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Dual-purpose Concept 

1.  0½- ββ search:  
NEXT-100 experiment at Canfranc is based on a high-
pressure Xe gas TPC for better performance  

• Spring-board for dual-purpose ton-scale system  

2.  WIMP search:  
Novel approach for directional sensitivity in WIMP 
nuclear recoils exploits columnar recombination 

• If successful, active mass  ton-scale is possible 

20 August 2013 INT -Double Beta Decay 2 



Simultaneous searches? 

• Next generation projects will be expensive! 
– A dual-purpose detector should be considered… if 

it truly saves money and truly is dual-purpose 
 

• Xenon is an attractive choice for both searches 
– No long-lived isotopes 
– Relatively cheap, and easy to enrich 
– Can exchange: enriched   depleted 
– Scales well as monolithic source = detector  
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Xenon in Gas Phase? 

• Gas phase offers attractive possibilities: 
• Normal energy partition fluctuations: F = 0.15 

– Excellent correlation of ionization with deposited energy 
» Remarkably good energy resolution  (0ν-ββ) 

– Much better discrimination between electron/nuclear recoils 
» Small S2/S1 fluctuations (WIMPs) 

• Visualization of event topology (0ν-ββ & WIMPs) 
– Must try to evade background dominant (Mt)1/4 regime 

• Nuclear recoil directional sensing possibility 
– Optimal density? Maybe 10 bars!  x1000 advance? 
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Why Xenon Gas? 
Energy resolution in Xenon depends very strongly on density 
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Here, the 
fluctuations 
are normal 

Fano factor 

F = 0.15 

 Unfolded 
resolution: 

δE/E ~0.6% 
FWHM 

 

  For ρ <0.55 g/cm3, energy resolution from ionization  is “intrinsic” 
 

Very large 
fluctuations 

between 
light/charge! 

F ~ 20  !! 

 

 

 

 

 

20 August 2013 



Why Xenon Gas? 
Energy resolution in Xenon depends very strongly on density 
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Here, the 
fluctuations 
are normal 

Fano factor 

F = 0.15 

 Unfolded 
resolution: 

δE/E ~0.6% 
FWHM 

 

  For ρ <0.55 g/cm3, energy resolution from ionization  is “intrinsic” 
 

Very large 
fluctuations 

between 
light/charge! 

F ~ 20  !! 

WIMPs:  

Large S2/S1 
fluctuations  
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Asymmetric  TPC with “Separated functions” 

INT -Double Beta Decay 8 

Transparent -HV cathode 

Energy plane  Electroluminescent plane  

ions 

Energy & primary 
scintillation 
signals recorded 
here, with PMTs 

Field cage: teflon   

EL signal 
created here 

Tracking  
performed 
 here, with 

“SiPMT” array 

Virtual Fiducial surface 

Operating pressure:  
10 -15 bars 

electrons 
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NEXT - DBDM (LBNL) 
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World record: Energy resolution ´ E/E = 1% FWHM  
 for 137Cs 662 keV γ-rays in xenon! 
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Data from 
LBNL-TAMU 
HPXe TPC 

 

This result is 
important for 
both 0-½² ²  & 
WIMP searches 

 

 

 Ionization signal only 

This result shows that fluctuations are “normal” in HPXe 
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No tracking available  
Restricted fiducial 
volume 

137Cs ³ -ray: 662 keV 
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Extrapolated resolution: 
dE/E (Q² ² ) = 0.5% FWHM 
 



NEXT-DEMO (Valencia) 
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Tracking: PMTs  SiPMs 

NEXT-DEMO  (IFIC, Valencia) 
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Simulations! 
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Real track from 137Cs ³ -ray – reconstructed with SiPMs  

DATA!   NEXT-DEMO  IFIC, Valencia 
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Energy resolution @ 511 keV: NEXT-DEMO (Valencia) 

Corrections with tracking  
over full active volume 
 
Extrapolated resolution: 
dE/E (Q² ² ) = 0.7% FWHM 



 NEXT-100 Technical Design Report, arXiv:1202.0721 
 





NEXT-100 Pressure Vessel 





NEXT at Laboratorio Subteranneo 
de Canfranc (LSC), Spain 

The experiment will be located at Hall A at the LSC. Working 
platform and basic gas system already in place. 
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Pure xenon gas: 0½- ββ : 

• 1% FWHM energy resolution verified by NEXT-
DBDM  at 662 keV  0.5% FWHM @ Q-value 

• Dangerous 214Bi γ-ray at 2448 keV  

• Track reconstruction with SiPMs verified; 
confirms x 30 – 50 background rejection 

• Background rate: 4 x 10-4 counts/keV/kg/year 

• NEXT-100, with 100 kg enriched 136Xe, should 
“touch” inverted hierarchy if backgrounds are 
as low as measurements + simulations 
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Criteria for “Discovery” 

• What criteria should be established and met 
for a claim of “discovery” of 0ν-ββ decay? 
– Excellent energy resolution has been insufficient… 
– Is event topology an essential component?  

