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χPT⇒pion interactions are weak at low energy. 
Weinberg (1990), apply χPT to V, i.e. expand it in 
P=(p/Λχ,mπ/Λχ)

Leading-order V:

χPT for nuclear forces

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

V (0) = + ;

(E − H0)|ψ〉 = V |ψ〉

V = V (0) + V (2) + V (3) + . . .

hp0|V |pi = C3S1P3S1 + C1S0P1S0 + V1⇡(p0 � p)
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Higher orders in V

No difficulties with counting for long-distance V

Breakdown of expansion for that part of V: r≈0.9 fm 

Here I present discussion of “Delta-less” EFT

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

Baru, Epelbaum, Hanhart, Hoferichter, Kudratsyev, DP (2012)
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But is it a (chiral) EFT?
Existence of perturbative expansion?

Renormalized?

A priori error estimates?

Need to go back and re-examine why we iterate 
one-pion exchange, in order to obtain a well-

defined, renormalized (i.e. cutoff-independent) 
leading order around which we can perturb

Goal: once we understand what terms are present in χEFT up to 
some order, we can include them in a potential, and use it with a 

low cutoff in order to do nuclear physics calculations

Note: don’t need Λ→∞, just Λ varied by a factor∼2 around ΛχSB
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Fun facts about one-pion exchange

Momentum scales present: 

χSB predicts 1/r3 potential that couples waves with ΔL=2

Tensor part of 1π exchange does not appear for S=0

1/r3 part of 1π exchange “screened” by centrifugal barrier for 
large L 

m⇡ and ⇤NN =
16⇡f2

⇡

g2
AM

⇡ 300 MeV
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The quest for leading order

Iterates of one-pion exchange become comparable with tree-
level for momenta of order ΛNN...in low partial waves

To describe processes for p∼ΛNN need to iterate (tensor part of) 
one-pion exchange to obtain the LO result

ΛNN is a new low-energy scale, thus this is not χPT. But, higher-
order pieces of chiral potential suppressed by ΛNN/Λχ.

Perturbation theory should also be OK for: (a) higher partial 
waves; (b) 1π exchange in singlet waves; (c) p ≪ ΛNN

vs

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)
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χEFT: a theory for light nuclei

χPT, low scales: mπ, p; high scales: mρ, M, Δ

Integrate out pion production to get theory of potentials

Also account for appearance of new light scales: γ, ΛNN

χEFT, low scales: γ, mπ, p, ΛNN; high scales: mρ, M, Δ, (Mmπ)1/2

EFT(π), low scales: γ, p; high scales: (Mmπ)1/2, Δ, mρ, M, mπ, ΛNN



The quest continued: S waves
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of cutoffs
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Stable for wide range 
of cutoffs

Subtractive 
renormalization 
numerically efficient

One-pion exchange 
weak in 1S0 

The quest continued: S waves

Yang, Elster, Phillips (2007)
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χEFT deuteron wave functions at leading order

0 1 2 3 4 5
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r-space to r=0
p-space: R=3 fm-1

p-space: R=6 fm-1

p-space: R=12 fm-1

p-space: R=20 fm-1

AV18

Pavon Valderrama, Nogga, Ruiz Arriola,DP, EPJA 36, 315 (2008)



Those innocuous (?) wiggles

Attractive case, for r≪1/ΛNN

Equally regular solutions, need boundary condition to fix phase

c.f.                               for plane waves as r→0

Repulsive, for r≪1/ΛNN

Still need boundary condition to fix “phase”, but results 
insensitive to choice

u1(r) = (⇤NNr)3/4
cos

✓
4

r
1

⇤NNr

◆
;u2(r) = (⇤NNr)3/4

sin

✓
4

r
1

⇤NNr

◆

u1(r) = (⇤NNr)3/4
exp

✓
4

r
1

⇤NNr

◆
;u2(r) = (⇤NNr)3/4

exp

✓
�4

r
1

⇤NNr

◆

jl(kr) and nl(kr)

Case (1950), Sprung et al. (1994), 
Beane et al. (2001),

Pavon Valderrama, Ruiz Arriola (2004-6)
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specify short-distance b.c.
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3S1, 3P0 and 3P2

Renormalization-group analysis

Higher-order corrections to phase 
shifts calculated: promising results
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...are sometimes nocuous
Need contact terms in certain P 
waves already at LO, in order to 
specify short-distance b.c.

“New leading order”: 1π exchange 
plus contact interactions, iterated, in 
3S1, 3P0 and 3P2

Renormalization-group analysis

Higher-order corrections to phase 
shifts calculated: promising results

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

Moral: NDA doesn’t predict scaling of short-distance operators 
needed for renormalization if LO wave functions are not plane waves

Birse

Pavon Valderrama (2011, 2012); Long & Yang (2012)
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Shallow poles: why the 1S0 is special

Let’s talk about the 1S0: almost a bound state, but one-pion 
exchange is weak (perturbative?) there.

Existence of shallow pole results from tuning of contact 
interaction to be O(P-1), stronger than indicated by NDA

|ψ(0)⟩∼1/r at short distances⇒matrix elements very divergent

C2p2, C4p4, etc. enhanced by two orders c.f. NDA

V (0) = + ;

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)
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χEFT expansion for probes
Mµ = ⇥�|Jµ|�⇤

Jµ = J (0)
µ + J (1)

µ + J (2)
µ + . . .

↓ ↓

|�� = |��(0) + |��(2) + . . .

Need to Compute Both Jµ 

and |ψ> to order n to get 
Mµ to order n
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Computing Mμ
M(0)

µ = ⇥�|J (0)
µ |�⇤ ⇥p�

1|J (0)
µ |p1⇤ = vµ|e|�(3)(p�

1 � p1 � q)



Computing Mμ
M(0)

µ = ⇥�|J (0)
µ |�⇤

Picture credit: K. Murphy

M(0)
µ = vµ|e|

�
d3p �(0)(p + q/2)�(0)(p)

Maps Out 
Nucleon 

Distribution 
Inside 

Deuterium

⇥p�
1|J (0)

µ |p1⇤ = vµ|e|�(3)(p�
1 � p1 � q)



LO χEFT: J0(r)=|e|δ(3)(r-rp)⇒

Results for GC and GQ at leading order 
GC(|q|) =
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dr j0

(
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Data: Abbott et al., EPJA 7, 421(2000)
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Data: Abbott et al., EPJA 7, 421(2000)
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∫
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(
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Pavon Valderrama, Ruiz Arriola, Nogga, DP, EPJA (2008)
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Nucleon structure 
included via:
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Beyond LO I: two-body operators
O(eP3/eP4): 2B mechanism enters, but no free parameters

O(eP4): Two-pion exchange pieces of J0(s). VANISH!

O(eP5): Short-distance parts of operators

O(e) O(eP 3) O(eP 5)

DP and Cohen (1999); Park et al. (1999);  DP (2003, 2007); Koelling et al. (2009)

nda counting for short-distance operators

suppression by 1/MN
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D(R)

u2(R)
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+
Z 1

R
dr r2u2(r)

�
= 0

RG equation (neglecting D-state contribution)

u(r) = C2A (⇤NNr)3/4
cos

✓
4

r
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⇤NNr
+ �

◆
for r ⌧ 1

⇤NN

Short-distance behaviour of LO u:

Renormalized by h�|Ô�hr2
di| i = D(R)�(R) (R) [D] = L5

hr2
diIA =

Z 1

R
dr r2 [u2(r) + w2(r)]

Start by considering deuteron radius

Use this to “run” R between 1/Λ0 and 1/ΛNN ΛNN≈300 MeV
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Driven by different behaviour of short-distance wave function
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independent of 
model for q<600 
MeV

GC/GQ to 3% at 
Q= 0.39 GeV
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Confronting experiment

T̃20R = �3
T̃20p

2Qd|Q|2

Zhang et al., PRL (2011)

$ GC/GQ

Implications for 6Li quadrupole moment? 



