The NEXT-100 Double Beta Decay Experiment -Progress and Perspectives for the Ton-scale

David Nygren Lawrence Berkeley National Laboratory

Dual-purpose Concept

1. $0^{1/2} \beta\beta$ search:

NEXT-100 experiment at Canfranc is based on a highpressure Xe gas TPC for better performance

• Spring-board for dual-purpose ton-scale system

2. WIMP search:

Novel approach for *directional* sensitivity in WIMP nuclear recoils exploits <u>columnar recombination</u>

• If successful, active mass \rightarrow ton-scale is possible

Simultaneous searches?

- Next generation projects will be expensive!
 - A dual-purpose detector should be considered... if it truly saves money and truly is dual-purpose
- Xenon is an attractive choice for both searches
 - No long-lived isotopes
 - Relatively cheap, and easy to enrich
 - Can exchange: enriched $\leftarrow \rightarrow$ depleted
 - Scales well as monolithic source = detector

Xenon in Gas Phase?

- Gas phase offers attractive possibilities:
 - Normal energy partition fluctuations: F = 0.15
 - Excellent correlation of ionization with deposited energy

» Remarkably good energy resolution ($0v-\beta\beta$)

Much better discrimination between electron/nuclear recoils

» Small S2/S1 fluctuations (WIMPs)

- Visualization of event topology (0ν-ββ & WIMPs)
 - Must try to evade background dominant (Mt)^{1/4} regime
- Nuclear recoil <u>directional</u> sensing possibility

- Optimal density? Maybe 10 bars! \rightarrow x1000 advance?

Why Xenon Gas? Energy resolution in Xenon depends very <u>strongly</u> on density

For $\rho < 0.55$ g/cm³, energy resolution from ionization is "intrinsic"

Why Xenon Gas? Energy resolution in Xenon depends very <u>strongly</u> on density

For $\rho < 0.55$ g/cm³, energy resolution from ionization is "intrinsic"

LXe: Energy resolution

Energy resolution: Anomalous in LXe. Much worse than in HPXe. Energy resolution: 4% FWHM at Q, using anticorrelation between scintillation and ionization

Asymmetric TPC with "Separated functions"

NEXT - DBDM (LBNL)

100

World record: Energy resolution E/E = 1% FWHM for ¹³⁷Cs 662 keV γ -rays in xenon!

This result shows that fluctuations are "normal" in HPXe

Tracking: PMTs \rightarrow SiPMs

NEXT-DEMO (IFIC, Valencia)

Simulations!

<u>Real</u> track from ¹³⁷Cs ³-ray – reconstructed with SiPMs

INT -Double Beta Decay

Energy resolution @ 511 keV: NEXT-DEMO (Valencia)

Entries / bin

Energy plane

.......

NEXT at Laboratorio Subteranneo de Canfranc (LSC), Spain

The experiment will be located at Hall A at the LSC. Working platform and basic gas system already in place.

20 August 2013

Pure xenon gas: $0\frac{1}{2}\beta\beta$:

- 1% FWHM energy resolution verified by NEXT-DBDM at 662 keV → 0.5% FWHM @ Q-value
 - Dangerous ²¹⁴Bi γ-ray at 2448 keV
- Track reconstruction with SiPMs verified; confirms x 30 – 50 background rejection

• Background rate: 4 x 10⁻⁴ counts/keV/kg/year

 NEXT-100, with 100 kg enriched ¹³⁶Xe, should "touch" inverted hierarchy if backgrounds are as low as measurements + simulations

Criteria for "Discovery"

- What criteria should be established and met for a claim of "discovery" of 0v-ββ decay?
 - Excellent energy resolution has been insufficient...
 - Is event topology an essential component?
- What criteria should be established and met for "discovery" of WIMP dark matter?

Backgrounds lurk everywhere at keV energies...

– Is "recoil directionality" an essential criterion?

Directional sensing for nuclear recoils?

A sidereal variation of "WIMP wind from Cygnus"

WIMP <V> comparable to earth's velocity: ~230 km/s

A substantial anisotropy in nuclear recoils should be observable

Do nuclear recoils retain directionality?

SRIM: 200 Xenon 30 keV nuclear recoil events in HPXe Xenon – unweighted by energy loss

Dark Matter Search with HPXe

The superb energy resolution available, in principle, also helps the WIMP search

 Intrinsic S2/S1 fluctuations are much smaller

 Gas phase permits molecular additives that offer remarkable performance opportunities

 Beneficial for 0ν-ββ, too, but no time to discuss

Simulation: electron recoils in pure HPXe, F = 0.15, 10% optical efficiency

Simulation: electron recoils in pure HPXe, F = 0.15, 10% optical efficiency

Today's techniques

- All current approaches attempt to **visualize** the nuclear recoil track:
 - Nuclear Emulsions (expanded optical readout !!)
 - Low-pressure TPCs (~50 g/detector)
 - D³ (GEM + pixel ASIC)
 - **DMTPC** (CF₄ optical CCD)
 - DRIFT (CS₂⁻, CF₄, MWPC)
 - MIMAC (CF₄ + μMegas)
 - NEWAGE (Gem, μ-dots)

Columnar Recombination: a nuisance?

- or a new way to "see" directionality?
- <u>Columnar Recombination</u> (CR) occurs when:
 - A drift electric field *E* exists;
 - Tracks are highly ionizing;
 - Tracks display an approximately linear character;
 - The angle between *E* and track is small:

Columnar recombination and Directionality sensing in nuclear recoils

- Columnar recombination (CR) can be quite sensitive to the angle between a <u>highly</u> ionizing track and an <u>electric field</u>;
- For a given event energy, more recombination would yield more scintillation, less ionization
- Therefore, a comparison event by event of scintillation/ionization is a measure of CR

CR Exists!

Evidence for columnar recombination in **±-particle** tracks in dense xenon gas.

FWHM depends on E-field and density!

Bolotnikov & Ramsey NIM A 428 (1999) pp 391-402

Electric field, kV/cm

Fig. 5. FWHM of the peaks in pulse-height spectra of the amplitude of the light signals versus the electric field strength measured at 0.08 g/cm³ (diamonds), 0.18 g/cm³ (squares), 0.33 g/cm³ (circles), and 0.74 g/cm³ (triangles).

What is the optimum Xe density?

- Define (*electrostatic*) Columnarity: C
- $C = \mathcal{R}/r_0$
- \mathcal{R} = the nuclear recoil track *range*
- $r_0 = Onsager radius r_0 = e^2/\epsilon \mathcal{E}$, where \mathcal{E} is electron energy (usually taken as kT)
 - in xenon gas for $\rho \approx 0.05 \text{ g/ cm}^3$:
 - R₀ ~ 70 nm
 - $\mathcal{R} \sim 2100 \text{ nm}$ for 30 keV nuclear recoil
 - *C* ≈ 30 in this example
 - Hopeless for liquid density: C < 1

Columnarity is key

We want C to be fairly large, i.e. C > 10

- This condition is probably met for KE ≥ 20 keV in xenon gas for p ≈ 0.05 g/ cm³, or less
- Figure of Merit $\mathbf{M} = V_{det}/V_{track} = \mathbf{10^{17}} \text{ per m}^3$
- CR M is better than low-density TPC by x10⁹

Molecular gymnastics can help

- Primary excitations ~ ionization
 - Excitations carry no directional information!
 - Convert excitations to ionization by <u>Penning effect</u>
 - Use appropriate molecular additive which one?
 - Trimethylamine (TMA) displays a strong Penning effect in Xe
 - Molecular additive:
 - will cool electrons facilitates CR
 - Neutralizes xenon ions by charge exchange
 - Track "image" transformed to molecular ion image
 - Molecular ions recombine with electrons \rightarrow "light"

How to maximize a CR signal...

- Large size of gas-phase TPC requires optical detection by wavelength-shifting plastic (WLS)
 - WLS: maximum efficiency at 300 nm
 - WLS: negligible efficiency at 173 nm VUV of xenon
- Miracle needed: Penning molecule must display efficient UV fluorescence at ~300 nm
- Providence: trimethylamine is known to fluoresce very efficiently at ~300 nm !!!

