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The Proton Radius Puzzle:
A challenge to all of us

Gerald A. Miller, University of Washington

Pohl et al Nature 466, 213 (8 July 2010)

muon H  rp =0.84184 (67)  fm
electron H  rp =0.8768 (69)fm
electron-p scattering  rp =0.875 (10)fm

r2
p ≡ −6

dGE(Q2)
dQ2

∣∣∣∣∣
Q2=0

arXiv:1301.0905
Pohl, Gilman, Miller, Pachucki 

(ARNPS63, 2013)



4 % in radius: why care?

• Can’t be calculated to that accuracy

• 1/2 cm in radius of a basketball 



4 % in radius: why care?

• Can’t be calculated to that accuracy

• 1/2 cm in radius of a basketball 

Is the muon-proton interaction 
the same as the electron-proton 

interaction? - many possible 
ramifications 



un i v er s i ty o f mel bourn e c s sm , u n i v er s i ty o f ade l a i d e

The Experiment
Muonic Hydrogen

∆E2S−2P
Lamb

2P1/2

2S1/2

The Lamb shift is the splitting
of the degenerate 2S1/2 and 2P1/2

eigenstates, due to vacuum polar-
ization

VV P (r) = −
Zα

r

α

3π

∫ ∞

4

d(q2)

q2
e−meqr

√

1−
4

q2

(

1 +
2

q2

)

J. Carroll — Proton Radius Puzzle — Slide 8

2S1/2, 2P1/2states are degenerate−
Schroedinger, Dirac eqns.

Dominant in μH 

Dominant in eH

Experiment: Basic idea

205 of 206 meV
Range is 1/me~aB(muon)



Proton extent in 
hydrogen atom 

GE(q2)− 1 ≈ −q2r2
p/6

δV (r) ≡ VC(r)− V pt
C (r) = −4πα

∫
d3q

(2π)3
eiq·r (GE(q2)− 1)

q2

∆E = 〈ΨS |δV |Ψs〉 =
2
3
πα |ΨS(0)|2 r2

p

Square of wf at origin ~ lepton mass cubed

• Muon/electron mass ratio 205! 8 million times larger for muon



Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance,nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of“prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.
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The experiment:  
results disagree with previous measurements & world average 

atoms formed. Themeasurement times varied between 3 and 13 h per
laser wavelength. The 75-ns-long laser time window, in which the
laser induced Ka events are expected, is indicated in Fig. 4. We have
recorded a rate of 7 events per hour in the laser timewindowwhen on
resonance. The background of about 1 event per hour originates
mainly from falsely identified muon-decay electrons and effects
related to delayed muon transfer to target walls.

Figure 5 shows the measured 2S–2P resonance curve. It is obtained
by plotting the number of Ka events recorded in the laser timewindow,
normalized to thenumber of events in thepromptpeak, as a functionof
the laser frequency. In total, we have measured 550 events in the res-
onance, where we expect 155 background events. The fit to the data is a
Lorentzian resonance line on top of a flat background. All four para-
meters (Lorentzian amplitude, position and width, as well as back-
ground amplitude) were varied freely. A maximum likelihood fit
using CERN’s ROOT analysis tool accounted for the statistics at each
laser wavelength. Our statistical uncertainties are the 1s confidence
intervals.

Weobtain a centroid position of 49,881.88(70)GHz, and awidth of
18.0(2.2)GHz, where the given uncertainties are the 1 s.d. statistical
uncertainties. The width compares well with the value of 20(1)GHz
expected from the laser bandwidth and Doppler- and power-broad-
ening of the natural line width of 18.6GHz. The resulting background
amplitude agrees with the one obtained by a fit to data recorded
without laser (not shown). We obtain a value of x25 28.1 for 28
degrees of freedom (d.f.). A fit of a flat line, assuming no resonance,
gives x25 283 for 31 d.f., making this resonance line 16s significant.

The systematic uncertainty of our measurement is 300MHz. It
originates exclusively from our laser wavelength calibration proced-
ure. We have calibrated our line position in 21 measurements of 5
different water vapour absorption lines in the rangel5 5.49–6.01mm.
The positions of these water lines are known28 to an absolute precision
of 1MHz and are tabulated in the HITRAN database29. The measured
relative spacingbetween the 5 lines agreeswith thepublishedones.One
suchmeasurement of awater vapour absorption line is shown in Fig. 5.
Our quoted uncertainty of 300MHz comes from pulse to pulse fluc-
tuations and a broadening effect occurring in the Raman process. The
FSRof the reference Fabry–Perot cavity does not contribute, as the FSR
is known better than 3 kHz and the whole scanned range is within 70
FSR of thewater line. Other systematic correctionswe have considered
are Zeeman shift in the 5T field (,30MHz), a.c. and d.c. Stark shifts
(,1MHz), Doppler shift (,1MHz) and pressure shift (,2MHz).
Molecular effects do not influence our resonance position because
the formed muonic molecules ppm1 are known to de-excite quickly30

and do not contribute to our observed signal. Also, the width of our
resonance line agrees with the expectedwidth, whereasmolecular lines
would be wider.

The centroid position of the 2SF~1
1=2 {2PF~2

3=2 transition is
49,881.88(76)GHz, where the uncertainty is the quadratic sum of
the statistical (0.70GHz) and the systematic (0.30GHz) uncertainties.
This frequency corresponds to an energy ofDẼ5 206.2949(32)meV.
From equation (1), we deduce an r.m.s. proton charge radius of
rp5 0.84184(36)(56) fm, where the first and second uncertainties ori-
ginate respectively from the experimental uncertainty of 0.76GHzand
the uncertainty in the first term in equation (1). Theory, and here
mainly the proton polarizability term, gives the dominant contri-
bution to our total relative uncertainty of 83 1024. Our experimental
precision would suffice to deduce rp to 43 1024.

This new value of the proton radius rp5 0.84184(67) fm is 10 times
more precise, but 5.0s smaller, than the previous world average3,
which is mainly inferred from H spectroscopy. It is 26 times more
accurate, but 3.1s smaller, than the accepted hydrogen-independent
value extracted from electron–proton scattering1,2. The origin of this
large discrepancy is not known.

If we assume some QED contributions in mp (equation (1)) were
wrong or missing, an additional term as large as 0.31meV would be
required to match our measurement with the CODATA value of rp.
We note that 0.31meV is 64 times the claimed uncertainty of equation
(1).

TheCODATAdeterminationofrp canbe seen in a simplifiedpicture
as adjusting the input parameters rp and R‘ (the Rydberg constant) to
match theQED calculations8 to themeasured transition frequencies4–7

in H: 1S–2S on the one hand, and 2S{n‘ n‘~2P,4,6,8S=D,12Dð Þ on
the other.

The 1S–2S transition in H has been measured3–5 to 34Hz, that is,
1.43 10214 relative accuracy. Only an error of about 1,700 times the
quoted experimental uncertainty could account for our observed dis-
crepancy. The 2S{n‘ transitions have been measured to accuracies
between 1/100 (2S–8D) (refs 6, 7) and 1/10,000 (2S1/2–2P1/2 Lamb
shift31) of the respective line widths. In principle, such an accuracy
couldmake these data subject to unknown systematic shifts.We note,
however, that all of the (2S{n‘) measurements (for a list, see, for
example, table XII in ref. 3) suggest a larger proton charge radius.
Finally, the origin of the discrepancy with the H data could originate
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Figure 4 | SummedX-ray time spectra. Spectra were recorded on resonance
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“The 1S-2S transition in H has been measured to

34 Hz, that is, 1.4× 10−14 relative accuracy.

Only an error of about 1,700 times the quoted

experimental uncertainty could account for our

observed discrepancy.”
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2010 Experimental summary

• Rydberg is known to 12 figures

• Puzzle- why muon H different than e H?

Pulsed laser spectroscopy

LETTERS

The size of the proton
Randolf Pohl1, Aldo Antognini1, François Nez2, Fernando D. Amaro3, François Biraben2, João M. R. Cardoso3,
Daniel S. Covita3,4, Andreas Dax5, Satish Dhawan5, Luis M. P. Fernandes3, Adolf Giesen6{, Thomas Graf6,
Theodor W. Hänsch1, Paul Indelicato2, Lucile Julien2, Cheng-Yang Kao7, Paul Knowles8, Eric-Olivier Le Bigot2,
Yi-Wei Liu7, José A. M. Lopes3, Livia Ludhova8, Cristina M. B. Monteiro3, Françoise Mulhauser8{, Tobias Nebel1,
Paul Rabinowitz9, Joaquim M. F. dos Santos3, Lukas A. Schaller8, Karsten Schuhmann10, Catherine Schwob2,
David Taqqu11, João F. C. A. Veloso4 & Franz Kottmann12

The proton is the primary building block of the visible Universe,
butmany of its properties—such as its charge radius and its anom-
alousmagneticmoment—arenotwell understood. The root-mean-
square charge radius, rp, has been determinedwith an accuracy of 2
per cent (at best) by electron–proton scattering experiments1,2. The
presentmost accurate value of rp (with an uncertainty of 1 per cent)
is given by the CODATA compilation of physical constants3. This
value is based mainly on precision spectroscopy of atomic
hydrogen4–7 and calculations of bound-state quantum electrody-
namics (QED; refs 8, 9). The accuracy of rp as deduced from elec-
tron–proton scattering limits the testing of bound-state QED in
atomic hydrogen as well as the determination of the Rydberg
constant (currently the most accurately measured fundamental
physical constant3). An attractive means to improve the accuracy
in themeasurementof rp is providedbymuonichydrogen (a proton
orbited by a negative muon); its much smaller Bohr radius com-
pared to ordinary atomic hydrogen causes enhancement of effects
related to the finite size of theproton. Inparticular, theLamb shift10

(the energy difference between the 2S1/2 and 2P1/2 states) is affected
by as much as 2 per cent. Here we use pulsed laser spectroscopy to
measure amuonic Lamb shift of 49,881.88(76)GHz.On the basis of
present calculations11–15 of fine and hyperfine splittings and QED
terms, we find rp5 0.84184(67) fm, which differs by 5.0 standard
deviations from the CODATA value3 of 0.8768(69) fm. Our result
implies that either the Rydberg constant has to be shifted by
2110 kHz/c (4.9 standard deviations), or the calculations of the
QED effects in atomic hydrogen or muonic hydrogen atoms are
insufficient.

Bound-state QED was initiated in 1947 when a subtle difference
between the binding energies of the 2S1/2 and 2P1/2 states of H atoms
was established, denoted as the Lamb shift10. It is dominated by
purely radiative effects8, such as ‘self energy’ and ‘vacuum polariza-
tion’. More recently, precision optical spectroscopy of H atoms4–7

and the corresponding calculations8,9 have improved tremendously
and reached a point where the proton size (expressed by its root-

mean-square charge radius, rp~

ffiffiffiffiffiffiffiffiffiffi
r2p

D Er
) is the limiting factor when

comparing experiment with theory16.
The CODATA value3 of rp5 0.8768(69) fm is extracted mainly

fromH atom spectroscopy and thus relies on bound-state QED (here
and elsewhere numbers in parenthesis indicate the 1 s.d. uncertainty

of the trailing digits of the given number). AnH-independent but less
precise value of rp5 0.897(18) fm was obtained in a recent reanalysis
of electron-scattering experiments1,2.

A much better determination of the proton radius is possible by
measuring the Lamb shift in muonic hydrogen (mp, an atom formed
by a proton, p, and a negative muon, m2). The muon is about 200
times heavier than the electron. The atomic Bohr radius is corre-
spondingly about 200 times smaller in mp than in H. Effects of the
finite size of the proton on the muonic S states are thus enhanced. S
states are shifted because the muon’s wavefunction at the location of
the proton is non-zero. In contrast, P states are not significantly
shifted. The total predicted 2SF~1

1=2 {2PF~2
3=2 energy difference, DẼ,

in muonic hydrogen is the sum of radiative, recoil, and proton struc-
ture contributions, and the fine and hyperfine splittings for our par-
ticular transition, and it is given8,11–15 by

D~EE~209:9779 49ð Þ{5:2262 r2pz0:0347 r3p meV ð1Þ

where rp~

ffiffiffiffiffiffiffiffiffiffi
r2p

D Er
is given in fm. A detailed derivation of equation

(1) is given in Supplementary Information.
The first term in equation (1) is dominated by vacuum polariza-

tion, which causes the 2S states to be more tightly bound than the 2P
states (Fig. 1). The mp fine and hyperfine splittings (due to spin–orbit
and spin–spin interactions) are an order of magnitude smaller than
the Lamb shift (Fig. 1c). The uncertainty of 0.0049meV in DẼ is
dominated by the proton polarizability term13 of 0.015(4)meV.
The second and third terms in equation (1) are the finite size con-
tributions. They amount to 1.8% of DẼ, two orders of magnitude
more than for H.

For more than forty years, a measurement of the mp Lamb shift has
been considered one of the fundamental experiments in atomic spec-
troscopy, but only recent progress in muon beams and laser techno-
logy made such an experiment feasible. We report the first successful
measurement of the mp Lamb shift. The energy difference between the
2SF~1

1=2 and 2PF~2
3=2 states of mp atoms has been determined bymeans of

pulsed laser spectroscopy at wavelengths around 6.01mm. This
transition was chosen because it gives the largest signal of all six
allowed optical 2S–2P transitions. All transitions are spectrally well
separated.