χEFT for GC up to O(eP4)

DP, J. Phys. G 34, 365 (2007)

Some sensitivity 
to deuteron wf

Good J0  
convergence

GC dominated by 
r∼1/mπ physics in 
this q range

How to constrain 
interplay of 
contact pieces of 
J0 and pion-
range physics?

c.f. Piarulli et al. (2013)
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How much short-distance charge?
<rpt2>1/2=1.975(1) c.f. 
hydrogen level shift: 
<rpt2>1/2=1.9753(10)

At most 0.6% shift in 
ratio at Q=0.5 GeV/c



How much short-distance charge?
<rpt2>1/2=1.975(1) c.f. 
hydrogen level shift: 
<rpt2>1/2=1.9753(10)

At most 0.6% shift in 
ratio at Q=0.5 GeV/c

Precision for A(Q) 
from JLab

Caveat 1: more data

Caveat 2: role of 
nucleon ffs
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1% variation from short-distance effects

Up to (NDA) O(eP4) there are two 2B contributions to J(s): a pion-
range current and a magnetic-moment contact interaction:
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1% variation from short-distance effects

Up to (NDA) O(eP4) there are two 2B contributions to J(s): a pion-
range current and a magnetic-moment contact interaction:

d9 poorly constrained from single-nucleon sector

GM beyond impulse approximation
Expt. NLO NNLO Nijm93

µd(µN) 0.857406(1) 0.856-
0.862

0.853-
0.860 0.848

J(s)
d9

= �2e
gAi

f2
⇡

d9⌧
a
1 ⌧a

2
�2 · q2

q2
2 + m2

⇡

(q2 ⇥ q) + (1$ 2)

LM1 = �eL2(N†�i✏
ijkFjkN)(N†N)



GM to O(eP4)

d9=-0.002-0.001 GeV-2;
L2=0.089-0.731 GeV4



GM to O(eP4)

d9=-0.002-0.001 GeV-2;
L2=0.089-0.731 GeV4

Koelling, Epelbaum, Phillips (2012)

c.f. Piarulli et al. (2013)
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(Mmπ)1/2 doesn’t play a role for space-like processes

Factor of A/(A-1) is maximal for deuterium

Since deuterium is isoscalar, no ΔN intermediate states



Lucky or good?

χEFT, low scales: γ, mπ, p, ΛNN; high scales: mρ, M, Δ,(Mmπ)1/2

(Mmπ)1/2 doesn’t play a role for space-like processes

Factor of A/(A-1) is maximal for deuterium

Since deuterium is isoscalar, no ΔN intermediate states

Since deuterium is (mainly) 3S1 only small deviations from NDA



Testing χEFT II: fL in d(e,e’p)

d3�L

dklab
2 d⌦lab

e d⌦p
=

↵em

2⇡2

klab
2

klab
1 (q2)2

X

SMSmJ

⇢L|TSMS0mJ |2

TSMSµmJ ⇠ h p0SMS |Jµ(q)|mJ0i



Our calculation
h p0SMS |J0(q)|mJ0i = hp0SMST |J0(q)|mJ0i + hp0SMST |t(E0)G0(E0)J0(q)|mJ0i

Yang, DP (2013)



Our calculation

Image deuteron wave function if final-state interaction is small

FSI is not necessary if 

h p0SMS |J0(q)|mJ0i = hp0SMST |J0(q)|mJ0i + hp0SMST |t(E0)G0(E0)J0(q)|mJ0i

! = q2/(2MN )) Enp
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⇡ 10

q2
cm

1 fm�2

Yang, DP (2013)



Our calculation

Image deuteron wave function if final-state interaction is small

FSI is not necessary if 

We compute J0 to O(eP3), use NNLO χEFT wave functions

Computed using “subtraction method”

Factorization + BHM form factors used for nucleon structure

Comparison with Arenhoevel’s Bonn-potential calculation

h p0SMS |J0(q)|mJ0i = hp0SMST |J0(q)|mJ0i + hp0SMST |t(E0)G0(E0)J0(q)|mJ0i

! = q2/(2MN )) Enp

1 MeV
⇡ 10

q2
cm

1 fm�2

Yang, DP (2013)



Quasi-free ridge: impulse approx.

Can be understood from scaling of wave function

FSI corrections negligible from 30 MeV up



What about not quasi-free?



