Isospin-nonconserving shell-model for precision tests of electroweak theory

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

¹ CEN Bordeaux-Gradignan (CNRS/IN2P3 — Université Bordeaux 1), France ² IPHC (CNRS/IN2P3 — Université de Strasbourg), Strasbourg, France

"Nuclei and Fundamental Symmetries: Theory Needs of Next-Decade Experiments", Institute for Nuclear Theory, Seattle, August 5–30, 2013

Physics motivation

Isospin symmetry is broken in nuclear physics

- Coulomb force
- Charge-dependent nuclear forces

Experimental evidence on isospin-symmetry breaking

- Splittings of isobaric multiplets
- Isospin-forbidden processes (isospin-forbidden proton emission, Fermi β -decay to non-analogue states, *E*1-transitions in *N* = *Z* nuclei, etc)

Accurate theoretical description of the isospin-symmetry breaking is crucial tests of fundamental symmetries underlying the Standard Model:

- superallowed $0^+ \rightarrow 0^+$ Fermi beta decay for test of CVC and, if holds, unitarity of the CKM matrix,
- asymmetry of mirror GT beta transitions for constraints on the induced tensor term in the axial-vector current,
- and other weak processes on nuclei.

Nuclear models to estimate isospin-symmetry breaking

- Shell model (from 60's . . ., I.S.Towner, J.C.Hardy, 1973 2013; W.E.Ormand, B.A.Brown, 1985 – 1995)
- No-core shell model (E.Caurier, P.Navratil et al, 2002)
- HF + Tamm-Dankoff or RPA (I.Hamamoto, H.Sagawa, J.Dobaczewski, T.Suzuki et al, 1993 – 1998)
- relativistic RPA approach (H.Liang, N.V.Giai, J.Meng, 2009)
- the angular-momentum-projected and isospin-projected HF model (W.Satula et al, 2009 – 2013)
- VAP technique on the HFB basis (A.Petrovici et al, 2008)
- Gamow shell-model (N.Michel et al, 2010)
- Isovector giant monopole resonance (N.Auerbach, 1983, 2009)
- Corrections to shell-model approach (G.A.Miller, A.Schwenk, 2008, 2009)

Present work: shell-model

- detailed information on individual nuclear states and transitions
- preserves fundamental symmetries of nuclei (rotational invariance, particle number conservation), allowing for an experimentally constrained calculation

> < 同 > < 三 > < 三 > <</p>

- Isospin-nonconserving shell-model (sd shell)
- Applications:
 - Staggering of the IMME b and c coefficients
 - Validity of the quadratic form of the IMME
 - Isospin-forbidden proton emission
- Nuclear structure corrections to superallowed $0^+ \rightarrow 0^+$ Fermi beta decay
- Conclusions and outlook

周 🕨 🖌 🖻 🕨 🖌 🖻

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Y.H. Lam, Ph.D. thesis, CENBG (2011); Y.H. Lam, N.A.Smirnova, E. Caurier, PRC87 (2013).

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier² Isospin-nonconserving shell-model for precision tests of electroweak theory

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{\text{INC}} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{\text{IV}}$$

W.E. Ormand, B.A. Brown NPA491 (1989)

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

W.E. Ormand, B.A. Brown NPA491 (1989)

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

 The strength parameters are obtained in a fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

W.E. Ormand, B.A. Brown NPA491 (1989)

• We start with an isospin-symmetry invariant shell-model Hamiltonian $[\hat{H}, \hat{T}] = 0$

$$\hat{H}\Psi_{TT_z} \equiv (\hat{H}_0 + \hat{V})\Psi_{TT_z} = E_T \Psi_{TT_z}, \quad \Psi_{TT_z} = \sum_k a_{T_k} \Phi_{TT_z k}$$

We consider an isospin-symmetry non-conserving term

$$\hat{V}_{INC} = \lambda_C \hat{V}_C + \lambda_\pi \hat{V}_\pi + \lambda_\rho \hat{V}_\rho + \lambda_0 \hat{V}^{T=1} + \hat{H}_0^{IV}$$

• Within perturbation theory:

$$\langle \Psi_{TT_z} | \hat{V}_{INC} | \Psi_{TT_z} \rangle = E^{(0)}(\alpha, T) + E^{(1)}(\alpha, T)T_z + E^{(2)}(\alpha, T) \left[3T_z^2 - T(T+1) \right]$$

 The strength parameters are obtained in a fit to experimental coefficients of the Isobaric Mass Multiplet Equation (IMME):

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2,$$

• Finally, we solve the eigenproblem for an isospin non-conserving Hamiltonian $[\hat{H}_{INC}, \hat{T}] \neq 0$:

$$\hat{H}_{INC}\Psi(\alpha_p,\alpha_n) \equiv (\hat{H}_0 + \hat{V} + \hat{V}_{INC})\Psi(\alpha_p,\alpha_n) = E\Psi(\alpha_p,\alpha_n)$$

W.E. Ormand, B.A. Brown NPA491 (1989)

Technical details: H.O. parameter

Solid black line: Blomqvist-Molinari, 1968

Double-dot-dashed blue line: BM with correction factor from *Ormand, Brown, 1989* Dashed red line: parametrization from *Kirson, 2007*

Our choice: hw deduced from exp. data on nuclear charge radii, *Angeli, 2004; Kirson,* 2007.

Technical details: SRCs

Jastrow-type:
$$\int_{0}^{\infty} \phi'_{nl}(r)v(r)\phi'_{n'l}(r)r^2 dr = \int_{0}^{\infty} \phi_{nl}(r)f(r)v(r)f(r)\phi_{n'l}(r)r^2 dr$$
with $f(r) = 1 - \gamma e^{-\alpha r^2} \left(1 - \beta r^2\right)$

Notation	α (fm ⁻²)	eta (fm $^{-2}$)	γ	Ref.
MS	1.1	0.68	1.0	G.A.Miller, J.E.Spencer, Ann. Phys. (NY) 100 (1976)
CD-Bonn	1.52	1.88	0.46	F.Šimkovic et al, PRC79 (2009)
AV18	1.59	1.45	0.92	F.Šimkovic et al, PRC79 (2009)

UCOM: $\int_{0}^{\infty} \phi_{n'l}(r) v(R_{+}(r)) \phi_{nl}(r) r^{2} dr$

$${\cal R}^{\rm I}_+(r)=r+lpha\left(rac{r}{eta}
ight)^\eta\exp\left[-\exp\left(rac{r}{eta}
ight)
ight]\,,$$

with $\alpha = 1.3793$ fm, $\beta = 0.8853$ fm, $\eta = 0.3724$ in the S = 0, T = 1 channel, and

$${\cal R}^{\rm II}_+(r) = r + lpha \left(1 - \exp\left(-rac{r}{\gamma}
ight)
ight) \exp\left[-\exp\left(rac{r}{eta}
ight)
ight]\,,$$

with $\alpha = 0.5665$ fm, $\beta = 1.3888$ fm, $\gamma = 0.1786$ in the S = 1, T = 1 channel. R.Roth et al, PRC72 (2005), M. Kortelainen et al, PLB647 (2007).

・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Coulomb strength parameters

Results of the fit to *b* coefficients in *sd*-shell

 $M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2$

USD (*Brown, Wildenthal, 1988*) or USDA/USDB (*Brown, Richter, 2006*) plus the INC term (\hat{V}_C , \hat{V}_ρ or $\hat{V}^{T=1}$, $\hat{H}_0^{(V)}$)

- *b* coefficients $(v_{pp} v_{nn})$; 81 data points (T = 1/2, 1, 3/2, 2);
- Ims ≈ 32 keV
- experimental IMME database: Lam, Blank, Smirnova, Antony, Bueb, ADNDT (2013) – in press.

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

Results of the fit to b coefficients in sd-shell

Dotted-dashed line: $|b| = \frac{3e^2(A-1)}{5r_0A^{1/3}}$, double-dotted-dashed line is $|b| = \frac{3e^2}{5r_0}A^{2/3}$, dashed line: *b* from the model of *Möller*, *Nix*, *ADNDT39* (1988)

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

Results of the fit to c coefficients in sd-shell

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2$$

USD (*Brown, Wildenthal, 1988*) or USDA/USDB (*Brown, Richter, 2006*) plus the INC term (\hat{V}_C and \hat{V}_ρ or $\hat{V}^{T=1}$)

• c coefficients $(v_{pp} + v_{nn} - 2v_{pn})$; 51 data points (T = 1, 3/2, 2);