The experiment was performed at the pE5 beam-line of the proton
accelerator at the Paul Scherrer Institute (PSI) in Switzerland. We

1Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany. 2Laboratoire Kastler Brossel, École Normale Supérieure, CNRS, and Université P. et M. Curie-Paris 6, 75252 Paris,
Cedex 05, France. 3Departamento de Fı́sica, Universidade deCoimbra, 3004-516 Coimbra, Portugal. 4I3N, Departamento de Fı́sica, Universidade deAveiro, 3810-193Aveiro, Portugal.
5Physics Department, Yale University, New Haven, Connecticut 06520-8121, USA. 6Institut für Strahlwerkzeuge, Universität Stuttgart, 70569 Stuttgart, Germany. 7Physics
Department, National Tsing Hua University, Hsinchu 300, Taiwan. 8Département de Physique, Université de Fribourg, 1700 Fribourg, Switzerland. 9Department of Chemistry,
Princeton University, Princeton, New Jersey 08544-1009, USA. 10Dausinger & Giesen GmbH, Rotebühlstr. 87, 70178 Stuttgart, Germany. 11Paul Scherrer Institute, 5232 Villigen-PSI,
Switzerland. 12Institut für Teilchenphysik, ETHZürich, 8093Zürich, Switzerland. {Present addresses: Deutsches Zentrum für Luft- und Raumfahrt e.V. in derHelmholtz-Gemeinschaft,
70569 Stuttgart, Germany (A.G.); International Atomic Energy Agency, A-1400 Vienna, Austria (F.M.).
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Possible resolutions

• QED bound-state calculations not accurate-
very unlikely

• Electron experiments not so  accurate    

• Muon interacts differently than electron!

• Strong interaction effect in two photon 
exchange diagram



Experimental Electronic 
hydrogen energy levels

• Need two levels to get Rydberg and Lamb 
shift-have ~ 20 available

E(nS) ! R∞
n2

+
L1S

n3

L1S ! (6172 + 1.56(rp/fm)2)MHz



Hydrogen spectroscopy
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Several new 
experiments planned

• Independent measurement of Rydberg 
constant

• This would change only extracted rp  
nothing else

• 2S-6S UK, 2S-4P Germany,1S-3S France

• 2S-2P classsic, Canada

• Highly charged single electron ions NIST



New forces, dark photons
• ordinary matter makes up 5 % of energy 

density of universe

• dark sector- energy density inferred through 
gravitational fields 

• dark matter is 25 % (acts as matter 
gravitationally)

• dark energy 70 % of universe

• dark electromagnetism -dark photons-couple 
to dark matter not to standard model

Arkani-Hamed
Pospelov,

...

“The whole set-up is totally vanilla and conservative from a theorist’s point of view,”Arkani-Hamed:
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matter annihilation into  !"s, which then decay to electron-positron pairs.  Intriguingly, the 

interactions of dark matter with an !" can also provide the required annihilation rate. 

Existing constraints [5-34] and the sensitivity of several planned experiments are shown in 

F igure 5.6 in a plot of !""! (the ratio of the !" coupling to that of QED) and the mass of the !".  

We now discuss experimental searches for the !", with particular focus on the electron fixed 

target experiments planned at Jefferson Lab. 

5b.2 Experimental Searches at Jefferson Lab 

An !" in the MeV-GeV mass range can decay to electrically charged particles (e.g.  

#$#%& '$'%& ()*+$+%) or to light hidden-sector particles (if available), which can in turn decay 

to ordinary matter.  Such an !" can be efficiently produced in electron- or proton-fixed-target 

experiments [5-34, 5-39, 5-40, 5-44, 5-45, 5-46, 5-47, 5-48, 5-49] and at #$#%*and hadron 

colliders [5-17, 5-27, 5-38, 5-41, 5-50, 5-51, 5-52, 5-53, 5-54, 5-55, 5-56, 5-57, 5-58]. 

Electron fixed-target experiments are well suited to probe a large range in the !""! ,-.! 

parameter space [5-34].  In particular, the large luminosity (/(1 01%2"*day)) presently available 

at CEBAF and the Free Electron Laser (FEL) at Jefferson Lab, and their beam characteristics 

make Jefferson Lab particularly well suited for !" searches. 

In electron fixed-target experiments, the !" is produced via bremsstrahlung from the incoming 

electron beam as it interacts with the target 

nuclei, see F igure 5.7.  The Jefferson Lab 

experiments are sensitive to A" decays to an 

#$#%* pair (or in some cases also a '$'%* 

pair).  This decay can occur promptly or 

produce an /(cm) displaced vertex if !" is 

sufficiently small. 

Radiative and Bethe-Heitler trident production 

give rise to large backgrounds, and three 

experimental approaches have been proposed 

to detect the #$#%* pair from the !" decay over 

these backgrounds: dual-arm spectrometers 

(like APEX) search for a small resonance in 

the #$#%* invariant mass spectrum on top of a 

large smooth background; forward vertexing 

spectrometers (like HPS) search for a small vertex from the finite !" lifetime; and full final state 

reconstruction in experiments (like DarkLight) detect all outgoing particles to infer the presence 

of the !".  The complementary approaches map out different regions in the mass-coupling 

parameter space. 

APEX [5-44] in Hall A is a proposed experiment that would use the CEBAF electron beam at 

various energies incident on a tungsten target.  The #$#%* pairs produced from an !" decay can 

be detected using the existing High Resolution Spectrometers and the septum magnet in Hall A.  

A successful test run in Hall A demonstrated the feasibility of this approach [5-39].  HPS [5-45] 

is a proposed experiment sited in Hall B, downstream of the CLAS12 detector.  It would utilize a 

 

F igure 5.7!"#$%&'()*"+$&,%*(-+".)/"01"2/)34&'()*"
via bremsstrahlung in the interaction of an electron 
with a nuclear target. 

JLab Aprime
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R. Essig

Three experiments  at JLab

Muon data is g-2 - BNL exp’t, 
Hertzog- Kammel ...



muon anomalous moment
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1. INTRODUCTION

One of the great successes of the Dirac equation (1) was its prediction that the
magnetic dipole moment, !µ, of a spin |!s| = 1/2 particle such as the electron (or
muon) is given by

!µl = gl
e

2ml
!s, l = e, µ . . . , 1.

with gyromagnetic ratio gl = 2, a value already implied by early atomic spec-
troscopy. Later it was realized that a relativistic quantum field theory such as
quantum electrodynamics (QED) can give rise via quantum fluctuations to a shift
in gl ,

al ≡ gl − 2
2

, 2.

called the magnetic anomaly. In a now classic QED calculation, Schwinger (2)
found the leading (one-loop) effect (Figure 1),

al = α

2π
$ 0.00116

α ≡ e2

4π
$ 1/137.036. 3.

This agreed beautifully with experiment (3), thereby providing strong confidence
in the validity of perturbative QED. Today, we continue the tradition of testing QED
and its SU(3)C× SU(2)L× U(1)Y standard-model (SM) extension (which includes
strong and electroweak interactions) by measuring aexp

l for the electron and muon
ever more precisely and comparing these measurements with aSM

l expectations,
calculated to much higher order in perturbation theory. Such comparisons test

Figure 1 The first-order
QED correction to g-2 of the
muon.
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3.6 st. dev anomaly now - to fix add 
heavy photon that interacts 
preferentially  with muon
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γ → γ + γH



Connection to Lamb 
shift 



What  theorists do

• make up new particles- compute shift

• study constraints - 

• non-observation of new particles that 
couple mainly to muons

• Constraints are obtained from the decay of the Υ resonances; 
neutron interactions with nuclei; 
the  anomalous magnetic moment of the muon
 x-ray transitions in 24Mg and 28Mg, Si atoms; 
J/Ψ decay;
neutral pion decay 
eta decay Any time a photon appears can also 

have a diagram with heavy photon



• Marciano, INT Talk summer 2010-massive photon,  violate mu-e 
universality, matter effects in neutrino oscillations too big by  10000

• Barger et al  “We consider exotic particles that couple preferentially to muons, and 
mediate an attractive nucleon-muon interaction. Many constraints from low energy data 
disfavor new spin-0, spin-1 and spin-2 particles as an explanation.PRL 106, 153001

• Brax, Burrage “Combining these constraints with current particle physics bounds, the 
contribution of a scalar field to the recently claimed discrepancy in the proton radius is 
negligible.”Phys.Rev.D83:035020,2011 

• Tucker-Smith & Yavin-Barger et al -many assumptions-scalars work

• Batell, McKeen, Pospelov PRL 107,081802 New force differentiates between lepton species. 
Models with gauged right-handed muon number, contain new vector and scalar force carriers at 
the 100 MeV scale or lighter. Such forces would lead to an enhancement by several orders-of-
magnitude of the parity-violating asymmetries in the scattering of low-energy muons on nuclei. 
Related to muon g-2-- theory has anomaly

• Carlson, Rislow, Phys.Rev. D86 (2012) 035013 Conclusions: New physics with fine tuned 
couplings may be entertained as a possible explanation for the Lamb shift discrepancy.

• Must consider HFS too!

µ != e

http://arxiv.org/find/hep-ph/1/au:+Batell_B/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Batell_B/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+McKeen_D/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+McKeen_D/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Pospelov_M/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Pospelov_M/0/1/0/all/0/1


Experimental analysis

Extract the proton radius from the transition energy,

compare measured ξ to the following sum of contributions:

ξ=206.2949(32) meV -One measured number

ξ = 206.0573(45) − 5.2262r2
p + 0.0347r3

p meV

three computed numbers

To explain puzzle:

increase 206.0573 meV by 0.31 meV= 3.1×10−10 MeV

Then radius is as in H atom



3www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature09250

Pohl’s Table of calculations
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Pohl’s Table of calculations

proportional to 
lepton mass4



Our idea 
2

of momentum q = p′ − p.as:

Γµ(p′, p) = γµ
NF1(−q2) + F1(−q2)F (−q2)Oµ

a,b,c (2)

Oµ
a =

(p + p′)µ

2M
[Λ+(p′)

(p · γN − M)

M
+

(p′ · γN − M)

M
Λ+(p)]

Oµ
b = ((p2 − M2)/M2 + (p′

2
− M2)/M2)γµ

N

Oµ
c = Λ+(p′)γµ

N

(p · γN − M)

M
+

(p′ · γN − M)

M
γµ

NΛ+(p),

where three possible forms are displayed. Other terms of
the vertex function needed to satisfy the WT identity do
not contribute significantly to the Lamb shift and are not
shown explicitly. The proton Dirac form factor, F1(−q2)
is empirically well represented as a dipole F1(−q2) = (1−
q2/Λ2)−2, (Λ = 840 MeV) for the values of −q2 ≡ Q2 > 0
of up to about 1 GeV2 needed here. F (−q2) is an off-
shell form factor, and Λ+(p) = (p · γN + M)/(2M) is an
operator that projects on the on-mass-shell proton state.
We use Oa unless otherwise stated.

We take the off-shell form factor F (−q2) to vanish at
q2 = 0. This means that the charge of the off-shell proton
will be the same as the charge of a free proton, and is
demanded by current conservation as expressed through
the Ward-Takahashi identity [24, 25]. We assume

F (−q2) =
−λq2/b2

(1 − q2/Λ̃2)1+ξ
. (3)

This purely phenomenological form is simple and clearly
not unique. The parameter b is expected to be of the
order of the pion mass, because these longest range com-
ponents of the nucleon are least bound and more suscep-
tible to the external perturbations putting the nucleon
off its mass shell. At large values of |q2|, F has the same
fall-off as F1, if ξ = 0. We take Λ̃ = Λ here.

We briefly discuss the expected influence of using
Eq. (2). The ratio, R, of off-shell effects to on-shell ef-

fects, R ∼ (p·γN−M)
M λ q2

b2 , (|q2| $ Λ2) is constrained by
a variety of nuclear phenomena such as the EMC effect
(10-15%), uncertainties in quasi-elastic electron-nuclear
scattering [26], and deviations from the Coulomb sum
rule [27]. For a nucleon experiencing a 50 MeV central
potential, (p · γN − M)/M ∼ 0.05, so λq2/b2 is of or-
der 2. The nucleon wave functions of light-front quark-
models [33] contain a propagator depending on M2.
Thus the effect of nucleon virtuality is proportional to
the derivative of the propagator with respect to M , or of
the order of the wave function divided by difference be-
tween quark kinetic energy and M . This is about three
times the average momentum of a quark (∼ 200 MeV/c)
divided by the nucleon radius or roughly M/2. Thus
R ∼ (p · γN − M)2/M , and the natural value of λq2/b2

is of order 2.
The lowest order term in which the nucleon is suffi-

ciently off-shell in a muonic atom for this correction to
produce a significant effect is the two-photon exchange
diagram of Fig. 1 and its crossed partner, including an

!

P

! − k

P

!

FIG. 1: Direct two-photon exchange graph corresponding to
the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the nucleon; the wavy lines photons;
and the ellipse the off-shell nucleon.

interference between one on-shell and one off-shell part
of the vertex function. The change in the invariant am-
plitude, MOff , due to using Eq. (2) along with Oµ

a , to be
evaluated between fermion spinors, is given in the rest
frame by

MOff =
e4

2M2

∫
d4k

(2π)4
F 2

1 (−k2)F (−k2)

(k2 + iε)2
(4)

×(γµ
N (2p + k)ν + γν

N (2p + k)µ)

×

[
γµ

(l · γ − k · γ + m)

k2 − 2l · k + iε
γν + γν

(l · γ + k · γ + m)

k2 + 2l · k + iε
γµ

]
,

where the lepton momentum is l = (m, 0, 0, 0), the vir-
tual photon momentum is k and the nucleon momentum
p = (M, 0, 0, 0). The intermediate proton propagator
is cancelled by the off-mass-shell terms of Eq. (2). This
graph can be thought of as involving a contact interaction
and the amplitude in Eq. (4) as a new proton polariza-
tion correction corresponding to a subtraction term in the
dispersion relation for the two-photon exchange diagram
that is not constrained by the cross section data [34].
The resulting virtual-photon-proton Compton scattering
amplitude, containing the operator γµ

Nγν
N corresponds to

the T2 term of conventional notation [35], [36]. Eq. (4)
is gauge-invariant; not changed by adding a term of the
form kµ kν/k4 to the photon propagator.

