.

Introduces PC and PV four-quark operators

Integrate in auxiliary field

γ5 ⊗ τ1–HermiticityNo sign problem

• Can implement all isovector PV operators in sign-problem-free ways 
Continuum limit, parameter tuning (!?!?)

�p|LI=1
PV |πn� = h1

π → �p|π+(x)|n�σ

Bodies buried in gauge field generation

Nucleon anapole moment: just calculate anapole form factor

PV NN interactions from PV part of NN correlators

P ⊗ τ1

τ3–chiral symmetry
−→ −a

�
qγµ

�
γ5τ

3 − b · 1
�
q
�2

∆L = σ2 + iaσ
�
qγµ

�
γ5τ

3 − b · 1
�
q
�

Other PV observables:


