Progress and Plans of CUORE

Yury Kolomensky UC Berkeley/LBNL

$O_{V\beta\beta}$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0_V}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$

Yury Kolomensky: CUORE

$O_{V\beta\beta}$ Isotopes: Figure of Merit

 $F = G_F^2 \Phi(Q,Z) |M_{0v}|^2 m_e^2 [y^{-1}] \qquad (Want as high as possible)$

Yury Kolomensky: CUORE

Experimental Sensitivity

Standard sensitivity for a counting analysis (nonzero background):

Experimental challenge:

✓ Increase *M* as high as possible (200-1000 kg for current experiments): \$\$, R&D

 \checkmark Increase *a*: \$\$

✓ Decrease *b* as much as possible (to $2\nu\beta\beta$ limit): radio purity, active rejection

✓ Decrease δ (highest resolution possible): technology choice

Cryogenic Bolometers

TeO₂ bolometers eO₂ Bolometers

5

08/21/2013

Yury Kolomensky: CUORE

6

CUORE

Array of 988 TeO₂ crystals

- 19 towers suspended in a cylindrical structure
- 13 levels, 4 crystals each
- 5x5x5 cm³ (750g each)
- ¹³⁰Te: 33.8% natural isotope abundance

 $750 \text{ kg TeO}_2 \implies 200 \text{ kg}^{130}\text{Te}$

- New pulse tube refrigerator and cryostat
- Radio-purity techniques and high resolution achieve low backgrounds
- Joint venture between Italy (INFN) and US (DOE, NSF)
- Under construction (expected start of operations by end of 2014)
- Expect energy resolution of 5 keV FWHM and background of ~0.01 counts/(kg*keV*year) in ROI

The CUORE Collaboration

STUDIOR

VD. IV

SINAP

ERSITAS

Going underground: LNGS

Shielding: ~ 3650 m.w.e. Muons: $\sim 2 \ge 10^{-8}$ /cm²-s Thermal neutrons: $\sim 1 \ge 10^{-6}$ /cm²-s Epithermal neutrons: $\sim 2 \ge 10^{-6}$ /cm²-s > 2.5 MeV Neutrons: $2 \ge 10^{-7}$ /cm²-s

CUORE under construction in Hall A

Cuoricino, the prototype for CUORE

Bolometer detectors Cooled to 10mK

11 modules, 4 detector each, crystal dimension: 5x5x5 cm³ crystal mass: 790 g $44 \ge 0.79 = 34.76 \text{ kg of TeO}_2$

Encased in a cryostat, lead shield, nitrogen box, neutron shield, and Faraday cage

2 modules x 9 crystals each crystal dimension: 3x3x6 cm³ crystal mass: 330 g $18 \ge 0.33 = 5.94 \text{ kg of TeO}_2$

Total detector mass: 40.7 kg TeO₂ \Rightarrow **11.34 kg** ¹³⁰Te

Gran Sasso National Lab (Italy)

08/21/2013

Yury Kolomer

Cuoricino Results (2010)

E. Andreotti et al., Astr. Phys. 34, 822 (2011)

No peak found $\tau^{0v}_{1/2} > 2.8 \times 10^{24}$ y at 90% C.L. $m_{\beta\beta} < 0.3 - 0.7 \text{ eV}$

Spread is due to a range of published matrix elements

From Cuoricino to CUORE

Standard sensitivity for a counting analysis:

Background Reduction

Background model: CUORICINO

- $(40\pm10)\%$ in $\beta\beta0\nu$ region from ²⁰⁸Tl at 2615 keV
- α and β from inert material facing detector (e.g. Cu): (50±20)%
- α and β from surface contamination of crystals: (10±5)%
- Negligible contributions from neutrons and ⁶⁰Co at 2505 keV

CUORE strategy:

- improve shields & material quality
- improve bulk contamination in TeO₂ (SICCAS)
- reduce surface contribution from
 - TeO₂ crystals
 - components facing TeO₂ crystals (mainly copper)
- Ultra-clean assembly
- increased coincidence efficiency to reject surface background events
- Overall goal: 0.01 c/y/kg/keV
- Demonstrated <0.02-0.03 c/y/kg/keV (90% C.L. upper limit)

