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Dual-purpose Concept

1. 0% BPB search:

NEXT-100 experiment at Canfranc is based on a high-
pressure Xe gas TPC for better performance

e Spring-board for dual-purpose ton-scale system

2. WIMP search:

Novel approach for directional sensitivity in WIMP
nuclear recoils exploits columnar recombination

e If successful, active mass = ton-scale is possible

20 August 2013 INT -Double Beta Decay 2



Simultaneous searches?

* Next generation projects will be expensive!

— A dual-purpose detector should be considered... if
it truly saves money and truly is dual-purpose

e Xenon is an attractive choice for both searches
— No long-lived isotopes
— Relatively cheap, and easy to enrich
— Can exchange: enriched €= depleted
— Scales well as monolithic source = detector
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Xenon in Gas Phase?

e Gas phase offers attractive possibilities:

 Normal energy partition fluctuations: F = 0.15
— Excellent correlation of ionization with deposited energy
» Remarkably good energy resolution (Ov-BfB)
— Much better discrimination between electron/nuclear recoils
» Small $2/S1 fluctuations (WIMPs)

 Visualization of event topology (Ov-BB & WIMPs)

— Must try to evade background dominant (Mt)4 regime

* Nuclear recoil directional sensing possibility
— Optimal density? Maybe 10 bars! 2 x1000 advance?
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Why Xenon Gas?
Energy resolution in Xenon depends very strongly on density
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Asymmetric TPC with “Separated functions ”

Virtual Fiducial surface

Electroluminescent plane

Transparent -HV cathode

Energy plane

Energy & primary
scintillation
signals recorded

X
< electrons
EL signal
created here \ RA
Tracking }
performed _lons
here, with
SIPMTarray | riglg cage: teflon
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here, with PMTs

Operating pressure:
10 -15 bars




L
nnu-.—..

u--_ LA L
LV IR

~
> |
o
=
ay
m
gaR
_I
<
LU
Z




e/l
lgden !
‘....:_




World record: Energy resolution " E/E = 1% FWHM
for 13/Cs 662 keV vy-rays in xenon!
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Tracking: PMTs = SIPMs
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Real track from 137Cs 3-ray — reconstructed with SiPMs
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NEXT at Laboratorio Subteranneo
de Canfranc (LSC), Spain

The experiment will be located at Hall A at the LSC. Working
platform and basic gas system already in place.
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Pure xenon gas: 0¥z B3 :

* 1% FWHM energy resolution verified by NEXT-
DBDM at 662 keV =2 0.5% FWHM @ Q-value
e Dangerous %1“Bi y-ray at 2448 keV

e Track reconstruction with SiPMs verified;

confirms x 30 — 50 background rejection
e Background rate: 4 x 10 counts/keV/kg/year

e NEXT-100, with 100 kg enriched 13®Xe, should

“touch” inverted hierarchy if backgrounds are
as low as measurements + simulations
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Criteria for “Discovery”

e \What criteria should be established and met
for a claim of “discovery” of Ov-Bp decay?

— Excellent energy resolution has been insufficient...
— Is event topology an essential component?

e \What criteria should be established and met
for “discovery” of WIMP dark matter?

— Backgrounds lurk everywhere at keV energies...
— Is “recoil directionality” an essential criterion?
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Directional sensing for nuclear recolls?

A sidereal variation of “WIMP wind from Cygnus”

WIMP <V> comparable to earth’s velocity: ~230 km/s

Cygnus

A
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A substantial
anisotropy in
nuclear recoils
should be
observable
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Do nuclear recoils retain directionality?

lon Trajectories

SRIM: 200 Xenon 30 keV nuclear recoil events
in HPXe Xenon — unweighted by energy loss
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Target lonization

Total lonization = 6.2 keV [/ lon
Total Phonons = 21.9 keV [/ lo
Total Target Damage = 1.91 K¢

{eV/Angstrom-TIon)

Nuclear recoils
are messier
than x-particles
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30 keV Xe ions in
10 bars xenon gas

SRIM simulations:
Verified for solids,

simulations in gas
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Plot Window goes from 0 A to 4 um; cell width = 400 A
Press PAUSE TRIM to speed plots. Rotate plot with Mouse.

lon = Xe (30. keV)
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Dark Matter Search with HPXe

 The superb energy resolution available, in
principle, also helps the WIMP search

— Intrinsic S2/S1 fluctuations are much smaller

* Gas phase permits molecular additives that
offer remarkable performance opportunities

— Beneficial for Ov-BpB, too, but no time to discuss
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Simulation: electron recoils in pure HPXe,
F =0.15, 0% optical efficiency
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Simulation: electron recoils in pure HPXe,
F =0.15, 10% optical efficiency
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Today’s techniques

e All current approaches attempt to visualize
the nuclear recoil track:
e Nuclear Emulsions (expanded optical readout !!)
— Low-pressure TPCs (~50 g/detector)

e D3 (GEM + pixel ASIC)
DMTPC (CF, optical CCD)