 
• What criteria should be established and met 

for “discovery” of WIMP dark matter? 
– Backgrounds lurk everywhere at keV energies… 
– Is “recoil directionality” an essential criterion? 
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Directional sensing for nuclear recoils? 
 

A sidereal variation of “WIMP wind from Cygnus” 
 

WIMP <V> comparable to earth’s velocity: ~230 km/s 

A substantial 
anisotropy in 
nuclear recoils 
should be 
observable 
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SRIM: 200 Xenon 30 keV nuclear recoil events  
in HPXe Xenon – unweighted by energy loss 

Do nuclear recoils retain directionality? 
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SRIM simulations: 
Verified for solids, 
not guaranteed for 
simulations in gas 

30 keV Xe ions in 
10 bars xenon gas  

Nuclear recoils 
are messier 
than ±-particles 
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Dark Matter Search with HPXe 

• The superb energy resolution available, in 
principle, also helps the WIMP search 
– Intrinsic S2/S1 fluctuations are much smaller 

 

• Gas phase permits molecular additives that 
offer remarkable performance opportunities 
– Beneficial for 0ν-ββ, too, but no time to discuss 
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S2 = ionization signal   = Q 
S1 = scintillation signal = L 

Simulation: electron recoils in pure HPXe, 
F = 0.15, !0% optical efficiency 

Simulation! 
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Plot: Justo Martin-Albo,  
IFIC, Valencia 
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S2 = ionization signal   = Q 
S1 = scintillation signal = L 

Simulation: electron recoils in pure HPXe, 
F = 0.15, 10% optical efficiency 

Nuclear recoils here? 

Simulation! 
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Today’s techniques 

• All current approaches attempt to visualize 
the nuclear recoil track: 

• Nuclear Emulsions (expanded optical readout !! ) 

– Low-pressure TPCs  (~50 g/detector) 
• D3 (GEM + pixel ASIC) 
• DMTPC (CF4 optical CCD) 

• DRIFT (CS2
−,  CF4, MWPC ) 

• MIMAC (CF4 + μMegas ) 
• NEWAGE ( Gem, μ-dots ) 
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 Columnar Recombination: a nuisance? 
- or a new way to “see” directionality? 
• Columnar Recombination (CR) occurs when: 

• A drift electric field E exists; 
• Tracks are highly ionizing; 
• Tracks display an approximately linear character; 
• The angle between E and track is small: 
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Substantial CR: more 
light, less charge 

CR small: less 
light, more charge 

E 
E 

track 

track 
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± = 10° Credit: Vic Gehman 
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± = 80° Credit: Vic Gehman 
 






Columnar recombination and 
Directionality sensing in nuclear recoils 
• Columnar recombination (CR) can be quite 

sensitive to the angle between a highly 
ionizing track and an electric field E;  
 

• For a given event energy, more recombination 
would yield more scintillation, less ionization 
 

• Therefore, a comparison – event by event – of 
scintillation/ionization is a measure of CR 
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CR Exists! 
 
Evidence for columnar 
recombination in  
±-particle tracks in 
dense xenon gas. 
 
FWHM depends on  
E-field and density! 
 
 
Bolotnikov & Ramsey 
NIM A 428 (1999)  
pp 391-402 
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What is the optimum Xe density? 

• Define (electrostatic) Columnarity: C   
• C =  R/r0  
• R  =  the nuclear recoil track range  
•  r0  = Onsager radius r0  = e2/ε E, where E is 

electron energy (usually taken as kT) 
– in xenon gas for ρ ≈ 0.05 g/ cm3: 

• R0 ~ 70 nm  
• R ~ 2100 nm for 30 keV nuclear recoil 
• C ≈ 30 in this example 

– Hopeless for liquid density: C < 1 
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Columnarity is key 

We want C to be fairly large, i.e. C > 10 
• This condition is probably met for KE ≥ 20 keV 

in xenon gas for ρ ≈ 0.05 g/ cm3, or less  
 

• Figure of Merit M = Vdet/Vtrack = 1017 per m3 

• CR  M is better than low-density TPC by x109 

INT -Double Beta Decay 39 20 August 2013 



Molecular gymnastics can help 

• Primary excitations ~ ionization 
– Excitations carry no directional information! 