Evaluation proceeds in a standard way by taking the
sum over Dirac indices, performing the integral over k0

by contour rotation, k0 → −ik0, and integrating over the
angular variables. The matrix element M is well approx-
imated by a constant in momentum space, for momenta
typical of a muonic atom, and the corresponding poten-
tial V = iM has the form V (r) = V0δ(r) in coordinate
space. This is the “scattering approximation” [3]. Then
the relevant matrix elements have the form V0 |Ψ2S(0)|2,
where Ψ2S is the muonic hydrogen wave function of the
state relevant to the experiment of Pohl et al. We use
|Ψ2S(0)|2 = (αmr)3/(8π), with the lepton-proton re-

lepton propagator provides term so that energy 
shift is  proportional to lepton mass4

lepton

proton



The Controversy- needed effect is 20 times that of Pachucki, 
Martynenko...  Carlson & Vanderhaeghan 

Conventional approach ∼ Pachucki

∆E ∝ α5m3
R

d4q

q4 T µνlµν(m)

T µν is forward virtual-photon proton scattering amplitude,

lµν(m) is lepton-tensor

T µν(q, P ) = −i
R

d4xeiq·x〈P |T (jµ(x)jν(0)|P 〉

T µν(q, P ) = −(gµν − · · ·)T1 + (P µ − · · ·)(P ν − · · ·)T2

Im(T1,2) ∝ W1,2 Measured structure functions

Cauchy plus data → answers –rock solid (?)
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will be the same as the charge of a free proton, and is
demanded by current conservation as expressed through
the Ward-Takahashi identity [24, 25]. We assume

F (−q2) =
−λq2/b2

(1 − q2/Λ̃2)1+ξ
. (3)

This purely phenomenological form is simple and clearly
not unique. The parameter b is expected to be of the
order of the pion mass, because these longest range com-
ponents of the nucleon are least bound and more suscep-
tible to the external perturbations putting the nucleon
off its mass shell. At large values of |q2|, F has the same
fall-off as F1, if ξ = 0. We take Λ̃ = Λ here.

We briefly discuss the expected influence of using
Eq. (2). The ratio, R, of off-shell effects to on-shell ef-

fects, R ∼ (p·γN−M)
M λ q2

b2 , (|q2| $ Λ2) is constrained by
a variety of nuclear phenomena such as the EMC effect
(10-15%), uncertainties in quasi-elastic electron-nuclear
scattering [26], and deviations from the Coulomb sum
rule [27]. For a nucleon experiencing a 50 MeV central
potential, (p · γN − M)/M ∼ 0.05, so λq2/b2 is of or-
der 2. The nucleon wave functions of light-front quark-
models [33] contain a propagator depending on M2.
Thus the effect of nucleon virtuality is proportional to
the derivative of the propagator with respect to M , or of
the order of the wave function divided by difference be-
tween quark kinetic energy and M . This is about three
times the average momentum of a quark (∼ 200 MeV/c)
divided by the nucleon radius or roughly M/2. Thus
R ∼ (p · γN − M)2/M , and the natural value of λq2/b2

is of order 2.
The lowest order term in which the nucleon is suffi-

ciently off-shell in a muonic atom for this correction to
produce a significant effect is the two-photon exchange
diagram of Fig. 1 and its crossed partner, including an

!

P

! − k

P

!

FIG. 1: Direct two-photon exchange graph corresponding to
the hitherto neglected term. The dashed line denotes the
lepton; the solid line, the nucleon; the wavy lines photons;
and the ellipse the off-shell nucleon.

interference between one on-shell and one off-shell part
of the vertex function. The change in the invariant am-
plitude, MOff , due to using Eq. (2) along with Oµ

a , to be
evaluated between fermion spinors, is given in the rest
frame by

MOff =
e4

2M2

∫
d4k

(2π)4
F 2

1 (−k2)F (−k2)

(k2 + iε)2
(4)

×(γµ
N (2p + k)ν + γν

N (2p + k)µ)

×

[
γµ

(l · γ − k · γ + m)

k2 − 2l · k + iε
γν + γν

(l · γ + k · γ + m)

k2 + 2l · k + iε
γµ

]
,

where the lepton momentum is l = (m, 0, 0, 0), the vir-
tual photon momentum is k and the nucleon momentum
p = (M, 0, 0, 0). The intermediate proton propagator
is cancelled by the off-mass-shell terms of Eq. (2). This
graph can be thought of as involving a contact interaction
and the amplitude in Eq. (4) as a new proton polariza-
tion correction corresponding to a subtraction term in the
dispersion relation for the two-photon exchange diagram
that is not constrained by the cross section data [34].
The resulting virtual-photon-proton Compton scattering
amplitude, containing the operator γµ

Nγν
N corresponds to

the T2 term of conventional notation [35], [36]. Eq. (4)
is gauge-invariant; not changed by adding a term of the
form kµ kν/k4 to the photon propagator.

Evaluation proceeds in a standard way by taking the
sum over Dirac indices, performing the integral over k0

by contour rotation, k0 → −ik0, and integrating over the
angular variables. The matrix element M is well approx-
imated by a constant in momentum space, for momenta
typical of a muonic atom, and the corresponding poten-
tial V = iM has the form V (r) = V0δ(r) in coordinate
space. This is the “scattering approximation” [3]. Then
the relevant matrix elements have the form V0 |Ψ2S(0)|2,
where Ψ2S is the muonic hydrogen wave function of the
state relevant to the experiment of Pohl et al. We use
|Ψ2S(0)|2 = (αmr)3/(8π), with the lepton-proton re-

          +crossed photons
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• Dispersion integral involving W2 converges

• Dispersion integral involving W1 diverges-  uncertainty

•  subtraction needed at all Q2

Hill & Paz 2011 : dispersion approach 
uncertainty order of mag larger than stated

Im T1,2 ∼ W1,2(ν, Q
2) measured

large ν W2 ∼ 1/ν, W1 ∼ ν



Features 
• need subtracted dispersion relation for T1

• subtraction function (q0 = 0, all q2) mainly 
unknown

• Miller, Carroll,Thomas, Rafelski PRA 84,012506

• violates constraints on Compton- Carlson/VDH

T 1(0, Q
2)

Miller, Carroll, Thomas 1207.0549 better off-
shell, but ruled out by (e,e’p) nuclear reactions

asymptotic ~1/Q2



Alternate: unknown T 1(0, Q
2)

∆Esubt =
α2

m
Ψ2

S(0)