• rms pprox 10 keV

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

2A. Staggering of *b*-coefficients of *sd*-shell nuclei

J. Jänecke (1966, 1969); K.T.Hecht (1968); Y.H.Lam, N.Smirnova, E.Caurier (2013)

Isospin-nonconserving shell-model for precision tests of electroweak theory

→

Contributions of various INC terms to b coefficients

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

Staggering of *c*-coefficients of *sd*-shell nuclei

J. Jänecke (1966, 1969); K.T. Hecht (1968); Y.H. Lam, N. Smirnova, E. Caurier (2013)

Black dashed line: $c = \frac{3e^2}{5r_0}A^{-1/3}$, Double-dot-dashed line: *c* from the model of *Möller*, *Nix*, *ADNDT39* (1988)

Contributions of various INC terms to c coefficients

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

B. IMME beyond a quadratic form

Quadratic IMME has been deduced at first order in perturbation theory. Higher-order terms in T_z may be present due to

- isospin-symmetry breaking three-body (or four-body) interactions;
- Coulomb effects at second order in perturbation theory (isospin mixing);
- Thomas-Ehrman shift in nuclei with loosely-bound low-/ orbitals.

$$M(\alpha, T, T_z) = a(\alpha, T) + b(\alpha, T)T_z + c(\alpha, T)T_z^2 + d(\alpha, T)T_z^3 + e(\alpha, T)T_z^4$$

Theoretical estimations of $d \sim 1$ keV.

E.M. Henley, C.E. Lacy (1969); J. Jänecke (1969); G.F. Bertsch, S. Kahana (1970)

$$J^{\pi} = 0^+$$
 quintet ($T = 2$) in $A = 32$ isobars

Nuclide	Mass excess (keV)	References
³² Ar	-2200.4 (18)	K. Blaum et al (2003)
³² CI	-8288.8 (10)	C. Wrede et al (2010); A. Kankainen et al (2010)
³² S	-13967.57 (28)	W. Shi et al (2005); S. Triambak et al (2006)
³² P	-19232.46 (15) -19232.78 (20)	M. Redshow et al (2008) AME03, P.M. Endt (1998)
³² Si	-24080.86 (77) -24080.92 (5) -24077.69 (30)	A. Paul et al (2001) M. Redshow et al (2008) A.A. Kwiatkowski et al (2009)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Experimental and theoretical *d* coefficients for the 0^+ quintet in A = 32

	$\chi^2/n_{\rm quadr.}$	$\chi^2/n_{ m cubic}$	d (keV)
S. Triambolk at al (2006)	C F	0.77	0 = 4 (10)
5. mambak et al (2006)	0.0	0.77	0.54 (16)
A. Kwiatkowski et al (2009)	30.6	0.48	1.00 (9)
Set A from A. Kankainen et al (2010)	9.9	0.86	0.52 (12)
Set B Ibid.	12.3	0.31	0.60 (13)
Set C Ibid.	28.3	0.002	0.90 (12)
Set D Ibid.	30.8	0.09	1.00 (13)
Set E Ibid.	6.5	0.74	0.51 (15)
Set F Ibid.	8.3	0.28	0.62 (16)
	4.00	0.005	
A. Signoracci, B.A. Brown (2011)	1.09	0.005	0.39
Present work (2013)	0.26	0.02	-0.19

-

IMME beyond the quadratic form in the A = 32 quintet

Isospin-mixing leads to breaking of the quadratic IMME.

A. Signoracci, B.A.Brown, PRC84 (2011). Y.H. Lam, N. Smirnova, E. Caurier, PRC87 (2013)

< ロ > < 同 > < 回 > < 回 > < 回 >

Comparison of *b*, *c*, *d*, and *e* coefficients for the 0^+ quintet in A = 32

		<i>b</i> , <i>c</i> (keV)	b, c, d (keV)	b, c, e (keV)	b, c, d, e (keV)
Experiment	b c d	-5471.85 (27) 208.55 (14) 	-5472.83 (29) 207.12 (23) 0.89 (11)	-5470.45 (29) 204.92 (23) 	-5472.64 (68) 206.89 (75) 0.83 (22)
	е	_		0.69 (11)	0.06 (19)
	χ^2/n	32.15	0.10	13.80	
Signoracci,	b	-5417.7	-5419.0	-5417.7	-5419.0
Brown (2011)	С	209.1	209.1	209.0	209.0
	d	_	0.39	_	0.39
	е	_	_	0.03	0.03
	χ^2/n	1.09	0.006	2.17	—
Present work	b	-5464.4	-5463.8	-5464.4	-5463.8
	С	207.6	207.6	207.4	207.4
	d	_	-0.19	_	-0.19
	е	—	_	0.045	0.045
	χ^2/n	0.26	0.017	0.50	_