Cuoricino Backgrounds

CUORE Background Budget

Most values are upper limits

reduction of copp

Test Facilities

- Dedicated test facility in Hall C
 - Extensive R&D on material characterization (bulk, surface contaminations) during Cuoricino
- Cuoricino cryostat in Hall A
 - Final high-statistics tests of surface cleaning technologies
- Low-counting facilities @ LNGS and LBNL
- All results cross-checked against Cuoricino data and scaled to CUORE with MC
 - E.g. benefits of increased coverage for multi-site event veto (anti-coincidence)

ysystal segeral resolutionements CCVR 1 - 9

- **CUORE** crystals
 - Raw material carefully screened
 - Produced and cleaned at CICCAS (Shanghai, China)
 - All delivered
- Shipped by boat to Italy, then stored underground
 - Decrease cosmogenic activation
- Visually inspected on arrival
- Test ~4% of all crystals bolometrically in Hall C
 - Nr. of Crystals/keV CUORE Crystal Validation Runs (CCVR)
 - All crystals conform to specs
 - Demonstrate target resolution (5 keV FWH

FWHM [keV] at 5407 keV peak

Better result if two thermistors on one crystal 10 8 "T(Work) >15mK" 6 T(Work) < 15mK"</p> 4 2 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 **Resolution (KeV)**

Crystals: radiopurity Crystals: Radiopurity

- CCVR to check crystal's
 - Bolometer performance
 - Surface and bulk contaminations

90% CL upper limit	²³² Th	²³⁸ U	²¹⁰ Po
Bulk Contaminations (Bq/kg)	< 8.4E-7	< 6.7 E-7	< 3.3 E-6
Surface Contaminations (Bq/cm ²)	< 2E-9	< 1E-8	< 1E-6

Sensor Gluing

Gluing

Production line, robotic operations Emphasis on reproducibility, well-defined thermal coupling All cleanroom operation

²⁰ I ECM cleaning Copper Cleaning: TECM

1. Tumbling

2. Electropolishing

3. Chemical etching

4. Magnetoplasma

Validated in dedicated test in Hall C; reduced background by at least x3 compared to Cuoricino

21

Assembly Line

Yury Kolomensky: CUORE

²² Tower assembly Tower Assembly

Mechanical Box

Cable management Sensor Cabling

08/21/2013

23

Wire bending Wire Bonding

Bonding Box

Storage (transfer) Tower Storage and Transfer

25

Storage Box

Additional Challenges

Cryogenics 10 mK base temperature >1600 kg total mass @ 10 mK

5 μW power @ 10 mK 20 t total mass inside cryostat

Detector Calibration System

Internal to cryostat Minimize heat load Calibration time < 1 week while avoiding event pileup Energy scale uncertainty goal < 0.05 keV in 0vββ region motion system: insertion and extraction of sources in and out of cryostat

guide tubes: no straight vertical access

source strings: move under own weight in guide tubes

top view of detector array with source positions

CUORE-0

1 CUORE-like tower of 13 planes - 4 crystals each
 52 TeO₂ 5x5x5 cm³ crystals (750 g each)
 Detector Mass: 39 kg TeO₂
 ¹³⁰Te mass (natural i.a.): 11 kg of ¹³⁰Te

- All detector components manufactured, cleaned and stored with protocols defined for CUORE
- Assembled with the same procedures foreseen for CUORE
- In the 25 years-old CUORICINO cryostat

GOALS:

- Proof of Concept for CUORE in all stages
- Test and debug the CUORE assembly line (thermistor gluing, signal wires bonding, tower assembly)
- Test of the CUORE DAQ and analysis framework
- Extend the physics reach beyond CUORICINO while CUORE is being assembled
- Demonstrate potential for DM and Axion detection

CUORE-00igeab Operations

CUORE0 run 200568 Resolution[keV]

Yury Kolomensky: CUORE

CUORE-0 to CUORE

CUORE-0

CUORE-0 to CUORE

CUORE-0

CUORE-0 to CUORE

CUORE-0

CUORE cryostat CUORE Cryostat

- 10 mK baseline temperature
 - 750 kg of crystals
 - Copper supporting structure
- ~20 tons at various low temperature
- Low background
 - Built with radio-pure materials
 - Roman lead shield from ancient shipwreck, <4mBq/kg ²¹⁰Pb
- Low vibrations
 - Separated suspension for the crystal tower and DR
- Minimal maintenance and dead time
 - Cryogen free DR

30

CUORE Cryostat

Yury Kolomensky: CUORE

Cryostat Commissioning

- commissioning @LNGS in progress
- 3 outer vessels assembled
- cooled to 4K in April 2013

Dilution Unit

Lowest base temperature: 4.95 mKCooling power: $10 \mu W @ 12 \text{ mK}$

Dilution Unit

Yury Kolomensky: CUORE

CUORE Status

Clean room & assembly line

Underground storage

Dilution Unit

300K vessel

- Hut and clean room: fully equipped
- Radon abatement system: operating
- Cryostat: in commissioning, successful 4K test
- Dilution unit: delivered, <5 mK reached
- Copper parts: cleaning proceeding, to be delivered by end of 2013
- Crystals: all (1063) delivered to LNGS underground storage
- NTD thermistors: all (1250) delivered
- Detector assembly line: operational, first four towers assembled
- CUORE-0 (single tower in Cuoricino cryostat): in operations

35

CUORE Sensitivity

5 year sensitivity

CUORE Sensitivity

Assume KKDC result: $T_{1/2}=25 \times 10^{23}$ y (also near Cuoricino limit)

Background 0.01 c/keV/kg/year, 5 keV FWHM resolution, 5 years of running Assume conservative scaling of Co and Tl peaks

Outcome of one possible experiment:

$\begin{array}{l} \textbf{Beyond CUORE} \\ T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.17 \times 10^{26}}{n_{\sigma}} \left(\frac{a\varepsilon}{W}\right) \sqrt{\frac{Mt}{(1+\zeta)b\delta(E)}} \end{array}$

- CUORE design is scalable to O(1 ton) detector
 - □ Relatively inexpensive isotopic enrichment of ¹³⁰Te
 - ${}^{\textcircled{s}}$ > 500 kg of ${}^{130}\text{Te}$
 - P A factor of 3 increase in a
 - Other DBD isotopes can also be used bolometrically
- Additional background suppression
 - Scintillating bolometers
 - Ionization measurements
 - Surface-sensitive bolometers
 - Pulse shape discrimination through non-equilibrium phonons
- Important direction for future R&D

Beyond CUORE

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{4.17 \times 10^{26}}{n_{\sigma}} \left(\frac{a\varepsilon}{W}\right) \sqrt{\frac{Mt}{(1+\zeta)b\delta(E)}}$$

- CUORE design is scalable to O(1 ton) detector
 - □ Relatively inexpensive isotopic enrichment of ¹³⁰Te
 - 740 kg of ¹³⁰Te
 - The A factor of 3 increase in isotope mass
 - Other DBD isotopes can also be used bolometrically
 - © E.g. ZnSe with isotopically enriched ⁸²Se, ZnMoO₄ with enriched ¹⁰⁰Mo
- Active background suppression to reduce background in ROI to ~zero
 - Energy resolution improvements (TES sensors)
 - Scintillating/Cherenkov bolometers or ionization
 - Surface-sensitive bolometers
 - Pulse shape discrimination through non-equilibrium phonons
- Important direction for future R&D
 - Efforts in the US and Italy underway; several techniques already demonstrated
 - Technology demonstration by 2015-2016: background rejection + CUORE ops

α/β Discrimination

...........