∫ ∞

0

dQ2

Q2
h(Q2)T 1(0, Q

2)

lim
Q2→∞

h(Q2) ∼ 2m2

Q2
, chiral PT : T 1(0, Q

2) =
βM

α
Q2 + · · ·

→ Logarithmic divergence

T 1(0, Q
2) → βM

α
Q2Floop(Q

2) Cuts off integral

Birse & McGovern : T 1(0, Q
2) =

βM

α
Q2(1− Q2

M2
β

+O(Q4))

→ βM

α
Q2 1

(1 + Q2

2M2
β
)2

Mβ = 460± 50 MeV, ∆Esubt = 4.1µ eV very small

High Q2 behavior is ASSUMED

Miller PLB 2012



Arbitrary functions

The function h(t) is monotonically falling, approaching 1/
√

t for small values of t, and

falling as 3/(4t) large values of t. The subtraction function T1(0, Q2) is not available

from experimental measurements, except at the real photon point Q2 = 0. It comes from

the excitation of the proton, and can be described, at small values of Q2, in terms of the

electric (αE) and magnetic (βM) polarizabilities. For small values of Q and ν = 0 one

sees [23] limν2,Q2→0 T1(0, Q2) = Q2

α βM, where α is the fine structure constant. Using this

simple linear Q2-dependence in Eq. (2) shows that the integral over T1(0, Q2) converges

at the lower limit, but diverges logarithmically at the upper limit. Thus obtaining a non-

infinite result depends on including an arbitrary form factor that cuts off the integrand

for large values of Q2 or some other renormalization procedure.

We note that limQ2→∞ T̄1(0, Q2) can be obtained from the operator production expan-

sion [26, 27]. Using Eq. (2.18) of Ref. [26], neglecting the term proportional to light quark

masses, and accounting for different conventions yields T̄1(0, Q2) ∼ 2.1 fm−1/Q2. This

1/Q2 behavior removes the putative logarithmic divergence of T̄1(0, Q2), but this func-

tion is far from determined.

We follow the previous literature by including a form factor defined as Floop. Then

T1(0, Q2) =
βM
α

Q2Floop(Q2) . (4)

Using Eqs. (2,3,4) one finds the energy shift to be

∆Esubt =
α2φ2(0)

m
βM
α

∫ ∞

0
dQ2



(1− 2Q2/(4m2))




√

1 +
4m2

Q2 − 1



 + 1



 Floop(Q2).

(5)

The issue here is the arbitrary nature of the function Floop(Q2). Pachucki [24] used the

dipole form, ∼ 1/Q4, often used to characterize the proton electromagnetic form factors.

But the subtraction function should not be computed from the proton form factors, be-

cause virtual component scattering includes a term in which the photon is absorbed and

emitted from the same quark [28]. Carlson and Vanderhaeghen [17] evaluated a loop di-

agram using a specific model and found a form factor ∼ 1/Q2 log Q2, leading to a larger

contribution to the subtraction term than previous authors. Birse & McGovern [20] eval-

4

uate terms up to fourth-order in chiral perturbation theory to find

TBM
1 (0, Q2) ! βM

α
Q2

(
1− Q2

M2
β

+O(Q4)

)
→ βM

α
Q2 1

(
1 + Q2

2M2
β

)2 , (6)

with Mβ = 460± 50 MeV. They also use the most recent evaluation of βM, based on a fit

to real Compton scattering [29] that finds

βM = (3.1± 0.5)× 10−4 fm3, (7)

where only statistical and Baldin Sum Rule errors are included. Their result is a negligible

∆Esubt = 4.1µ eV [20]. The form Eq. (6) achieves the correct 1/Q2 asymptotic behavior

of T1(0, Q2) but the coefficient βM/α is not the same as obtained from the operator prod-

uct expansion. The coefficient of Eq. (6) is about twice the asymptotic limit obtained by

Collins [26].

Previous authors [17, 20] noted the sensitivity of the integrand of Eq. (5) to large values

of Q2. Our aim here is to more fully explore the uncertainty in the subtraction term

that arises from the logarithmic divergence. We shall use a form of Floop(Q2) that is

consistent with the constraint on the Q4 term found Birse & McGovern [20]. This is done

by postulating a term that begins at order Q6 in Eq. (4), such as

Floop(Q2) =

(
Q2

M2
0

)n
1

(1 + aQ2)N , n ≥ 2, N ≥ n + 3, (8)

where M0, a are parameters to be determined by requiring that the computed contribu-

tion to the Lamb shift reproduce the desired 0.31 meV. With Eq. (8) the low Q2 behavior

of T̄1(0, Q2) is of order Q6 or greater and it falls as 1/Q4 or greater for large values of Q2.

So far as we know, there are no constraints on the coefficient of the Q6 term or the 1/Q4

term. However, we shall determine the subtraction term’s contribution to the Lamb shift

as a general function of n, N. We note that βM is anomalously small due to a cancellation

between pion cloud and intermediate ∆ terms [30] , so that one can use a value ten times

larger than appears in Eq. (7) to set the overall scale of the subtraction term. Thus we

replace the term βM of Eq. (4) by a general form of the same dimensions β: βM → β.

The use of Eq. (8) in Eq. (5) allows one to state the expression for the energy shift in

5

T 1(0, Q2) ∼ 1
Q4

or faster, βM → β

closed form as a general function of n, N. We find

∆Esubt =
α2φ2(0)

m
β

α

(
1

aM2
0

)n

Jn,N(m2a), (9)

Jn,N(m2a) ≡ 1
a

∫ ∞

0
dx

xn

(1 + x)N

[(
1− x

2m2a

) (
(1 +

4m2a
x

)1/2 − 1
)

+ 1
]

. (10)

The integral over x can be obtained in a closed form in terms of hypergeometric func-

tions. However, a much more understandable expression can be obtained by replacing

the bracketed expression in Eq. (10) by its large argument limit (3m2a/x). This approxi-

mation is valid over the entire range of the integrand because of the presence of the factor

xn with n ≥ 2. Then one obtains

Jn,N(m2a) ≈ 3m2 Γ(N − n)Γ(n)
Γ(N)

= 3m2B(N, n), (11)

so that

∆Esubt ≈ 3α2mφ2(0)
β

α
γnB(N, n), γ ≡ 1

M2
0a

. (12)

Numerical evaluations show that the approximation is accurate to better than a quarter

of a percent. The expression Eq. (12) makes clear the m4 dependence of the contribution

to the Lamb shift.

The numerical value of the term ∆Esubt depends on (n, N), β and the combination

M2
0a ≡ γ−1:

∆E = 3.91meV fm3βγnB(N, n). (13)

If we take N = 5, n = 2 so that B(5, 2) = 1/12, and β = 10−3 fm−3, a value of γ = 30.9

reproduces E = 0.31 meV. If we take M0 = 0.5 GeV (as in [20]) , then a−1 = 15.4 GeV2,

and that the contribution to the integral comes from the region of very high values of Q2.