• Convert excitations to ionization by Penning effect 
– Use appropriate molecular additive – which one? 
– Trimethylamine (TMA) displays a strong Penning effect in Xe 

 
• Molecular additive:  

– will cool electrons – facilitates CR 
– Neutralizes xenon ions by charge exchange 
– Track “image” transformed to molecular ion image 
– Molecular ions recombine with electrons  “light” 
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How to maximize a CR signal… 

– Large size of gas-phase TPC requires optical 
detection by wavelength-shifting plastic (WLS) 

• WLS: maximum efficiency at 300 nm 
• WLS: negligible efficiency at 173 nm VUV of xenon 

– Miracle needed: Penning molecule must display 
efficient UV fluorescence at ~300 nm  

– Providence: trimethylamine is known to fluoresce 
very efficiently at ~300 nm !!! 
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Scenario  

• “S1” signal may display strong columnar recombination 
• A substantial effect for nuclear recoils (~100x minimum ionizing) 
• A negligible effect for electron recoils 

• This may provide a way to “see” WIMP directionality 
without direct imaging of nuclear recoil tracks 
– Density restriction on gas is moved to ~10 bars 
– X100 increase relative to low density TPC concept 
– Drift length restriction due to diffusion is removed 
– Simpler spatial detection requirements at anode plane 
– Larger monolithic detector possible, x10 – 100 volume 

• Several hundred kg active mass possible, if true! 
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Size: 2.3 meter diameter 
2 x 3 meter drift length  

With E-field in opposing 
directions, a “head-tail” 
effect might show up 
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With WLS, only a few 
dozen PMTs are needed 
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Large, but 
maybe not 
too large… 
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The “TEA-Pot” 
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OSPREY: “Opportunities for Superior Performance in Rare Event Yields” 

S2/S1 responses  

“WIMP directionality” 
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Perspective  

• Is this a true story, or a fairy tale? 
– At least, serves as imagination stretcher… 

• Plausible at each step, but unknowns exist: 
• Has Nature chosen WIMP mass: 50 – 350 Gev? 
• Penning efficiency of TMA? 
• Fluorescence efficiency of TMA in recombination? 
• Rate of ionic charge exchange? 
• Cooling rate of electrons after ionization? 
• Head-Tail sensitivity? 

• Simulation and experimental effort starting… 
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Perspective 

• Gas phase offers superb energy resolution, event 
visualization, and flexibility in operation 

 

• EL gain stage is a key element for near-intrinsic energy 
resolution for 0½-² ²  search and low energy signals 

 

• Small energy partition fluctuations imply superb S2/S1 
discrimination between electron and nuclear recoils  

 

• Directionality signal for WIMP search at 100’s of kg in 
monolithic TPC would exceed current reach by >1000 
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Gamma events (e - R) 

Neutron events (N - R) 

γ events show large S2/S1 
fluctuations at all energies, 
not improving with energy 

S2 = Primary ionization signal  
S1 = Primary scintillation signal 

Xenon10 – LXe data 
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PMT Array: inside the pressure vessel 
Quartz window 2.54 cm diameter PMTs 
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A typical 137Cs γ waveform (sum of 19 PMTs) 
~300,000 detected photoelectrons 

TIPP 2011 56 10ns/sample 

Primary Scintillation (S1) 
T0 of event  

Electroluminescence (S2) 
structure reflects topology   

Drift Time:z-position   
(~0.01mm/sample) Drift velocity ~1 mm/ms 

20 August 2013 



INT -Double Beta Decay 57 20 August 2013 



INT -Double Beta Decay 58 

 Superb electron-nuclear recoil discrimination! 
 

 Efficient use of active mass – no brutal cuts 

Gaussian behavior persists at x10 number of events 
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the “TEA-pot” 
 

Basic responses 
measurements:  

 
A parallel-plate 
ionization chamber 
with optical sensing, 
using 4 PMTs that 
look at the gap from 
the sides 
 
We will measure both 
light and charge as 
functions of density, 
electric field, and 
fraction of  TMA/TEA,  
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The x-ray peaks around ~30 keV 
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Energy resolution at Qββ = 2457 keV 

δE/E = 2.35 ⋅ (F⋅W/Q)1/2 
– F  ≡  Fano factor (HPXe) :   F = 0.15  

– w ≡ Average energy per ion pair: w ~  25 eV 
– Q ≡ Energy deposited from 136Xe --> 136Ba:  

N = Q/w ~100,000 primary electrons 
σN = (F⋅N)1/2 ~124 electrons rms! 

 
δE/E = 0.28% FWHM       intrinsic HPXe 
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Scaling our result: δE/E H 0.5% FWHM @ Q² ²  
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          Spain provides: 

 Most of the collaborators 

 Most secured funding 

 Host Laboratory  - LSC 

Key contributions from international groups 

 Engineering and integration 

 TPC expertise 

 high-pressure gas detectors 

 Xenon supply & enrichment 

  

 ISU  UNM 
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