Scenario

- "S1" signal may display strong *columnar recombination*
 - A substantial effect for nuclear recoils (~100x minimum ionizing)
 - A negligible effect for electron recoils
- This may provide a way to "see" WIMP directionality without direct imaging of nuclear recoil tracks
 - Density restriction on gas is moved to ~10 bars
 - X100 increase relative to low density TPC concept
 - Drift length restriction due to diffusion is removed
 - Simpler spatial detection requirements at anode plane
 - Larger monolithic detector possible, x10 100 volume
- Several hundred kg active mass possible, if true!

Size: 2.3 meter diameter 2 x 3 meter drift length

With WLS, only a few dozen PMTs are needed

With E-field in opposing directions, a "head-tail" effect might show up

Large, but maybe not too large...

OSPREY: "Opportunities for Superior Performance in Rare Event Yields"

Perspective

- Is this a true story, or a fairy tale?
 - At least, serves as imagination stretcher...
- Plausible at each step, but unknowns exist:
 - Has Nature chosen WIMP mass: 50 350 Gev?
 - Penning efficiency of TMA?
 - Fluorescence efficiency of TMA in recombination?
 - Rate of ionic charge exchange?
 - Cooling rate of electrons after ionization?
 - Head-Tail sensitivity?

• Simulation and experimental effort starting...

- Gas phase offers superb energy resolution, event visualization, and flexibility in operation
- EL gain stage is a key element for near-intrinsic energy resolution for 0¹/z^{2 2} search and low energy signals
- Small energy partition fluctuations imply superb S2/S1 discrimination between electron and nuclear recoils
- Directionality signal for WIMP search at 100's of kg in monolithic TPC would exceed current reach by >1000

S2 = Primary ionization signal S1 = Primary scintillation signal

Xenon10 – LXe data

20 August 2013

Radiopurity: BACKGROUND MODEL

Simulations made with **NEXUS**, a GEANT4 based software developed by NEXT

Example 1: Electron photo-produced by 2448 keV gamma from ²¹⁴Bi decay Example 2: Electron photo-produced by 2448 keV gamma from ²¹⁴Bi decay that undergoes Bremsstrahlung Example 3: Two electron Compton scattered from 2615 keV gamma from ²⁰⁸Tl decay

requirements from Background Model *(counts/kg/keV/year)* ²¹⁴Bi: 0.18 - 0.40 e⁻³ ²⁰⁸Tl: 0.21 - 0.48 e⁻³ Total: 0.38 - 0.88 e⁻³

PMT Array: inside the pressure vessel Quartz window 2.54 cm diameter PMTs

A typical ¹³⁷Cs γ waveform (sum of 19 PMTs) ~300,000 detected photoelectrons

Photo-Luminescence of PMMA

Different WLS nature observed for two PMMA Samples

20 August 2013

Apr 12, 2012

Caltech Crystal Laboratory

Gaussian behavior persists at x10 number of events

the "TEA-pot"

Basic responses measurements:

A parallel-plate ionization chamber with optical sensing, using 4 PMTs that look at the gap from the sides

We will measure both light and charge as functions of density, electric field, and fraction of TMA/TEA, The x-ray peaks around ~30 keV

Energy resolution at $Q_{\beta\beta} = 2457 \text{ keV}$

$\delta E/E = 2.35 \cdot (F \cdot W/Q)^{1/2}$

 $- F \equiv$ Fano factor (HPXe) : F = 0.15

- w = Average energy per ion pair: w ~ 25 eV

- $Q \equiv$ Energy deposited from ¹³⁶Xe --> ¹³⁶Ba:

 $N = Q/w \sim 100,000$ primary electrons

 $\sigma_{N} = (F \cdot N)^{1/2} \sim 124$ electrons rms!

 $\delta E/E = 0.28\%$ FWHM intrinsic HPXe

Scaling our result: **SE/E H0.5% FWHM** @ Q22

NEXT Collaboration

CIEMAT (Madrid) • U. Girona • IFAE (Barcelona) • IFIC (Valencia) • U. Santiago • U.P.Valencia • U. Zaragoza

LBNL • Texas A&M • ISU • UNM

U. Aveiro • U. Coimbra

CEA (Saclay)

JINR (Dubna)

UAN (Bogota)

Spain provides:

Most of the collaborators

Most secured funding

Host Laboratory - LSC

Key contributions from international groups

Engineering and integration

TPC expertise

high-pressure gas detectors

Xenon supply & enrichment

20 August 2013