Other values of n, N and γ could be used to get the identical contribution to the Lamb

shift.

Chiral perturbation theory could be used to determine the terms of order Q6 and

higher in TBM
1 (0, Q2), but this procedure is always limited to a finite number of terms.

Indeed one could use values of n greater than 2, and still reproduce the needed contribu-

tion to the Lamb shift.

6

∆Esubt ≈ 3α2mΨ2
S(0)

β

α
γnB(N,n), γ ≡ 1

M2
0 a

Can find functions that  give big effect



Another example 
n=23,N=26, 1/a=0.44 GeV2
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 • Compute Feynman diagram, remove log 
divergence using dimensional regularization

• include counter term in Lagrangian

EFT of µp interaction

I. INTRODUCTION

The proton radius puzzle is one of the most perplexing physics issues of recent times.

The extremely precise extraction of the proton radius [1] from the measured energy dif-

ference between the 2PF=2
3/2 and 2SF=1

1/2 states of muonic hydrogen disagrees with that ex-

tracted from electronic hydrogen. The extracted value of the proton radius is smaller than

the CODATA [2] value (based mainly on electronic H) by about 4% or 5.0 standard devi-

ations. This implies [1] that either the Rydberg constant has to be shifted by 4.9 standard

deviations or that present QED calculations for hydrogen are insufficient. The Rydberg

constant is extremely well measured and the QED calculations seem to be very extensive

and highly accurate, so the muonic H finding is a significant puzzle for the entire physics

community.

Pohl et al. show that the energy difference between the 2PF=2
3/2 and 2SF=1

1/2 states, ∆Ẽ is

given by

∆Ẽ = 209.9779(49)− 5.2262r2
p + 0.0347r3

p meV, (1)

where rp is given in units of fm. Using this equation, one can see that the difference

between the Pohl and CODATA values of the proton radius would be removed by an

increase of the first term on the rhs of Eq. (1) by 0.31 meV=3.1 × 10−10 MeV.

This proton radius puzzle has been attacked from many different directions [3]-[21]

The present communication is intended to investigate the hypothesis that the proton po-

larizability contributions, that enter in the two-photon exchange term, see Fig. 1, can

account for the 0.31 meV. This idea is worthy of consideration because the computed ef-

fect is proportional to the lepton mass to the fourth power, and so is capable of being

relevant for muonic atoms, but irrelevant for electronic atoms.

q q 

FIG. 1: The box diagram for the O(α5m4) corrections. The graph in which the photons cross is

also included.

2

where nmin is chosen to be one order higher than the power determined by chiral per-

turbation theory. The free parameters an, cn, Mn could then be varied to reproduce the

desired 0.31 meV shift in energy. This means that the application of chiral perturbation

theory to any finite order does not prevent the choice of a subtraction function that gives

the necessary shift in energy.

The above paragraphs show that the current procedure used to estimate the size of the

subtraction term is rather arbitrary. This arises because the chiral EFT is being applied

to the virtual-photon nucleon scattering amplitude. Another effective field theory tech-

nique would be to develop an procedure to determine the short-distance lepton-nucleon

amplitude implied by the subtraction term. This is the direction we pursue now.

III. EFFECTIVE FIELD THEORY FOR THE µp INTERACTION

The previous considerations show the sensitivity to assumptions regarding the behav-

ior of T1(0, Q2) for large values Q2 about which little or nothing is known. This results

form the logarithmic divergence in the integral of Eq. (5) for the case Floop = 1, and is a

symptom that an inefficient technique has been used [27]. A more efficient way to pro-

ceed would be us to use an effective field theory (EFT) for the lepton-proton interaction.

In EFT logarithmic divergences identified through dimensional regularization are renor-

malized away by including a lepton-proton contact interaction in the Lagrangian.

We may handle the divergence using standard dimensional regularization (DR) tech-

niques by evaluating the scattering amplitude of Fig. 1. The term of interest is obtained

by including only T1(0, Q2) of Eq. (3) with Floop = 1. We evaluate the integral in d = 4− ε

dimensions and obtain the result:

MDR
2 =

3
2

i α2m
βM
α

[2
ε
+ log

µ2

m2 +
5
6
− γE + log 4π

]
u f uiU f Ui, (13)

where lower case spinors represent leptons of mass m, and upper case proton of mass M,

q is momentum transferred to the proton, and γE is Euler’s constant, 0.577216· · · .

The result Eq. (13) corresponds to an infinite contribution to the Lamb shift in the

limit that ε goes to zero. In EFT one removes the divergent piece by adding a contact

interaction to the Lagrangian that removes the divergence, replacing it by an unknown

finite part. The finite part is obtained by fitting to a relevant piece of data. Here the only

6

relevant data is the 0.31 meV needed to account for the proton radius puzzle. Thus we

write the resulting scattering amplitude as

MDR
2 = i α2m

βM
α

(λ + 5/4) u f uiU f Ui (14)

where λ is determined by fitting to the Lamb shift. The µ dependence of the counter term

is chosen so that the result is independent of µ. Eq. (14) corresponds to using the MS

scheme because the term log(4π)− γE is absorbed into λ.

The corresponding contribution to the Lamb shift is given by

∆EDR = α2m
βM
α

φ2(0)(λ + 5/4). (15)

Setting ∆EDR to 0.31 meV in the above equation requires that λ = 769 which seems like

a large number. However βM is extraordinarily small. The natural units of polarizability

are βM
α ∼ 4π/Λ3

χ, [28] where Λχ ≡ 4π fπ, ( fπ is the pion decay constant). Then Eq. (14)

becomes

MDR
2 = i 3.84 α2m

4π

Λ3
χ

u f uiU f Ui. (16)

The coefficient 3.84 is of natural size. Thus standard EFT techniques result in an effective

lepton-proton interaction of natural size that is proportional to the lepton mass.

The present results, Eq. (11) and Eq. (15) represent an assumption that there is a lepton-

proton interaction of standard-model origin, caused by the high-momentum behavior of

the virtual scattering amplitude, that is sufficiently large to account for the proton radius

puzzle. Fortunately, our hypothesis can be tested in an upcoming low-energy µ±p, e±p

scattering experiment [22] planned to occur at PSI.

IV. LEPTON PROTON SCATTERING AT LOW ENERGIES

Our aim is to provide a prediction for the PSI experiment. It is well-known that two-

photon exchange effects in electron-proton scattering are small at low energies. Our con-

tact interaction is proportional to the lepton mass, so it could provide a measurable effect

for muon-proton scattering but be ignorable for electron-proton scattering. We shall in-

vestigate the two consequences of using form factors (FF) and EFT.

7

Choose λ to get 0.31 meV shift

Caswell Lepage ’86



contact interaction to the Lagrangian that removes the divergence, replacing it by an

unknown finite part. The finite part is obtained by fitting to a relevant piece of data. Here

the only relevant data is the 0.31 meV needed to account for the proton radius puzzle.