DBD and Neutrino Mass

DBD and Neutrino Mass

DBD and Neutrino Mass

Other Measurements with CUORE

- Reduction in the background levels, especially at low energy, make other physics measurements possible
 - Dark matter search a la DAMA
 - \bigcirc Quenching factor of O(1) for bolometers
 - Look for annual modulation of detector rates
 - Requires low energy threshold (10 keV) and energy resolution of 1 keV at low energy
 - Solar axions through Bragg conversion
 - Supernova watch
 - Rare nuclear transitions

0vββ: one of the top priorities in neutrino physics

- Probe Majorana nature of neutrinos and the absolute scale of neutrino mass

- Next generation experiments: probe inverted hierarchy
- Multiple experiments and isotopes: complementary approaches and cross-checks

- CUORE: one of the leading DBD experiments in near future; to start operations in 2015

 \rightarrow Stay tuned !

Background Analysis

- Detailed analysis of expected background contributions
 - Geant4-based Monte Carlo: QSHIELDS & ARBY
 - Inputs based on background measurements
 - Copper surface: TTT run
 - ^(S)Internal contamination in TeO₂: CCVR runs
 - Heaters and bonding wires: RAD test in Hall C
 - Small parts: HPGe spectroscopy and NAA

Bulk Contaminations

Matarial	Sampla	232Th	23811	Tachniqua
Material	Sample			Technique
		[Bq/kg]	[Bq/kg]	
TeO ₂ crystals	CUORE	$< 8.4 \cdot 10^{-7}$	$< 6.7 \cdot 10^{-7}$	bolometric (CCVR)
glue (Araldit Rapid)	CUORICINO	$< 2.7 \cdot 10^{-3}$	$< 8.2 \cdot 10^{-3}$	HPGe
PTFE spacers	CUORE	$< 6.1 \cdot 10^{-6}$	$< 2.2 \cdot 10^{-5}$	NAA
Au wires	CUORICINO	$< 1.2 \cdot 10^{-1}$	$< 9.8 \cdot 10^{-2}$	bolometric (RAD)
Si heaters	CUORE	$< 3.3 \cdot 10^{-4}$	$< 2.1 \cdot 10^{-3}$	bolometric (RAD)
NTD Ge thermistors	test sample	$< 4.1 \cdot 10^{-3}$	$< 1.2 \cdot 10^{-2}$	producer spec.
PEN cables	CUORE	$< 1.0 \cdot 10^{-3}$	$< 1.3 \cdot 10^{-3}$	NAA(Th) + HPGe(U)
polyethylene film	test sample	$< 1.2 \cdot 10^{-3}$	$< 1.4 \cdot 10^{-3}$	HPGe
wrapped polyethylene film	test sample	$< 2.1 \cdot 10^{-1}$	$< 1.6 \cdot 10^{-1}$	bolometric $(T1)$
NOSV Cu	CUORE	$< 2.0 \cdot 10^{-6}$	$< 6.5 \cdot 10^{-5}$	NAA(Th) + HPGe(U)
Roman Pb	CUORE	$< 4.3 \cdot 10^{-5}$	$< 4.6 \cdot 10^{-5}$	HPGe
OFE Cu	CUORE	$< 6.4 \cdot 10^{-5}$	$< 5.4 \cdot 10^{-5}$	HPGe
COMETA Pb	CUORE	$< 1.2 \cdot 10^{-4}$	$< 1.4 \cdot 10^{-4}$	HPGe
Stainless steel 300 K plate	CUORE	$< 1.0 \cdot 10^{-2}$	$< 5.0 \cdot 10^{-3}$	HPGe