What about not quasi-free?
Similar pattern at 
Enp=10 MeV, 
although FSI plays 
a bigger role in 
“QF” peak there

Role of IA and FSI 
differences changes 
as q2 changes

Big differences to 
Bonn⇒significant 
variation with cutoff



What is the maximum Enp?
Big FSI

Doesn’t agree 
with Bonn

Increasing 
issue above 
Enp=50 MeV 

Fit strategy?
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Enp<60 MeV and |q2-q2qf|<4 fm-2, cutoff variation < 10%



What is the maximum Enp?
Big FSI

Doesn’t agree 
with Bonn

Increasing 
issue above 
Enp=50 MeV 

Fit strategy?

Enp<60 MeV and |q2-q2qf|<4 fm-2, cutoff variation < 10%
Enp<160 MeV and |q2-q2qf|<2 fm-2, |Bonn-χEFT| < 10%



The unnatural: 3S1→1S0 transition
See computations of np→dγ; nd→3Hγ; n3He→4Heγ

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

hM1Vi = MµV

Z 1

R
dr u(r)v(r) + L1V (R)

u(R)v(R)
R2
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The unnatural: 3S1→1S0 transition
See computations of np→dγ; nd→3Hγ; n3He→4Heγ

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

But here, LO v(r)∼1 at short distances, c.f. v(r)∼r for 
regular potential

hM1Vi = MµV

Z 1

R
dr u(r)v(r) + L1V (R)

u(R)v(R)
R2

L1V (R) ⇠ 1

⇤7/4
0

R5/4RGE gives hÔL1V i ⇠
p

2�

⇤0

✓
⇤NN

⇤0

◆3/4

P3/4 less important than in pionless EFT, but much more 
important than O(eP3), as indicated by NDA

c.f. LO that scales as γ-1/2

Short-distance physics should be markedly more important than 
NDA indicates in isovector S-to-S transitions 



Trinucleon form factors, results
Piarulli et al. (2013)

and note radii



Trinucleon form factors, results
Piarulli et al. (2013)

O(eP4) (nm) bigger than 
O(eP3) at low q



Summary and outlook
Electromagnetic reactions on light nuclei are a good place 
to test the efficacy of different χEFT variants

Clear separation of “fast” evolution in |q| due to one-body 
operators, and “slow” pieces due to short-distance effects

Elastic electron-deuteron developed up to at least O(eP4): 
only small enhancements of contact terms over NDA 

Trinucleon form factors: enhanced role for short-distance 
operators?

d(e,e’p): fL reasonable, fT shows significant 2π exchange 
currents, but with sizable cutoff dependence

Weak reactions: L1A and modified counting?



Summary and outlook
Electromagnetic reactions on light nuclei are a good place 
to test the efficacy of different χEFT variants

Clear separation of “fast” evolution in |q| due to one-body 
operators, and “slow” pieces due to short-distance effects

Elastic electron-deuteron developed up to at least O(eP4): 
only small enhancements of contact terms over NDA 

Trinucleon form factors: enhanced role for short-distance 
operators?

d(e,e’p): fL reasonable, fT shows significant 2π exchange 
currents, but with sizable cutoff dependence

Weak reactions: L1A and modified counting?
Rozpedzik et al. (2011)

Piarulli et al. (2013)

Perturbative calculation in progress: Pavon Valderrama and DRP
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Electron-deuteron observables

A = G2

C +
2

3
ηG2

M +
8

9
η2M4

dG2

Q,

B =
4

3
η(1 + η)G2

M ,

T20 = −
1
√

2

1

A(Q2) + B(Q2) tan2
(

θe

2

)

[

8

3
ηGC(Q2)GQ(Q2) +

8

9
η2G2

Q(Q2)

+
1

3
η

{

1 + 2(1 + η) tan2

(

θe

2

)}

G2

M (Q2)

]

.

dσ

dΩ
=

(

dσ

dΩ

)

Mott

[

A(Q2) + B(Q2) tan2

(

θe

2

)]

; T20(Q
2; θe)

EXPERIMENT

GC =
1

3|e|
�
⇤1|M0|1⌅+ ⇤0|M0|0⌅+ ⇤�1|M0|� 1⌅

⇥

GQ =
1

|e|Q2

�
⇤0|M0|0⌅ � ⇤1|M0|1⌅

⇥

GM = � 1⌃
2�|e|

⇤1|M+|0⌅; � =
Q2

4M2
d

THEORY

Evaluated in Breit Frame  



Deuteron photodisintegration
Rozpedzik et al. (2011)


