Neutrinos in Core-collapse supernova and Nucleosynthesis

Gabriel Martínez Pinedo

TECHNISCHE UNIVERSITÄT DARMSTADT

INT Program INT13-2b: "Nuclei and Fundamental Symmetries: Theory Needs of Next-Decade Experiments"

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Outline

2 Neutrino winds from Core-collapse supernova

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Heavy elements and metal-poor stars

- Stars poor in heavy r-process elements but with large abundances of light r-process elements (Sr, Y, Zr)
- Production of light and heavy r-process elements is decoupled.
- Astrophysical scenario: neutrino-driven winds from core-collapse supernova

- Stars rich in heavy r-process elements (Z > 52) and poor in iron (r-II stars, [Eu/Fe] > 1.0).
- Robust abundance patter for Z > 52, consistent with solar r-process abundance.
- These abundances seem the result of events that do not produce iron. [Qian & Wasserburg, Phys. Rept. **442**, 237 (2007)]
- Possible Astrophysical Scenario: Neutron star mergers.

Honda et al, ApJ 643, 1180 (2006)

Introduction	
000	

Sterile neutrinos and supernova

Summary

Astrophysical sites

Core-collapse supernova

- Neutrino-winds from protoneutron stars.
- Aspherical explosions, Jets, Magnetorotational Supernova, ...
 [Winteler *et al*, ApJ **750**, L22 (2012)]
- Neutrino-induced r-process in He layers [Banerjee *et al.*, PRL **106**, 201104 (2011)]

Neutron star mergers

- Matter ejected (~ 0.01 M_☉) dynamically during merger.
- Electromagnetic emission from the decay of r-process nuclei [Kilonova, Metzger et al, MNRAS 406, 2650 (2010)]
- Winds from accretion disks around black holes [Wanajo & Janka, ApJ 746, 180 (2012)]

Sterile neutrinos and supernova

Summary

Kilonova Observation

LETTER

doi:10.1038/nature12505

A 'kilonova' associated with the short-duration γ -ray burst GRB130603B

N. R. Tanvir¹, A. J. Levan², A. S. Fruchter³, J. Hjorth⁴, R. A. Hounsell³, K. Wiersema¹ & R. L. Tunnicliffe²

Direct observation of an r-process nucleosynthesis event?

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Core-collapse supernova

H.-Th. Janka, et al, PTEP 01A309 (2012)

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Multidimensional simulations

F. Hanke, A. Marek, B. Müller & H.-Th. Janka, ApJ 755, 138 (2012)

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Neutrino-driven winds and r-process

- Woosley et al, ApJ 433, 229 (1994), suggested neutrino-driven winds as the r-process site.
- High entropy conditions not confirmed by any other group, Takahashi, Witti, Janka, A&A 286, 857 (1994)...

Introduction 000

Sterile neutrinos and supernova

Summary

Role of weak interactions

Main processes:

$$v_e + n \rightleftharpoons p + e^-$$

 $\bar{v}_e + p \rightleftharpoons n + e^+$

Neutrino interactions determine the proton to neutron ratio. Proton rich ejecta

 $\langle E_{\bar{\nu}_e}\rangle-\langle E_{\nu_e}\rangle<4(m_n-m_p)\approx 5.2~{\rm MeV}$

- neutron-rich ejecta: r-process
- proton-rich ejecta: *vp*-process

Introduction 000

Sterile neutrinos and supernova

Summary

Long term evolution neutrino luminosities and average energies

Long-term radiation hydrodynamic simulations of the collapse and explosion of an 8.8 M_{\odot} ONeMg core,

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Neutrino interactions at high densities

Equations of State for core-collapse simulations treat neutrons and protons as "non-interacting" (quasi)particles that move in a mean-field potential $U_{n,p}(\rho, T, Y_e)$.

- Mean-field potentials so far neglected in all simulations.
- Opacity for $v_e + n \rightarrow p + e^-$ increased ($\bar{v}_e + p \rightarrow n + e^+$ decreased).
- Energy difference between v_e and v_e increased.

Introduction 000

Sterile neutrinos and supernova

Summary

Impact neutrino mean energies and Y_e

15 M_{\odot} star simulations [GMP, Fischer, Lohs, Huther, PRL 109, 251104 (2012)]

- Neutron-rich ejecta are possible in neutrino-driven winds.
- Neutron-richness sensitive to nuclear symmetry energy [see also Roberts, Reddy, & Shen, PRC 86, 065803 (2012)]
- However the entropy are not large enough to produce elements heavier than $A \sim 120$.