DRIFT (CS,”, CF,, MWPC)
MIMAC (CF, + pMegas )
NEWAGE ( Gem, p-dots )
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Columnar Recombination: a nuisance?
- or a new way to “see” directionality?

e Columnar Recombination (CR) occurs when:

e A drift electric field E exists;

e Tracks are highly ionizing;

e Tracks display an approximately linear character;
 The angle between E and track is small:

T track E

’ l ¥ s track

Substantial CR: more
light, less charge

CR small: less
light, more charge
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Columnar recombination and
Directionality sensing in nuclear recoils

* Columnar recombination (CR) can be quite
sensitive to the angle between a highly
ionizing track and an electric field /.,

* For a given event energy, more recombination
would yield more scintillation, less ionization

 Therefore, a comparison — event by event — of
scintillation/ionization is a measure of CR
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CR Exists!

Evidence for colum
recombination in
t-particle tracks in
dense xenon gas.

FWHM depends on
E-field and density!

Bolotnikov & Ramsey
NIM A 428 (1999)
pp 391-402
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What is the optimum Xe density?

e Define (electrostatic) Columnarity: C

o C= R/r,

e R = the nuclear recoil track range

* r, =0Onsagerradiusr, = e?/e T, where T is
electron energy (usually taken as kT)

— in xenon gas for p = 0.05 g/ cm3:
* Ry~ 70 nm
e R ~ 2100 nm for 30 keV nuclear recoil
e C=30in this example

— Hopeless for liquid density: C< 1
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Columnarity is key

We want C to be fairly large, i.e. C > 10

e This condition is probably met for KE > 20 keV
in xenon gas for p = 0.05 g/ cm?, or less

 Figure of Merit M =V /V, .. = 107 per m?
e CR M is better than low-density TPC by x10°

20 August 2013 INT -Double Beta Decay
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Molecular gymnastics can help

* Primary excitations ~ ionization

— Excitations carry no directional information!

e Convert excitations to ionization by Penning effect
— Use appropriate molecular additive — which one?
— Trimethylamine (TMA) displays a strong Penning effect in Xe

e Molecular additive:
— will cool electrons — facilitates CR
— Neutralizes xenon ions by charge exchange
— Track “image” transformed to molecular ion image
— Molecular ions recombine with electrons = “light”

20 August 2013 INT -Double Beta Decay
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How to maximize a CR signal...

— Large size of gas-phase TPC requires optical
detection by wavelength-shifting plastic (WLS)

e WLS: maximum efficiency at 300 nm
e WLS: negligible efficiency at 173 nm VUV of xenon

— Miracle needed: Penning molecule must display
efficient UV fluorescence at ~300 nm

— Providence: trimethylamine is known to fluoresce
very efficiently at ~300 nm !!!

20 August 2013 INT -Double Beta Decay 41



Scenario

« “S1” signal may display strong columnar recombination

« A substantial effect for nuclear recoils (~100x minimum ionizing)
» A negligible effect for electron recoils

e This may provide a way to “see” WIMP directionality
without direct imaging of nuclear recoil tracks
— Density restriction on gas is moved to ~10 bars
— X100 increase relative to low density TPC concept
— Drift length restriction due to diffusion is removed
— Simpler spatial detection requirements at anode plane
— Larger monolithic detector possible, x10 — 100 volume

o Several hundred kg active mass possible, if true!
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Size: 2.3 meter diameter
2 X 3 meter drift length

With WLS, only a few
dozen PMTs are needed

With E-field in opposing
directions, a “head-tail”
effect might show up
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Large, but
maybe not
too large...
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The “TEA-Pot”
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OSPREY: “Opportunities for Superior Performance in Rare Event Yields”

S2/S1 responses

lvessel_cylinder

EL mesh pair |

Wis Plate,
anode

WLS plate,
cathode

barrel
WLS
nlates

“WIMP directionality”
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Perspective

e |sthis a true story, or a fairy tale?
— At least, serves as imagination stretcher...

e Plausible at each step, but unknowns exist:

e Has Nature chosen WIMP mass: 50 — 350 Gev?

e Penning efficiency of TMA?

e Fluorescence efficiency of TMA in recombination?
e Rate of ionic charge exchange?

e Cooling rate of electrons after ionization?

e Head-Tail sensitivity?

e Simulation and experimental effort starting...
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Perspective

« (Gas phase offers superb energy resolution, event
visualization, and flexibility in operation

 EL gain stage is a key element for near-intrinsic energy
resolution for 0%2 2 search and low energy signals

« Small energy partition fluctuations imply superb S2/S1
discrimination between electron and nuclear recoils