C. Beta-delayed proton emission from ²⁵Si

IAS

< <p>Image: A matrix

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier² Isospin-nonconserving shell-model for precision tests of electroweak theory

Beta-delayed proton emission from ²⁵Si

Present results: from USD interaction and INC term. θ_i^2 are spectroscopic factors, Γ_p are proton widths, $\Gamma_p = 2 \sum_i \theta_i^2 \gamma^2 P_i(Q_p)$

²⁴ Mg	Eexo	, (MeV)	E _{c.m.}	10	$\theta^4 \theta^2$	Γ _ρ (keV)	Branching	ratios (%)
J^{π}	Eexp	E _{theo}	(MeV)	<i>l</i> = 0	<i>l</i> = 2		Theory	Exp
0+	0.000	0.000 (0)	5.624 (3)	0.00 (0)	0.059 (4)	11 (1)	10.0 (5)	18.60
2 ₁ ⁺	1.369	1.495 (1)	4.252 (2)	0.04 (1)	0.82 (6)	94 (12)	83.0 (15)	74.40
4 ⁺	4.123	4.347 (4)	1.489 (7)	0.00 (0)	0.09 (1)	0.07 (1)	0.06 (0)	3.74
2 ⁺ 2	4.238	4.116 (5)	1.377 (6)	0.23 (2)	0.033 (4)	7.6 (6)	6.9 (1)	3.20
3 [∓]	5.235	5.060 (5)	0.389 (5)	0.09 (1)	0.27 (3)	0.0 (0)	0.0 (0)	_

Experiment: J.-C. Thomas et al, Eur. Phys. J. A21, 419 (2006)

Theory: Y.H.Lam, N.A.Smirnova, E.Caurier, proc. of INPC2013, Firenze, June 2-7 (2013)

< 回 > < 回 > < 回 > -

Beta-delayed proton emission from ²²AI

Experimental study of βp emission from ²²AI:

- M.D. Cable et al (1982) $4^+(IAS) \rightarrow 3/2^+_{gs}, 5/2^+_1$
- B. Blank et al (1997) $4^+(IAS) \rightarrow 7/2^+_1$
- N.L. Achouri et al (2006) 4⁺(IAS) → 7/2⁺₁, 9/2⁺₁

Beta-delayed proton emission from ²²AI

Present results: from USD interaction and INC term. θ_l^2 are spectroscopic factors, Γ_p are proton widths, $\Gamma_p = 2 \sum_l \theta_l^2 \gamma^2 P_l(Q_p)$

²¹ Na	E th exc	Present work B.A. Brown, PRL65 (19					90)		
	(MeV)	10	θ_l^2	Γρ	BR	10	${}^{4}\theta_{I}^{2}$	Γp	BR
		<i>l</i> = 0	<i>l</i> = 2	(keV)	(%)	l = 0	I = 2	(keV)	(%)
3/2+	0.0		0.090(2)	0.04(0)	1.6(0)		0.13	0.055	5.3
$5/2^{+}$	0.236		0.267(4)	0.11(0)	4.3(1)		0.18	0.071	6.9
7/2+	1.779	0.009(4)	4.73(21)	1.21(6)	45.7(22)	0.04	1.71	0.412	40.0
9/2+	2.780	0.006(0)	2.54(23)	0.38(4)	15.4(14)	0.09	0.56	0.144	14.0
5/2+	3.694		0.28(7)	0.02(1)	1.0(2)		0.24	0.017	1.6
$11/2^+$	4.428		1.91(30)	0.09(1)	3.7(6)		1.22	0.041	4.0
$5/2^{+}$	4.556		0.37(5)	0.02(0)	0.6(1)		1.34	0.043	4.1
3/2+	4.785		0.25(2)	0.01(0)	0.3(0)		0.49	0.012	1.1
7/2+	5.328	0.184(4)	0.72(17)	0.08(1)	3.3(2)	0.00	0.11	0.001	0.1
3/2+	5.784		0.10(0)	0.00(0)	0.0(0)		0.07	0.000	0.0
9/2+	6.078	0.90(5)	0.17(2)	0.18(1)	7.1(4)	0.10	0.07	0.008	0.8
$13/2^+$	6.141		0.54(3)	0.00(0)	0.1(0)		0.78	0.004	0.4
9/2+	6.192	1.05(3)	6.9(2)	0.21(1)	8.5(2)	2.29	5.69	0.169	16.5
7/2+	6.274	1.02(7)	14.2(4)	0.21(1)	8.4(5)	0.40	11.90	0.043	4.1