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Constrains on symmetry energy

Sterile neutrinos and supernova

Summary

Evolution EoS consistent with Symmetry energy constrains

Fischer, Hempel, GMP, Typel, in preparation

Introduction	Neutrino winds from Core-collapse supernova
	00000000000

Sterile neutrinos and supernova

Summary

Nucleosynthesis

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Sensitivity to symmetry energy

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Sensitivity to symmetry energy

leutrino winds from Core-collapse supernova

Summary

Core-collapse supernova

H.-Th. Janka, et al, PTEP 01A309 (2012)

Introduction

Sterile neutrinos and supernova

Summary

Three-flavor neutrino parameters

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12}e^{i\lambda_2} & 0 \\ -s_{12} & c_{12}e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

At least two massive neutrinos: $m_2 > 8.7 \times 10^{-3} \text{ eV}$ (Normal hierarchy) $m_1 > 0.05 \text{ eV}$ (Inverted hierarchy) Tritium decay $m_\beta = \left(\sum_k |U_{ek}|^2 m_k^2\right)^{1/2} < 2 \text{ eV}$

Introduction

Sterile neutrinos and supernova

Summary

Vacuum Oscillations

As $\Delta m_{21}^2 \ll \Delta m_{32}^2$ the 3-flavor oscillation problem can be reduced to a two-flavor problem. In this case the probability that a v_e of energy E is observed as v_e after traveling a distance L is:

$$P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

For solar neutrinos ($E_{\nu_e} \sim 10 \text{ MeV}$) the oscillation length becomes:

$$\lambda_{\rm osc} = \frac{4\pi E}{\Delta m_{21}^2} \approx 300 \,\rm km$$

As the distance Sun-Earth and the radius of Earth are much larger than the oscillation length we can average the oscillation probability to get:

$$P(v_e \to v_e) = 1 - \frac{1}{2}\sin^2(2\theta) \approx 0.57$$

around 40% (independently of energy) of Solar neutrinos should oscillate to other flavors.

Sterile neutrinos and supernova

Summary

Observations neutrinos Sun

W. C. Haxton, R. G. Hamish Robertson & A. Serenelli, arXiv:1208.5723 [astro-ph.SR]

- Different detectors are sensitive to different neutrino energies
- Oscillation probability depends on neutrino energy

Matter effects

As neutrinos travel through the Sun they scatter mainly with electrons. v_e have a much larger cross section that $v_{\mu,\tau}$. The evolution is governed by a combination of matter and vacuum hamiltonians (Mikheyev & Smirnov 1985, 1986; Wolfenstein 1978):

 $H = H_{\rm vac} + H_{\rm matter}$

with $oldsymbol{H}_{ ext{matter}}$ in the flavor basis:

$$\boldsymbol{H}_{\text{matter}} = \begin{pmatrix} \sqrt{2}G_F n_e & 0\\ 0 & 0 \end{pmatrix}, \quad n_e \equiv \text{Electron number density}$$

The neutrino "effective" mass and mixing angle depends on the local value of the electron density.

Introduction	Neutrino winds from Core-collapse supernova	Sterile neutrinos and supernova
		00000000000000000

Summary

MSW mechanism

W. C. Haxton, R. G. Hamish Robertson & A. Serenelli, arXiv:1208.5723 [astro-ph.SR]

The density at the resonance is:

$$\rho_r = \frac{m_u \Delta m_{21}^2 \cos 2\theta}{2\sqrt{2}G_F E}$$

that has to be smaller than the sun core density: $\rho_{\rm core}\approx 160~g~{\rm cm}^{-3}.$ Hence, only neutrinos with:

$$E \gtrsim \frac{m_u \Delta m_{21}^2 \cos 2\theta}{2\sqrt{2}G_F \rho_{\text{core}}} \approx 1.5 \text{ MeV}$$

will be affected by the MSW mechanism.

Introdu	lction
000	

Sterile neutrinos and supernova

Summary

Solar Neutrinos and MSW mechanism

• Neutrinos with $E \gtrsim 1.5$ MeV will be affected by the MSW mechanism:

$$P(v_e \to v_e) = \frac{1}{2} - \frac{1}{2}\cos(2\theta) \approx 0.32$$

• Neutrinos with $E \lesssim 1.5 \text{ MeV}$ will follow vacuum oscillations

$$P(v_e \rightarrow v_e) = 1 - \frac{1}{2}\sin^2(2\theta) \approx 0.57$$

Bellini et al, Phys. Rev. Lett 108, 051302 (2012)

leutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

What about sterile neutrinos?

For active-sterile neutrino oscillations $\Delta m_{as}^2 \sim 1 \text{ eV}$ and the resonances appear at densities relevant for supernova physics [Nunokawa, Peltoniemi, Rossi & Valle, PRD **56**, 1704 (1997)]

Introduction 000

Sterile neutrinos and supernova

Summary

Evidence for sterile neutrinos

Short baseline reactor neutrino oscillation experiments show a dissappearance of neutrinos at distances 10–100 m (Reactor anomaly).

Gallium solar neutrino experiments have been tested with radioactive 51 Cr or 37 Ar sources resulting in a deficit with respect to theoretically expected value (Gallium anomaly) $\theta_{14} \approx 9^{\circ}$ Kopp, Machado, Maltoni, Schwertz, JHEP05 (2013) 050

Intro	du	cti	

Sterile neutrinos and supernova

Summary

MSW mechanism

For the case of active (electron neutrinos)-sterille neutrinos. The v_e - v_e entry of the hamiltonian matrix is:

$$H_{\text{matter}}^{ee} = \sqrt{2}G_F n_b (c_v^e Y_e + c_v^p Y_p + c_v^n Y_n) = 3\sqrt{2}G_F n_b \left(Y_e - \frac{1}{3}\right)$$

And the MSW resonance for neutrinos will appear when:

$$\frac{\Delta m^2}{2E_{\nu}}\cos 2\theta = \frac{3\sqrt{2}}{2}G_F n_b \left(Y_e - \frac{1}{3}\right) = V_{\nu_e}^{\text{eff}} \Rightarrow Y_e = \frac{1}{3} + \epsilon$$

and for antineutrinos:

$$\frac{\Delta m^2}{2E_{\nu}}\cos 2\theta = -\frac{3\sqrt{2}}{2}G_F n_b \left(Y_e - \frac{1}{3}\right) = V_{\bar{\nu}_e}^{\text{eff}} \Rightarrow Y_e = \frac{1}{3} - \epsilon$$

Introdu	lction
000	

Sterile neutrinos and supernova

Summary

Supernova profiles

Summary

Neutrino conversion at the resonance

• For neutrinos we have:

 $v_L = v_e, v_H = v_s$ (Before res.), $v_L = v_s, v_H = v_e$ (After res.)

• For antineutrinos we have:

$$\bar{v}_L = \bar{v}_s, \bar{v}_H = \bar{v}_e$$
 (Before res.), $\bar{v}_L = \bar{v}_e, \bar{v}_H = \bar{v}_s$ (After res.)

Both v_e and \bar{v}_e can be converted to sterile neutrinos as they cross the resonance at $Y_e \approx 1/3$.

Introduction	Neutrino winds from Core-collapse su

Sterile neutrinos and supernova

Summary

Survival probability

M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, arXiv:1305.2382 [astro-ph.HE]

pernova

We define $E_{0.5}$ as the energy for which the probability is 0.5. Neutrinos with lower energies are converted to sterile neutrinos

leutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Evolution resonance radius and $E_{0.5}$

M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, arXiv:1305.2382 [astro-ph.HE]

Introd	
000	

Sterile neutrinos and supernova

Summary

Consequences

M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, arXiv:1305.2382 [astro-ph.HE]

Neutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Dependence mixing angle and δm^2

Countours of ratios of heating rates (M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, arXiv:1305.2382 [astro-ph.HE])

Supernova can help to constrain the mixing parameters

Ieutrino winds from Core-collapse supernova

Sterile neutrinos and supernova

Summary

Feedback oscillations in Y_e

M.-R. Wu, T. Fischer, GMP, Y.-Z. Qian, in preparation

Introduct	tion

Summary

Summary

- If confirmed, the recent observation of a "kilonova" associated to GRB130603B will demonstrate that neutron star mergers are a site for the production of heavy ($A \gtrsim 120$) r-process elements.
- Neutrino-winds from core collapse supernova are expected to contribute to the production of elements lighter than A ≤ 120.
- The nucleosynthesis is rather sensitive to neutrino interactions at subnuclear densities and to the symmetry energy.
- There is evidence for the existence of sterile neutrinos with masses in the eV range. If confirmed, active-sterile oscillations due to the MSW mechanism will occur in the region between neutrinosphere and supernova shock.
- The oscillations will affect supernova dynamics (reducing heating rates) and nucleosynthesis (affecting the Y_e profile of matter).
- It is necessary to include a self-consistent treatment of oscillations in supernova simulations. They will help to constrain the allowed oscillation parameter space.