« Directionality signal for WIMP search at 100’s of kg In
monolithic TPC would exceed current reach by >1000
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Thank you
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Primary ionization signal XenonlO — LXe data
Primary scintillation signal

35

[ F<iO0mm (3.1 kgl, 12713 evis (2-20 keV__]|
. R<TS mm (5.0 kg), 3546 ovia (2-20 keV_)

EF cenlroid
MA ceniraid

i
2.5
=
—7
0 =
~~
(qV]
n ..
o
D .
5 o 5 II:IMVH im0 H-a-hu'ﬂ 20 5
AmBa Calibration. Cuts QG2
oFo221
4 : - - : -
R<100 mm (3.1 kg), 6082 evis (3—16 keV__
asl . R<75 mm (5.0 kg), 3095 evis (3-16 keV )
' ER cantraid
MR centroid
w
)
s %
=g

a 5 10

| Moble Liquids ! Dark Matter
20 August 2013

15 20
ke [220 pnmcﬁr]

a0 as 4
Rick Gaitskell, Brown University, DOE |



Radiopurity: BACKGROUND MODEL

Simulations made with
NEXUS, a GEANT4 based
software developed by NEXT
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Example 1: Electron photo-produced by 2448 keV gamma from 214p; decay

3

Example 2: Electron photo-produced by 2448 keV gamma from 214Bi decay

that undergoes Bremsstrahlung
Example 3: Two electron Compton

scattered from 2615 keV gamma
from 298T| decay

requirements from
Background Model
(counts/kg/keV/year)
214Bi: 0.18 - 0.40 €3
208T]: 0.21-0.48 3
Total: 0.38 - 0.88 e3
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TMA A =240 nm
TEA ———h =250 nm
TPA —8—8—A =248 nm

INTENSITY
(ARBITRARY UNITS)

260 280 300 320 340
WAVELENGTH, Anm

Fig. 4. Vapour-phase fluorescence spectra of TMA, TEA
and TPA at excitation wavelengths indicated.
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PMT Array: inside the pressure vessel
Quartz window 2.54 cm diameter PMTs
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A typical 3’Cs y waveform (sum of 19 PMTs)
~300,000 detected photoelectrons

Waveform: Event 488, Channel 22
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Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples

500 500
[ PMMA-120409-12 25.4x12.7x304.8 mm” ‘
450 F ] 480
[ Em=422nm Ex=200nm ] _
400 - P‘. ] 400 :
350 b / l\l . 350 |
Z'E clals] = I Il'u ] :i 300
o i | ®©
2 sk , \ 1 220
o [ 1 »
- | ] 5
@ ]
E 200 _- \'.l‘ -_ E 200
150 |- ’ \ . 150
100 | 'l _ 100
50 J - 50
- . L . L, .LI T e T“"*g 0

?Zﬁﬂ

350 400 450
Wavelength (nm)

300

20 August 2013
Apnr 12 2012

[ PMMA-120409-25 25.4x25 4x304.8 mm”

|

| U“\

|

Em=401nm Ex=310nm

/

——
1

M I I R Ll
aoo 350 400 450 500

Wavelength (nm)

N
250

Caltech Crvstal | aboratory

550



Gaussian behavior persists at x10 number of events

2
8 esf :
- =» Superb electron-nuclear recoll discrimination!
2 _— —
: =» Efficient use of active mass — no brutal cuts
sl :
o 8 10 15 20 25 30 35 a0 a6 50

energy (keV)
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the “TEA-pot”

Basic responses
measurements:

A parallel-plate
lonization chamber
with optical sensing,
using 4 PMTs that
look at the gap from
the sides

We will measure both
light and charge as
functions of density,
electric field, and
fraction of TMA/TEA,
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The x-ray peaks around ~30 keV
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Energy resolution at Qg = 2457 keV

SE/E = 2.35 - (F-W/Q)2
— F = Fano factor (HPXe) : F=0.15
— W = Average energy per ion pair: w ~ 25 eV
— Q = Energy deposited from 13%Xe --> 135Ba:
N = Q/w ~100,000 primary electrons
oy = (F-N)Y2 ~124 electrons rms!

OE/E = 0.28% FWHM Intrinsic HPXe

Scaling our result: 8E/E H0.5% FWHM @ Q..

20 August 2013 INT -Double Beta Decay
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NEXT Collaboration

CEA (Saclay)

JINR (Dubna)

UAN (Bogota)

20 August 2013

LBNL o Texas A&M e [SU e UNM

U.Aveiro ® U, Coimbra

CIEMAT (Madrid) e U. Girona e iFAE {Daiccicna) e
IFIC (Valencia) ® U. Santiago ® U.F.Valencia ® U. Zaragoza

Spain provides:

Most of the collaborators

Most secured funding

Host Laboratory - LSC

Key contributions from international groups

Engineering and integration
TPC expertise
high-pressure gas detectors

Xenon supply & enrichment
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