Remark: USDA interaction produces strong mixing for the 4⁺ (T = 2 IAS) in ²²Mg.

Present work: N.A.Smirnova, Y.H.Lam, E.Caurier, Acta Phys. Pol. B44 (2013)

・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

3. Isospin-symmetry breaking correction δ_C to superallowed $0^+ \rightarrow 0^+$ beta decay

$$Ft^{0^+ \to 0^+} \equiv ft^{0^+ \to 0^+} (1 + \delta_R')(1 + \delta_{NS} - \delta_C) = \frac{K}{|M_{F0}|^2 G_V^2 (1 + \Delta_R)}$$

where, δ'_R , δ_{NS} , Δ_R are radiative corrections, δ_C is a nuclear structure correction. Test of CVC and the value of $|V_{ud}| = G_V/G_V^{\mu}$.

Within the shell model (approach of Towner, Hardy and Ormand, Brown),

 \sim

$$M_{F} = \sum_{lpha,eta} \langle f | \pmb{a}^{+}_{lpha} \pmb{a}_{eta} | i
angle \langle lpha | au_{+} | eta
angle$$

$$\langle \alpha | \tau_{+} | \beta \rangle = \delta_{\alpha,\beta} \int_{0}^{\infty} R_{\alpha}^{n}(r) R_{\beta}^{p}(r) r^{2} dr = \delta_{\alpha,\beta} r_{\alpha}$$

Deficiency of this operator: G.A.Miller, A.Schwenk, PRC78, 2008 and PRC80, 2009

$$M_{F} = \langle f | \tau_{+} | i \rangle = \sum_{\alpha, \pi} \langle f | \mathbf{a}_{\alpha}^{+} | \pi \rangle \langle \pi | \mathbf{a}_{\alpha} | i \rangle r_{\alpha}^{\pi}$$

$$M_0 = \sum_{\alpha,\pi} |\langle f | a_{\alpha}^+ | \pi \rangle|^2 = \sqrt{T(T+1) - T_{ZI}} T_{ZI}$$
$$|M_F|^2 = |M_0|^2 (1 - \delta_C), \quad \text{where} \quad \delta_C = \delta_{IM} + \delta_{RO}$$

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier² Isospin-nonconserving shell-model for precision tests of electroweak theory

Isospin-mixing correction (δ_{IM})

$$\begin{split} M_{F} &= M_{0} \left[1 - \frac{1}{M_{0}} \left(M_{0} - \sum_{\alpha, \pi} \langle f | \boldsymbol{a}_{\alpha}^{+} | \pi \rangle \langle \pi | \boldsymbol{a}_{\alpha} | i \rangle \right) - \frac{1}{M_{0}} \sum_{\alpha, \pi} |\langle f | \boldsymbol{a}_{\alpha}^{+} | \pi \rangle |^{2} (1 - r_{\alpha}^{\pi}) \right] \\ \delta_{IM} &\simeq 2 \left(1 - \frac{1}{M_{0}} \sum_{\alpha, \pi} \langle f | \boldsymbol{a}_{\alpha}^{+} | \pi \rangle \langle \pi | \boldsymbol{a}_{\alpha} | i \rangle \right) \\ \delta_{RO} &\simeq \frac{2}{M_{0}} \sum_{\alpha, \pi} |\langle f | \boldsymbol{a}_{\alpha}^{+} | \pi \rangle |^{2} (1 - r_{\alpha}^{\pi}) \end{split}$$