The low energy term contributes

MDR
2 (LET) = iC(µ), (14)

where C(µ) is chosen such that the sum of the terms of Eq. (13) and Eq. (14), ≡ MDR
2 , is

finite and independent of the value of µ. Thus we write the resulting scattering amplitude

as

MDR
2 = i α2m

βM
α

(λ + 5/4) u f uiU f Ui (15)

where λ is determined by fitting to the Lamb shift. Eq. (15) corresponds to using the MS

scheme because the term log(4π)− γE is absorbed into λ.

The corresponding contribution to the Lamb shift is given by

∆EDR = α2m
βM
α

φ2(0)(λ + 5/4). (16)

Setting ∆EDR to 0.31 meV in the above equation requires that λ = 769 which seems

like a large number. However, βM is extraordinarily small due to a cancellation between

paramagnetic effects of an intermediate ∆ and diamagnetic effects of the pion cloud [30].

The natural units of polarizability are βM
α ∼ 4π/Λ3

χ, [31] where Λχ ≡ 4π fπ, ( fπ is the

pion decay constant). Then Eq. (15) becomes

MDR
2 = i 3.95 α2m

4π

Λ3
χ

u f uiU f Ui. (17)

The coefficient 3.95 is of natural size. Thus standard EFT techniques result in an effective

lepton-proton interaction of natural size that is proportional to the lepton mass.

The present results, Eq. (11) and Eq. (16) represent an assumption that there is a lepton-

proton interaction of standard-model origin, caused by the high-momentum behavior of

the virtual scattering amplitude, that is sufficiently large to account for the proton radius

puzzle. Fortunately, our hypothesis can be tested in an upcoming low-energy µ±p, e±p

scattering experiment [23] planned to occur at PSI.

7

3.95 =natural

∆Esubt(DR) = α2m
βM

α
Ψ2

S(0)(λ+ 5/4)

∆Esubt(DR) = 0.31 meV → λ = 769

βM (magnetic polarizability) = 3.1× 10−4fm3 very small

Natural units βM/α ∼ 4π/(4πfπ)
3 Butler & Savage ′92



So what?
A Proposal for the Paul Scherrer Institute πM1 beam line

Studying the Proton “Radius” Puzzle with µp Elastic
Scattering

J. Arrington,1 F. Benmokhtar,2 E. Brash,2 K. Deiters,3 C. Djalali,4 L. El Fassi,5 E.
Fuchey,6 S. Gilad,7 R. Gilman (Contact person),5 R. Gothe,4 D. Higinbotham,8 Y.
Ilieva,4 M. Kohl,9 G. Kumbartzki,5 J. Lichtenstadt,10 N. Liyanage,11 M. Meziane,12
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Punjabi,14 R. Ransome,5 D. Reggiani,3 A. Richter,15 G. Ron,16 A. Sarty,17
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About 1.5 years after the radius of muonic hydrogen was found to be 5σ inconsistent with earlier
determinations from atomic hydrogen level transitions and ep elastic scattering, no resolution to
the puzzle has been found. We propose to measure µ±p scattering, which will allow a second de-
termination of the consistency of the µp interaction with the ep interaction. If the µp scattering is
consistent with muonic hydrogen measurements but inconsistent with ep scattering measurements,
the confirmation of consistency between lepton scattering and Lamb shift measurements but differ-
ences between electron- and muon-based measurements of ep and µp systems would provide strong
evidence for beyond standard model physics.

PSI proposal R-12-01.1

2 photon exchange idea is testable 



muon scattering

• Is contact interaction too large??

M =M(1) +M(2)
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Deuteron as a test

• two versions of the hypothesis: form factor and 
EFT

• form factor- effect on neutron= effect on proton, 
otherwise n-p mass different becomes gigantic, 
then in Deuteron the TPE contribution to the  
Lamb shift effect is doubled -Aldo TPE 
contribution about the same

• EFT- the unknown short distance mu-n interaction 
needs an unknown interaction constant, can’t 
predict Deuteron

Need polarizability effect on  neutron



Deuteron radius from µd and µp (preliminary)
H-D isot.-shift: r2d − r2p =3.820 07(65) fm2

µp : rp =0.84087(39) fm







⇒rd = 2.12771(22) fm

Deuteron charge radius [fm]

2.11 2.115 2.12 2.125 2.13 2.135 2.14 2.145

PRELIMINARYd Borie+Pachucki+Ji+Friarµ

d Borie+Jiµ

d Borie+Pachuckiµ

d Martynenkoµ

p + iso(1S-2S)µ

CODATA-2010

CODATA D + e-d

e-d scatt.

n-p scatt.               

Directly from µd spectroscopy

using predictions of polarizabiliy

with 0.0300 meV uncertainty

A. Antognini ECT
∗
, Trento 01.08.2013 – p. 22

Width allows 
~1/2 the effect

for FF 



Summary

For EFT the contribution to the cross section via interference can be worked out, using

Eq. (5) to be

∆DR = ∓8[4εM + q2]α(λ +
5
4
)m2βMGE(q2)M

e2

q2 + i0
. (13)

We are now prepared to display the effects of our two-photon exchange term on µ−− p

scattering at low energies. The size of the effect is represented by the ratio R, with

R ≡ ∆
∣∣∣M(1)

f i

∣∣∣
2

. (14)

The ratio R > 0 for µ − p scattering. The numerator of Eq. (14) is obtained from either

Eq. (12) (FF) or Eq. (13) (DR). The ratio R is proportional to the square of the lepton mass,

which is negligible for e± − p scattering. We consider two muon momenta 100 and 200

MeV/c. The results are shown in Fig. 1. The angular dependence is dominated by the

Q2 = −q2 term inherent in Eq. (14). The two sets of curves are very similar because the

size of the effect is constrained by the required energy shift of 0.31 meV. The size of the

effect should be detectable within the expected sub-1 % accuracy of the PSI experiment.

III. SUMMARY AND DISCUSSION

The findings of this paper can be summarized with a few statements:

• Logarithmic divergence in the integrand that determines the value of ∆Esubt.

• The uncertainty in evaluation large enough to account for the proton radius puzzle.

• Logarithmic divergence controlled via form factor or dimensional regularization

• Either method account for the proton radius puzzle

• Either method predicts (same) observable few % effect- low energy µ− p scattering.
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• Logarithmic divergence in the integrand that determines the value of ∆Esubt.

• The uncertainty in evaluation large enough to account for the proton radius puzzle.

• Logarithmic divergence controlled via form factor or dimensional regularization

• Either method account for the proton radius puzzle

• Either method predicts (same) observable few % effect- low energy µ− p scattering.

Explanations for the proton radius puzzle:

• Electronic-hydrogen experiments might not be as accurate as reported

• µ − e universality might be violated

• strong interaction effect important for muonic hydrogen, but not for electronic

Which correct ???

Strong-interaction effect discussed here is testable experimentally
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