"I'd rather be lucky than good": electron-deuteron scattering in χEFT

Daniel Phillips Ohio University

Research supported by the US department of energy

Outline

 γ PT $\rightarrow \chi$ EFT: why we iterate

- **Elastic electron-deuteron scattering: are** χ **EFT calculations** lucky or good?
- f_L in d(e,e'p)
- Implications of fine tuning in the ${}^{1}S_{0}$ for electromagnetic processes
- Summary and outlook

χPT for nuclear forces

χPT for nuclear forces

 γ PT \Rightarrow pion interactions are weak at low energy. Weinberg (1990), apply χ PT to V, i.e. expand it in $P=(p/\Lambda_{\chi},m_{\pi}/\Lambda_{\chi})$

> $(E - H_0)|\psi\rangle = V|\psi\rangle$ $V = V^{(0)} + V^{(2)} + V^{(3)} + \ldots$

Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

χPT for nuclear forces

 γ PT \Rightarrow pion interactions are weak at low energy. Weinberg (1990), apply χ PT to V, i.e. expand it in $P=(p/\Lambda_{\gamma},m_{\pi}/\Lambda_{\gamma})$

> $(E - H_0)|\psi\rangle = V|\psi\rangle$ $V = V^{(0)} + V^{(2)} + V^{(3)} + \ldots$

Leading-order V: Ordonez, Ray, van Kolck (1996); Epelbaum, Meissner, Gloeckle (1999); Entem, Machleidt (2001)

 $\langle \mathbf{p}' | V | \mathbf{p} \rangle = C^{3S1} P_{3S1} + C^{1S0} P_{1S0} + V_{1\pi} (\mathbf{p}' - \mathbf{p})$

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

No difficulties with counting for long-distance V

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

No difficulties with counting for long-distance V

Breakdown of expansion for that part of V: r≈0.9 fm

Baru, Epelbaum, Hanhart, Hoferichter, Kudratsyev, DP (2012)

(Ordonez, Ray, van Kolck; Kaiser, Brockmann, Weise; Epelbaum, Meissner, Gloeckle; Entem, Machleidt)

No difficulties with counting for long-distance V

Breakdown of expansion for that part of V: r≈0.9 fm

Baru, Epelbaum, Hanhart, Hoferichter, Kudratsyev, DP (2012)

Here I present discussion of "Delta-less" EFT

Existence of perturbative expansion?

Renormalized?

A priori error estimates?

Existence of perturbative expansion?

Renormalized?

A priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Existence of perturbative expansion?

Renormalized?

A priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Note: don't need $\Lambda \rightarrow \infty$, just Λ varied by a factor∼2 around $\Lambda_{\chi SB}$

Existence of perturbative expansion?

Renormalized?

A priori error estimates?

Need to go back and re-examine why we iterate one-pion exchange, in order to obtain a welldefined, renormalized (i.e. cutoff-independent) leading order around which we can perturb

Note: don't need $\Lambda \rightarrow \infty$, just Λ varied by a factor∼2 around $\Lambda_{\gamma SB}$

Goal: once we understand what terms are present in χEFT up to some order, we can include them in a potential, and use it with a low cutoff in order to do nuclear physics calculations

Fun facts about one-pion exchange

 $V(\mathbf{r}) = \tau_1^a \tau_2^a [\sigma_1 \cdot \sigma_2 Y(r) + S_{12}(\hat{r}) T(r)]$ $S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2;$ $Y(r) = \frac{g_A^2 m_\pi^2}{48.5^{\circ}}$ $48\pi f_\pi^2$ $e^{-m_{\pi}r}$ *r* ;
,

$$
T(r) = \frac{g_A^2}{16\pi f_\pi^2} e^{-m_\pi r} \left[\frac{m_\pi^2}{3r} + \frac{m_\pi}{r^2} + \frac{1}{r^3} \right]
$$

Fun facts about one-pion exchange

$$
V(\mathbf{r}) = \tau_1^a \tau_2^a [\sigma_1 \cdot \sigma_2 Y(r) + S_{12}(\hat{r}) T(r)]
$$

\n
$$
S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2;
$$

\n
$$
Y(r) = \frac{g_A^2 m_\pi^2}{48\pi f_\pi^2} \frac{e^{-m_\pi r}}{r};
$$

\n
$$
q_A^2 \qquad m_\pi \lceil m_\pi^2 - m_\pi - 1 \rceil
$$

$$
T(r) = \frac{g_A^2}{16\pi f_\pi^2} e^{-m_\pi r} \left[\frac{m_\pi^2}{3r} + \frac{m_\pi}{r^2} + \frac{1}{r^3} \right]
$$

Fun facts about one-pion exchange

$$
V(\mathbf{r}) = \tau_1^a \tau_2^a [\sigma_1 \cdot \sigma_2 Y(r) + S_{12}(\hat{r}) T(r)]
$$

\n
$$
S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - \sigma_1 \cdot \sigma_2;
$$

\n
$$
Y(r) = \frac{g_A^2 m_\pi^2}{48\pi f_\pi^2} \frac{e^{-m_\pi r}}{r};
$$

$$
T(r) = \frac{g_A^2}{16\pi f_\pi^2} e^{-m_\pi r} \left[\frac{m_\pi^2}{3r} + \frac{m_\pi}{r^2} + \frac{1}{r^3} \right]
$$

Momentum scales present: m_π and $\Lambda_{NN} =$ $16\pi f_\pi^2$ $g_A^2 M$ $\approx 300 \text{ MeV}$

 γ SB predicts 1/r³ potential that couples waves with $\Delta L=2$

- Tensor part of 1π exchange does not appear for S=0
- 1/r³ part of 1π exchange "screened" by centrifugal barrier for large L

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN...}in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves

Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

To describe processes for p∼ Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN}...in low partial waves Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p∼ Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result
- **ANN is a new low-energy scale, thus this is not χPT. But, higher**order pieces of chiral potential suppressed by Λ_{NN}/Λ_χ.

Iterates of one-pion exchange become comparable with treelevel for momenta of order Λ_{NN...}in low partial waves Fleming, Mehen, Stewart (2000); Beane, Bedaque, Savage, van Kolck (2002); Birse (2006)

- To describe processes for p∼ Λ_{NN} need to iterate (tensor part of) one-pion exchange to obtain the LO result
- \blacksquare Λ_{NN} is a new low-energy scale, thus this is not χ PT. But, higherorder pieces of chiral potential suppressed by Λ_{NN}/Λ_χ.
- Perturbation theory should also be OK for: (a) higher partial waves; (b) 1 π exchange in singlet waves; (c) $p \ll \Lambda_{NN}$

 γ PT, low scales: m_π, p; high scales: m_ρ, M, Δ

- $\bullet\ \chi$ PT, low scales: m_π, p; high scales: m_ρ, M, Δ
- Integrate out pion production to get theory of potentials
- Also account for appearance of new light scales: γ , Λ _{NN}

- $\bullet\ \chi$ PT, low scales: m_π, p; high scales: m_ρ, M, Δ
- Integrate out pion production to get theory of potentials
- Also account for appearance of new light scales: γ , Λ _{NN}
- \blacktriangleright χEFT, low scales: γ , m_π, p, Λ _{NN}; high scales: m_ρ, M, Δ , (Mm_π)^{1/2}

- $\bullet\ \chi$ PT, low scales: m_π, p; high scales: m_ρ, M, Δ
- **Integrate out pion production to get theory of potentials**
- Also account for appearance of new light scales: γ , Λ _{NN}
- \blacktriangleright χEFT, low scales: γ , m_π, p, Λ _{NN}; high scales: m_ρ, M, Δ , (Mm_π)^{1/2}
- EFT(π), low scales: γ, p; high scales: (Mm_π)^{1/2}, Δ, m_ρ, M, m_π, Λ_{NN}

The quest continued: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

The quest continued: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

Stable for wide range of cutoffs

Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)

The quest continued: S waves

Beane, Bedaque, Savage, van Kolck (2002); Pavon Valderrama, Ruiz Arriola (2005)

Stable for wide range of cutoffs

Subtractive renormalization numerically efficient

Yang, Elster, Phillips (2007)

One-pion exchange weak in ${}^{1}S_{0}$

χEFT deuteron wave functions at leading order

Pavon Valderrama, Nogga, Ruiz Arriola,DP, EPJA 36, 315 (2008)

Those innocuous (?) wiggles

Case (1950), Sprung et al. (1994), Beane et al. (2001), Pavon Valderrama, Ruiz Arriola (2004-6)

Attractive case, for r≪1/Λ_{NN}

$$
u_1(r) = (\Lambda_{NN}r)^{3/4} \cos\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right); u_2(r) = (\Lambda_{NN}r)^{3/4} \sin\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right)
$$

Equally regular solutions, need boundary condition to fix phase

c.f. $j_l(kr)$ and $n_l(kr)$ for plane waves as $r\rightarrow 0$

Repulsive, for r≪1/Λ_{NN}

$$
u_1(r) = \left(\Lambda_{NN}r\right)^{3/4} \exp\left(4\sqrt{\frac{1}{\Lambda_{NN}r}}\right); u_2(r) = \left(\Lambda_{NN}r\right)^{3/4} \exp\left(-4\sqrt{\frac{1}{\Lambda_{NN}r}}\right)
$$

Still need boundary condition to fix "phase", but results insensitive to choice

...are sometimes nocuous

- Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.
- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Renormalization-group analysis
- Higher-order corrections to phase shifts calculated: promising results

...are sometimes nocuous

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Renormalization-group analysis

Birse

Higher-order corrections to phase shifts calculated: promising results

Pavon Valderrama (2011, 2012); Long & Yang (2012)

...are sometimes nocuous

Need contact terms in certain P waves already at LO, in order to specify short-distance b.c.

Eiras, Soto (2002); Nogga, Timmermans, van Kolck (2005)

- "New leading order": 1π exchange plus contact interactions, iterated, in 3S1, 3P0 and 3P2
- Renormalization-group analysis

Birse

Higher-order corrections to phase shifts calculated: promising results

Pavon Valderrama (2011, 2012); Long & Yang (2012)

Moral: NDA doesn't predict scaling of short-distance operators needed for renormalization if LO wave functions are not plane waves
Shallow poles: why the 1So is special

Shallow poles: why the $1S₀$ is special

Let's talk about the ${}^{1}S_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

Existence of shallow pole results from tuning of contact interaction to be $O(P^{-1})$, stronger than indicated by NDA

Shallow poles: why the $1S₀$ is special

Let's talk about the ${}^{1}S_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

- Existence of shallow pole results from tuning of contact interaction to be $O(P^{-1})$, stronger than indicated by NDA
- $|\psi^{(0)}\rangle$ ~1/r at short distances⇒matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

Shallow poles: why the $1S₀$ is special

Let's talk about the ${}^{1}S_{0}$: almost a bound state, but one-pion exchange is weak (perturbative?) there.

Existence of shallow pole results from tuning of contact interaction to be $O(P^{-1})$, stronger than indicated by NDA

 $|\psi^{(0)}\rangle$ ~1/r at short distances⇒matrix elements very divergent

Birse (2009, 2010), Pavon Valderrama (2010), Long & Yang (2011)

 C_2p^2 , C_4p^4 , etc. enhanced by two orders c.f. NDA

χEFT expansion for probes

 $J_{\mu} = J_{\mu}^{(0)} + J_{\mu}^{(1)} + J_{\mu}^{(2)} + \dots$ $|\psi\rangle = |\psi\rangle^{(0)} + |\psi\rangle^{(2)} + \dots$

↓ ↓

NEED TO COMPUTE BOTH J_{μ} AND $|\psi\rangle$ to order n to get \mathcal{M}_{μ} to order n

Computing *M*^μ

 $\mathcal{M}_{\mu}^{(0)} = \langle \psi | J^{(0)}_{\mu} | \psi \rangle$

Computing *M*^μ

 $\mathcal{M}_{\mu}^{(0)} = \langle \psi | J_{\mu}^{(0)} | \psi \rangle \qquad \langle \mathbf{p}'_1$ v_{μ} ^{$\ket{I_{\mu}^{(0)}}|\mathbf{p}_1\rangle = v_{\mu}|e|\delta^{(3)}(p_1'-p_1-q)$}

Computing *M*^μ

 $\mathcal{M}_{\mu}^{(0)} = \langle \psi | J_{\mu}^{(0)} | \psi \rangle \qquad \langle \mathbf{p}'_1 | J_{\mu}^{(0)} | \mathbf{p}_1 \rangle = v_{\mu} |e| \delta^{(3)} (p'_1 - p_1 - q)$

$$
\mathcal{M}_{\mu}^{(0)} = v_{\mu}|e| \int d^3p \ \psi^{(0)}(\mathbf{p} + \mathbf{q}/2) \psi^{(0)}(\mathbf{p})
$$

Maps Out **NUCLEON DISTRIBUTION INSIDE** DEUTERIUM

Picture credit: K. Murphy
\n
$$
\overrightarrow{p'_1} = \frac{\overrightarrow{p'}_1}{2} + \overrightarrow{p'_d} \qquad \overrightarrow{p_1} = \frac{\overrightarrow{p}}{2} + \overrightarrow{p_d}
$$
\n
$$
\overrightarrow{p'_2} = \frac{\overrightarrow{p}'}{2} - \overrightarrow{p'_d} \qquad \overrightarrow{p_2} = \frac{\overrightarrow{p}}{2} - \overrightarrow{p_d}
$$

Results for G_c and G_Q at leading order

Pavon Valderrama, Ruiz Arriola, Nogga, DP, EPJA (2008)

$$
LO \chi EFT: J_0(r) = |e|\delta^{(3)}(r-r_p) \Rightarrow G_C(|q|) = \int dr j_0 \left(\frac{|q|r}{2}\right) [u^2(r) + w^2(r)]
$$

Results for G_c and G_Q at leading order

Pavon Valderrama, Ruiz Arriola, Nogga, DP, EPJA (2008)

$$
LO \chi EFT: J_0(r) = |e|\delta^{(3)}(r-r_p) \Rightarrow G_C(|q|) = \int dr j_0 \left(\frac{|q|r}{2}\right) [u^2(r) + w^2(r)]
$$

 G_C $G^{(s)}_E$ *E* $= \langle \psi | e | \psi \rangle + O(eP^3)$ Nucleon structure included via:

Data: Abbott et al., EPJA 7, 421(2000)

Results for G_c and G_Q at leading order

Pavon Valderrama, Ruiz Arriola, Nogga, DP, EPJA (2008)

$$
LO \chi EFT: J_0(r) = |e|\delta^{(3)}(r-r_p) \Rightarrow G_C(|q|) = \int dr j_0 \left(\frac{|q|r}{2}\right) [u^2(r) + w^2(r)]
$$

 G_C $G^{(s)}_E$ $= \langle \psi | e | \psi \rangle + O(eP^3)$ Nucleon structure included via:

Data: Abbott et al., EPJA 7, 421(2000)

DP and Cohen (1999); Park et al. (1999); DP (2003, 2007); Koelling et al. (2009)

DP and Cohen (1999); Park et al. (1999); DP (2003, 2007); Koelling et al. (2009)

■ O(eP³/eP⁴): 2B mechanism enters, but no free parameters SUPPRESSION BY $1/M_N$

DP and Cohen (1999); Park et al. (1999); DP (2003, 2007); Koelling et al. (2009)

O(eP3/eP4): 2B mechanism enters, but no free parameters SUPPRESSION BY $1/M_N$

 \bullet O(eP⁴): Two-pion exchange pieces of J_0 ^(s). VANISH!

DP and Cohen (1999); Park et al. (1999); DP (2003, 2007); Koelling et al. (2009)

O(eP3/eP4): 2B mechanism enters, but no free parameters SUPPRESSION BY 1/MN

 \bullet O(eP⁴): Two-pion exchange pieces of J_0 ^(s). VANISH!

O(eP5): Short-distance parts of operators nda counting for short-distance operators

Start by considering deuteron radius

$$
\langle r_d^2 \rangle_{\rm IA} = \int_R^{\infty} dr \, r^2 \left[u^2(r) + w^2(r) \right]
$$

Start by considering deuteron radius

$$
\langle r_d^2 \rangle_{\rm IA} = \int_R^{\infty} dr \, r^2 \left[u^2(r) + w^2(r) \right]
$$

Renormalized by $\langle \phi | O \rangle$ \hat{O} $\Delta \langle r_d^2 \rangle |\psi\rangle = D(R) \phi(R) \psi(R) \qquad [D] = L^5$

Start by considering deuteron radius

$$
\langle r_d^2 \rangle_{\rm IA} = \int_R^{\infty} dr \, r^2 \left[u^2(r) + w^2(r) \right]
$$

Renormalized by $\langle \phi | O \rangle$ \hat{O} $\Delta \langle r_d^2 \rangle |\psi\rangle = D(R) \phi(R) \psi(R) \qquad [D] = L^5$

RG equation (neglecting D-state contribution)

$$
\frac{d}{dR}\left[D(R)\frac{u^2(R)}{R^2} + \int_R^{\infty} dr r^2 u^2(r)\right] = 0
$$

Start by considering deuteron radius

$$
\langle r_d^2 \rangle_{\rm IA} = \int_R^{\infty} dr \, r^2 \left[u^2(r) + w^2(r) \right]
$$

Renormalized by $\langle \phi | O \rangle$ \hat{O} $\Delta \langle r_d^2 \rangle |\psi\rangle = D(R) \phi(R) \psi(R) \qquad [D] = L^5$

RG equation (neglecting D-state contribution)

$$
\frac{d}{dR}\left[D(R)\frac{u^2(R)}{R^2} + \int_R^{\infty} dr r^2 u^2(r)\right] = 0
$$

Use this to "run" R between $1/\Lambda_0$ and $1/\Lambda_{NN}$ $\Lambda_{NN} \approx 300$ MeV

Start by considering deuteron radius

$$
\langle r_d^2 \rangle_{\rm IA} = \int_R^{\infty} dr \, r^2 \left[u^2(r) + w^2(r) \right]
$$

Renormalized by $\langle \phi | O \rangle$ \hat{O} $\Delta \langle r_d^2 \rangle |\psi\rangle = D(R) \phi(R) \psi(R) \qquad [D] = L^5$

RG equation (neglecting D-state contribution)

$$
\frac{d}{dR}\left[D(R)\frac{u^2(R)}{R^2} + \int_R^{\infty} dr r^2 u^2(r)\right] = 0
$$

Use this to "run" R between $1/\Lambda_0$ and $1/\Lambda_{NN}$ $\Lambda_{NN} \approx 300$ MeV

Short-distance behaviour of LO u:

$$
u(r) = C_{2A} (\Lambda_{NN} r)^{3/4} \cos \left(4\sqrt{\frac{1}{\Lambda_{NN} r}} + \phi \right) \text{ for } r \ll \frac{1}{\Lambda_{NN}}
$$

RGE gives (looking only at power-law):

$$
\frac{D(R)}{R^{1/2}} = \int_{1/\Lambda_0}^{R} R^{\prime 7/2} dR^{\prime} + D\left(\frac{1}{\Lambda_0}\right) \Lambda_0^{1/2}
$$

RGE gives (looking only at power-law):

$$
\frac{D(R)}{R^{1/2}} = \int_{1/\Lambda_0}^{R} R^{\prime 7/2} dR^{\prime} + D\left(\frac{1}{\Lambda_0}\right) \Lambda_0^{1/2}
$$

D (1) Λ_0 ◆ = $d_{\langle r^2 \rangle}$ Λ_0^5 Assuming naturalness at $\Lambda_0: D\left(\frac{1}{\Lambda_0}\right)=\frac{w(r^2)}{\Lambda_0^5} \implies$

$$
\langle \hat{O}_{\Delta \langle r_d^2 \rangle} \rangle \sim \frac{2 \gamma \Lambda_{NN}^{3/2}}{\Lambda_0^{9/2}}
$$

RGE gives (looking only at power-law):

$$
\frac{D(R)}{R^{1/2}} = \int_{1/\Lambda_0}^{R} R^{\prime 7/2} dR' + D\left(\frac{1}{\Lambda_0}\right) \Lambda_0^{1/2}
$$

 Λ_0

=

 $d_{\langle r^2 \rangle}$

 Λ_0^5

D (1) Assuming naturalness at $\Lambda_0: D\left(\frac{1}{\Lambda_0}\right)=\frac{w(r^2)}{\Lambda_0^5} \implies$

 $\langle O$ \hat{O} $\langle\Delta\langle r_{d}^{2}\rangle\rangle\sim\frac{2\gamma\Lambda_{NN}^{3/2}}{\Lambda^{9/2}}$ *NN* $\Lambda_0^{9/2}$

 $\langle O$ \hat{O} $\langle \Delta Q_d \rangle \sim \frac{2 \gamma \Lambda_{NN}^{3/2}}{\Lambda^{9/2}}$ *NN* $\Lambda_0^{9/2}$ 0

RGE gives (looking only at power-law):

$$
\frac{D(R)}{R^{1/2}} = \int_{1/\Lambda_0}^{R} R^{\prime 7/2} dR^{\prime} + D\left(\frac{1}{\Lambda_0}\right) \Lambda_0^{1/2}
$$

D (1) Λ_0 ◆ = Assuming naturalness at $\Lambda_0: D\left(\frac{1}{\Lambda_0}\right)=\frac{w(r^2)}{\Lambda_0^5} \implies$

 $d_{\langle r^2 \rangle}$

 Λ_0^5

Both enhanced by P1/2 c.f. Weinberg counting

Driven by different behaviour of short-distance wave function

It is not m_{π} that appears in numerator: dependence on IR scales!

RGE gives (looking only at power-law):

$$
\frac{D(R)}{R^{1/2}} = \int_{1/\Lambda_0}^{R} R^{\prime 7/2} dR' + D\left(\frac{1}{\Lambda_0}\right) \Lambda_0^{1/2}
$$

D (1) Λ_0 ◆ = Assuming naturalness at $\Lambda_0: D\left(\frac{1}{\Lambda_0}\right)=\frac{w(r^2)}{\Lambda_0^5} \implies$

 $d_{\langle r^2 \rangle}$

 Λ_0^5

Both enhanced by P1/2 c.f. Weinberg counting

Driven by different behaviour of short-distance wave function

It is not m_{π} that appears in numerator: dependence on IR scales!

Similar size, but 0.002 fm² is a much larger percentage effect in Q_d

Renormalizing Gc/Go

Phillips (2007) c.f. Piarulli et al. (2013)

Adjust O(eP4.5) B contact term to reproduce Q_d

Renormalizing Gc/Go

Phillips (2007) c.f. Piarulli et al. (2013)

- Adjust O(eP4.5) contact term to reproduce Q_d
- Ratio is largely independent of model for q<600 **MeV**

 G_C/G_Q to 3% at Q= 0.39 GeV

Confronting experiment

Zhang et al., PRL (2011)

 $\tilde{T}_{20R} = -3$ \tilde{T}_{20} $\sqrt{2}Q_d|Q|$ 2 $\leftrightarrow G_C/G_Q$

Implications for 6Li quadrupole moment?

χ EFT for Gc up to $O(eP^4)$

Some sensitivity to deuteron wf

- Good J0 convergence
- G_c dominated by r~1/ m_π physics in this q range
- How to constrain interplay of contact pieces of J0 and pionrange physics?

DP, J. Phys. G 34, 365 (2007) c.f. Piarulli et al. (2013)

How much short-distance charge?

How much short-distance charge?

 $r_{\rm pt}$ ² $>1/2$ =1.975(1) c.f. hydrogen level shift: $\langle r_{\rm pt}^2 \rangle^{1/2} = 1.9753(10)$

At most 0.6% shift in ratio at Q=0.5 GeV/c

How much short-distance charge?

 $r_{\rm pt}$ ²>^{1/2}=1.975(1) c.f. hydrogen level shift: $\langle \text{C}_{\text{D}t}^2 \rangle^{1/2}$ = 1.9753(10)

At most 0.6% shift in ratio at Q=0.5 GeV/c

- Precision for A(Q) from JLab
- Caveat 1: more data
- Caveat 2: role of nucleon ffs

1% variation from short-distance effects

1% variation from short-distance effects

Up to (NDA) O(eP4) there are two 2B contributions to **J**(s): a pionrange current and a magnetic-moment contact interaction:

$$
\mathcal{L}_{M1} = -eL_2(N^{\dagger}\sigma_i\epsilon^{ijk}F_{jk}N)(N^{\dagger}N)
$$

$$
\mathbf{J}_{d_9}^{(s)} = -2e \frac{g_A i}{f_\pi^2} d_9 \tau_1^a \tau_2^a \frac{\sigma_2 \cdot \mathbf{q}_2}{\mathbf{q}_2^2 + m_\pi^2} (\mathbf{q}_2 \times \mathbf{q}) + (1 \leftrightarrow 2)
$$

1% variation from short-distance effects

Up to (NDA) O(eP4) there are two 2B contributions to **J**(s): a pionrange current and a magnetic-moment contact interaction:

$$
\mathcal{L}_{M1} = -eL_2(N^{\dagger}\sigma_i\epsilon^{ijk}F_{jk}N)(N^{\dagger}N)
$$

$$
\mathbf{J}_{d_9}^{(s)} = -2e \frac{g_A i}{f_\pi^2} d_9 \tau_1^a \tau_2^a \frac{\sigma_2 \cdot \mathbf{q}_2}{\mathbf{q}_2^2 + m_\pi^2} (\mathbf{q}_2 \times \mathbf{q}) + (1 \leftrightarrow 2)
$$

d9 poorly constrained from single-nucleon sector

G_M to $O(eP4)$

G_M to $O(eP4)$

Koelling, Epelbaum, Phillips (2012)

c.f. Piarulli et al. (2013)

 γ EFT, low scales: γ, m_π, p, Λ_{NN}; high scales: m_ρ, M, Δ, (Mm_π)^{1/2}

 \blacktriangleright χEFT, low scales: γ , m_{π} , p , Λ_{NN} ; high scales: m_{ρ} , M, Δ , (Mm_π)^{1/2}

- \blacksquare (Mm_{π})^{1/2} doesn't play a role for space-like processes
- Factor of A/(A-1) is maximal for deuterium
- Since deuterium is isoscalar, no ΔN intermediate states

 \blacktriangleright χEFT, low scales: γ , m_{π} , p , Λ_{NN} ; high scales: m_{ρ} , M, Δ , (Mm_π)^{1/2}

- \blacksquare (Mm_{π})^{1/2} doesn't play a role for space-like processes
- Factor of A/(A-1) is maximal for deuterium
- Since deuterium is isoscalar, no ΔN intermediate states
- Since deuterium is (mainly) ${}^{3}S_{1}$ only small deviations from NDA

Testing χEFT II: fL in d(e,e'p)

Our calculation

Yang, DP (2013)

 $\langle \Psi_{\mathbf{p'}} SM_S | J_0(\mathbf{q}) | m_J 0 \rangle = \langle \mathbf{p'} SM_S T | J_0(\mathbf{q}) | m_J 0 \rangle + \langle \mathbf{p'} SM_S T | t(E') G_0(E') J_0(\mathbf{q}) | m_J 0 \rangle$

Our calculation

Yang, DP (2013)

 $\langle \Psi_{\mathbf{p'}} SM_S | J_0(\mathbf{q}) | m_J 0 \rangle = \langle \mathbf{p'} SM_S T | J_0(\mathbf{q}) | m_J 0 \rangle + \langle \mathbf{p'} SM_S T | t(E') G_0(E') J_0(\mathbf{q}) | m_J 0 \rangle$

Image deuteron wave function if final-state interaction is small

FSI is not necessary if $\omega = \mathbf{q}^2/(2M_N) \Rightarrow$ $E_{\rm np}$ 1 MeV $\approx 10 \frac{\mathbf{q}_c^2}{1 \text{ fm}}$ cm 1 fm^{-2}

Our calculation

Yang, DP (2013)

 $\langle \Psi_{\mathbf{p'}} SM_S | J_0(\mathbf{q}) | m_J 0 \rangle = \langle \mathbf{p'} SM_S T | J_0(\mathbf{q}) | m_J 0 \rangle + \langle \mathbf{p'} SM_S T | t(E') G_0(E') J_0(\mathbf{q}) | m_J 0 \rangle$

Image deuteron wave function if final-state interaction is small

FSI is not necessary if $\omega = \mathbf{q}^2/(2M_N) \Rightarrow$ $E_{\rm np}$ 1 MeV $\approx 10 \frac{\mathbf{q}_c^2}{1 \text{ fm}}$ cm 1 fm^{-2}

We compute J_0 to $O(eP^3)$, use NNLO χ EFT wave functions

Computed using "subtraction method"

Factorization + BHM form factors used for nucleon structure

Comparison with Arenhoevel's Bonn-potential calculation

Quasi-free ridge: impulse approx.

Can be understood from scaling of wave function

FSI corrections negligible from 30 MeV up

What about not quasi-free?

What about not quasi-free?

- Similar pattern at Enp=10 MeV, although FSI plays a bigger role in "QF" peak there
- Role of IA and FSI differences changes as **q**2 changes
- Big differences to **Bonn⇒significant** variation with cutoff

What is the maximum E_{np} ?

What is the maximum E_{np}?

 E_{np} <60 MeV and $|\mathbf{q}^2 - \mathbf{q}^2|$ <4 fm⁻², cutoff variation < 10%

What is the maximum E_{np} ?

 E_{np} <60 MeV and $|\mathbf{q}^2 - \mathbf{q}^2|$ <4 fm⁻², cutoff variation < 10% E_{np} <160 MeV and $|q^2-q^2$ _{qf} $|<$ 2 fm⁻², $|B$ onn- χ EFTI < 10%

The unnatural: ${}^{3}S_{1}$ \rightarrow 1S₀ transition

See computations of $np \rightarrow dy$; $nd \rightarrow$ ³H_γ; n^3 He \rightarrow ⁴He_γ

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

$$
\langle \mathbf{M} \mathbf{1} \mathbf{V} \rangle = M \mu_V \int_R^{\infty} dr \, u(r) v(r) + L_1 v(R) \frac{u(R) v(R)}{R^2}
$$

The unnatural: ${}^3S_1\rightarrow{}^1S_0$ transition

See computations of $np \rightarrow dy$; $nd \rightarrow$ ³H_{*Y*}; n ³He \rightarrow ⁴He_Y

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

$$
\langle \mathbf{M} \mathbf{1} \mathbf{V} \rangle = M \mu_V \int_R^{\infty} dr \, u(r) v(r) + L_1 v(R) \frac{u(R) v(R)}{R^2}
$$

But here, LO v(r)∼1 at short distances, c.f. v(r)∼r for regular potential

The unnatural: ${}^{3}S_{1}$ \rightarrow 1S₀ transition

See computations of $np \rightarrow dy$; $nd \rightarrow$ ³H_{*Y*}; n ³He \rightarrow ⁴He_Y

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

$$
\langle \mathbf{M1V} \rangle = M \mu_V \int_R^{\infty} dr u(r) v(r) + L_1 v(R) \frac{u(R)v(R)}{R^2}
$$

But here, LO v(r)∼1 at short distances, c.f. v(r)∼r for regular potential

 $L_{1V}(R) \sim$ 1 $\Lambda_0^{7/4}$ \textsf{RGE} gives $L_{1V}(R) \sim \frac{1}{\sqrt{7/4}} R^{5/4} \qquad \langle \hat{O} \rangle$ L_{1V} $\rangle \sim$ $\sqrt{2\gamma}$ Λ_0 $\sqrt{\Lambda_{NN}}$ Λ_0 $\sqrt{\frac{3}{4}}$

c.f. LO that scales as $\gamma^{-1/2}$

The unnatural: ${}^{3}S_{1}$ \rightarrow 1S₀ transition

See computations of $np \rightarrow dy$; $nd \rightarrow$ ³H_γ; n ³He \rightarrow ⁴He_γ

Park et al. (1999); Song, Lazauskas, Park (2007-2009); Girlanda et al. (2010)

$$
\langle \mathbf{M} \mathbf{1} \mathbf{V} \rangle = M \mu_V \int_R^{\infty} dr \, u(r) v(r) + L_1 v(R) \frac{u(R) v(R)}{R^2}
$$

But here, LO v(r)∼1 at short distances, c.f. v(r)∼r for regular potential

$$
\text{RGE gives } L_{1V}(R) \sim \frac{1}{\Lambda_0^{7/4}} R^{5/4} \quad \langle \hat{O}_{L_{1V}} \rangle \sim \frac{\sqrt{2\gamma}}{\Lambda_0} \left(\frac{\Lambda_{NN}}{\Lambda_0}\right)^{3/4}
$$

c.f. LO that scales as $\gamma^{-1/2}$

P3/4 less important than in pionless EFT, but much more important than $O(eP³)$, as indicated by NDA

Short-distance physics should be markedly more important than NDA indicates in isovector S-to-S transitions

Trinucleon form factors, results

Piarulli et al. (2013)

and note radii

Trinucleon form factors, results

Piarulli et al. (2013)

O(eP4) (nm) bigger than O(eP3) at low q

Summary and outlook

- **Electromagnetic reactions on light nuclei are a good place** to test the efficacy of different χ EFT variants
- Clear separation of "fast" evolution in |**q**| due to one-body operators, and "slow" pieces due to short-distance effects
- **Elastic electron-deuteron developed up to at least** $O(eP⁴)$ **:** only small enhancements of contact terms over NDA
- Trinucleon form factors: enhanced role for short-distance operators?
- **d(e,e'p): f**_L reasonable, f_T shows significant 2π exchange currents, but with sizable cutoff dependence
- Weak reactions: L_{1A} and modified counting?