Present results: USD interaction plus V_{INC}

		δ _{IM} (%)	F	-t	
Emitter	Present	Ormand,	Towner,	Present	Towner,
	work	Brown	Hardy	work	Hardy
	(2013)	(1989)	(2008)	(2013)	(2010)
²² Mg	0.022(1)	0.017	0.010 (10)	3077.6(72)	3077.6(74)
^{26<i>m</i>} Al	0.012(1)	0.01	0.025 (10)	3072.9(13)	3072.4(14)
²⁶ Si	0.046(0)	0.028	0.022 (10)		
³⁰ S	0.027(1)	0.056	0.137 (20)		
³⁴ Cl	0.036(1)	0.06	0.091 (10)	3072.6(21)	3070.6(21)
³⁴ Ar	0.006(1)	0.008	0.023 (10)	3070.7(84)	3069.6(85)

N. A. Smirnova¹, Y.H. Lam¹, E. Caurier²

Isospin-nonconserving shell-model for precision tests of electroweak theory

A > < = > < =

Ft values of 13 best known $0^+ \rightarrow 0^+$ transitions

From Towner, Hardy, Rep. Prog. Phys. 73 (2010); Y.H. Lam, N. Smirnova, E. Caurier, PRC87 (2013)

Radial overlap correction

WS wave functions

$$V(r) = -V_{ws}f(r) - V_{so}\frac{r_0^2}{r}\frac{d}{dr}[f(r)]\mathbf{l} \cdot \mathbf{s} + V_ch(r)$$

$$f(r) = \frac{1}{\left[1 + \exp\left(\frac{r - R_0}{a}\right)\right]}$$

$$h(r) = \begin{cases} \frac{1}{r} \text{ for } r \ge R_0 \\ \frac{1}{2R_0}\left(3 - \frac{r^2}{R_0^2}\right) & \text{for } r < R_0 \end{cases}$$

 $\begin{array}{l} R_0 = r_0 (A-1)^{1/3}, \ V_c = Ze^2, \ r_0 = 1.27 \ \text{fm}, \ a = 0.75 \ \text{fm}, \\ V_{WS} = V_0 - V_{NZ} * (N-Z) t_Z/A, \ V_{so} = V_{lS} * V_{WS}, \\ V_0 = 50.5 \ \text{MeV}, \ V_{NZ} = 32 \ \text{MeV}, \ V_{lS} = 0.22 \\ (\text{Bohr-Mottelson parametrization}). \end{array}$

Adjustment: to reproduce nucleon separation energies

Image: A image: A

Radial overlap correction

$$R(r) \sim \exp\left(-rac{\sqrt{2m|E|}}{\hbar}r
ight)$$

Radial overlap correction from Woods-Saxon potential

	$\delta_{\sf RO}$ (%)				
Emitter	Present	Ormand,	Towner,		
	work	Brown	Hardy		
	(2013)	(1985)	(2008)		
²² Mg	0.238(3)	0.425	0.370 (30)		
²⁶ <i>m</i> AI	0.398(1)	0.229	0.280 (15)		
²⁶ Si	0.483(14)	0.486	0.405 (25)		
³⁰ S	0.756(20)	1.058	0.700 (20)		
³⁴ Cl	0.352(5)	0.561	0.550 (45)		
³⁴ Ar	0.408(5)	0.732	0.635 (55)		

- We constructed a very precise INC shell-model Hamiltonian in sd shell with a large potential of applications.
- The INC Hamiltonian accurately describes the **staggering** of the IMME *b* and *c* coefficients with mass numbers.
- The INC Hamiltonian allows to study the validity of the quadratic IMME in quartets and quintets.
- Isospin-forbidden nucleon emission branching ratios (like in ²²Al) are very sensitive to the detailed structure of the INC potential.
- Fermi beta decay to non-analogue 0⁺ states (for heavier nuclei, from ³⁸K): $|M_F^n|^2 = 2\delta_{IM}^n$ (*E. Hagberg et al, PRL73, 1984)*).
- Isospin-forbidden Fermi beta decay ($J^{\pi} \rightarrow J^{\pi}, J \neq 0$)

イロン 不得 とくほ とくほ とうほ

- Improvements in the fitting algorithm.
- Extension to *psd*, *sdpf* and *pf* shell nuclei is in progress.
- Careful study of WS and further HF spherical wave functions for δ_{RO} .
- Experimental information on proton-rich nuclei with N ~ Z (displacement of energy levels in mirror nuclei, Q-values, lifetimes, branching ratios, spectroscopic factors and partial widths isospin-forbidden particle emission, isospin-forbidden Fermi decay, . . .) is important to constrain the model.

A (10) A (10)