Summary and outlook

- Electromagnetic reactions on light nuclei are a good place to test the efficacy of different χ EFT variants
- Clear separation of "fast" evolution in |**q**| due to one-body operators, and "slow" pieces due to short-distance effects
- Elastic electron-deuteron developed up to at least O(eP4): only small enhancements of contact terms over NDA Perturbative calculation in progress: Pavon Valderrama and DRP
- Trinucleon form factors: enhanced role for short-distance operators?

Piarulli et al. (2013)

d(e,e'p): f_L reasonable, f_T shows significant $2π$ exchange currents, but with sizable cutoff dependence

Rozpedzik et al. (2011)

Weak reactions: L_{1A} and modified counting?

BACKUP SLIDES

$$
G_C = \frac{1}{3|e|} (\langle 1|\mathcal{M}^0|1\rangle + \langle 0|\mathcal{M}^0|0\rangle + \langle -1|\mathcal{M}^0| - 1\rangle)
$$

\n
$$
G_Q = \frac{1}{|e|Q^2} (\langle 0|\mathcal{M}^0|0\rangle - \langle 1|\mathcal{M}^0|1\rangle)
$$

\n
$$
G_M = -\frac{1}{\sqrt{2\eta}|e|} \langle 1|\mathcal{M}^+|0\rangle; \qquad \eta = \frac{Q^2}{4M_d^2}
$$

Evaluated in Breit Frame

$$
G_C = \frac{1}{3|e|} (\langle 1|\mathcal{M}^0|1\rangle + \langle 0|\mathcal{M}^0|0\rangle + \langle -1|\mathcal{M}^0| - 1\rangle)
$$

\n
$$
G_Q = \frac{1}{|e|Q^2} (\langle 0|\mathcal{M}^0|0\rangle - \langle 1|\mathcal{M}^0|1\rangle)
$$
THEORY
\n
$$
G_M = -\frac{1}{\sqrt{2\eta}|e|} \langle 1|\mathcal{M}^+|0\rangle; \qquad \eta = \frac{Q^2}{4M_d^2}
$$

Evaluated in Breit Frame

$$
G_C = \frac{1}{3|e|} (\langle 1|\mathcal{M}^0|1\rangle + \langle 0|\mathcal{M}^0|0\rangle + \langle -1|\mathcal{M}^0| - 1\rangle)
$$

\n
$$
G_Q = \frac{1}{|e|Q^2} (\langle 0|\mathcal{M}^0|0\rangle - \langle 1|\mathcal{M}^0|1\rangle)
$$
THEORY
\n
$$
G_M = -\frac{1}{\sqrt{2\eta}|e|} \langle 1|\mathcal{M}^+|0\rangle; \qquad \eta = \frac{Q^2}{4M_d^2}
$$

Evaluated in Breit Frame

EXPERIMENT

$$
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[A(Q^2) + B(Q^2)\tan^2\left(\frac{\theta_e}{2}\right)\right], \qquad T_{20}(\theta_e) = \left[\frac{Q^2}{d\Omega}\right]_{\text{Mott}}
$$

 $Q^2; \theta_e)$

$$
G_C = \frac{1}{3|e|} (\langle 1|\mathcal{M}^0|1\rangle + \langle 0|\mathcal{M}^0|0\rangle + \langle -1|\mathcal{M}^0| - 1\rangle)
$$

\n
$$
G_Q = \frac{1}{|e|Q^2} (\langle 0|\mathcal{M}^0|0\rangle - \langle 1|\mathcal{M}^0|1\rangle) \qquad \text{THEORY}
$$

\n
$$
G_M = -\frac{1}{\sqrt{2\eta}|e|} \langle 1|\mathcal{M}^+|0\rangle; \qquad \eta = \frac{Q^2}{4M_d^2}
$$

\n
$$
A = G_C^2 + \frac{2}{3}\eta G_M^2 + \frac{8}{9}\eta^2 M_d^4 G_Q^2, \qquad \text{Evaluated in Breit Frame}
$$

\n
$$
B = \frac{4}{3}\eta(1+\eta)G_M^2,
$$

\n
$$
T_{20} = -\frac{1}{\sqrt{2}}\frac{1}{A(Q^2) + B(Q^2)\tan^2(\frac{\theta_e}{2})} \left[\frac{8}{3}\eta G_C(Q^2)G_Q(Q^2) + \frac{8}{9}\eta^2 G_Q^2(Q^2) + \frac{1}{9}\eta^2 G_Q^2(Q^2) + \frac{1}{3}\eta \left\{1 + 2(1+\eta)\tan^2(\frac{\theta_e}{2})\right\} G_M^2(Q^2)\right].
$$

EXPERIMENT

$$
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[A(Q^2) + B(Q^2)\tan^2\left(\frac{\theta_e}{2}\right)\right]; \qquad T_{20}(Q^2; \theta_e)
$$

Deuteron photodisintegration

Rozpedzik et al. (2011)