All values are upper limits

Bulk Contaminations in ROI

Element	ROI rate from 232 Th	ROI rate from ²³⁸ U
	$[\text{cnts}/(\text{keV}\cdot\text{kg}\cdot\text{y})]$	$[\mathrm{cnts}/(\mathrm{keV}{\cdot}\mathrm{kg}{\cdot}\mathrm{y})]$
TeO ₂ crystal bulk	$< 1 \cdot 10^{-4}$	$< 2 \cdot 10^{-6}$
glue (Araldit Rapid)*	$<\!\!2\cdot\!10^{-7}$	$<\!\!8{\cdot}10^{-7}$
PTFE*	$< 4 \cdot 10^{-5}$	$<9.10^{-5}$
$\left(Au \text{ wires}^* \right)$	$< 1 \cdot 10^{-3}$	$< 1 \cdot 10^{-3}$
Si heater [*]	$< 5 \cdot 10^{-6}$	$< 3.10^{-5}$
Ge NTD thermistors	$< 1 \cdot 10^{-4}$	$<\!8{\cdot}10^{-4}$
PEN cables	$< 1 \cdot 10^{-7}$	$<\!9 \cdot 10^{-8}$
Cu columns and frames	$< 2 \cdot 10^{-5}$	$< 5 \cdot 10^{-4}$
Cu upper and lower plates	$< 3 \cdot 10^{-6}$	$< 4 \cdot 10^{-5}$
Cu wire-trays	$< 2 \cdot 10^{-6}$	$< 3 \cdot 10^{-5}$
Cu 10 mK shield	$<\!\!2\cdot\!10^{-5}$	$< 1 \cdot 10^{-4}$

All values are upper limits

(*) Anti-coincidence cuts not included

Additionally, cosmogenic activation of TeO₂ ($^{110m}Ag + {}^{110}Ag$) < 10⁻³ c/(keV kg y)

Cryostat Backgrounds

CUORE ROI - BULK CONTRIBUTIONS IN THE FAR REGION				
Element	Material	ROI rate		
		$[\text{cnts}/(\text{keV}\cdot\text{kg}\cdot\text{y})]$		
Cu TSP	NOSV Cu	$< 4 \cdot 10^{-5}$		
Cu 50 mK shield	OFE Cu	$< 6 \cdot 10^{-4}$		
Cu 600 mK shield	OFE Cu	$< 6 \cdot 10^{-4}$		
Cu 4 K shield	OFE Cu	$< 1 \cdot 10^{-4}$		
Cu 40 K shield	OFE Cu	$< 4 \cdot 10^{-5}$		
Cu 300 K shield	OFE Cu	$< 1 \cdot 10^{-4}$		
Cu plates from 10 mK to 40 K $$	OFE Cu	$<\!\!2\cdot\!10^{-5}$		
inner Pb vessel	Roman Pb	$< 4 \cdot 10^{-3}$		
Pb top disk	Cometa Pb	$< 5 \cdot 10^{-5}$		
Fe 300 K plate	stainless Steel	$< 3 \cdot 10^{-4}$		

Only ²⁰⁸TI simulated: conservative upper limit

Environmental Backgrounds

Source	Total	Anti-coincidence (global)	Anti-coincidence (near neighbors)
gamma	<0.4×10 ⁻³	<0.4×10 ⁻³	<0.4×10 ⁻³
	(stats limited)	(stats limited)	(stats limited)
muon	(17.3±0.3)×10 ⁻³	(0.104±0.022)×10 ^{−3}	(1.9±0.5) ×10 ⁻³
neutron	(0.270±0.022)×10 ^{−3}	negligible	negligible

Neutron and muon backgrounds are cosmogenic, gamma backgrounds are from rock radioactivity. Upper limits are limited by MC statistics

Surface Backgrounds

Material	Sample	Depth	²³² Th	$^{238}{ m U}$	$^{210}\mathrm{Pb}$	Tecnique
		$[\mu m]$	$[\mathrm{Bq/cm^2}]$	$[\mathrm{Bq/cm^2}]$	$[\mathrm{Bq/cm^2}]$	
TeO_2 crystals	CUORE	0.01	$< 1.6 \cdot 10^{-9}$	$< 6.3 \cdot 10^{-9}$	$< 9.8 \cdot 10^{-7}$	bolometric (CCVR)
		0.2	$<\!\!2\cdot\!10^{-9}$	$< 7.6 \cdot 10^{-9}$	$< 2.2 \cdot 10^{-8}$	"
		1	$< 1.9 \cdot 10^{-9}$	$< 8.9 \cdot 10^{-9}$	$< 9.2 \cdot 10^{-9}$	"
		5	$< 1.0 \cdot 10^{-9}$	$< 5.4 \cdot 10^{-9}$	$< 5.6 \cdot 10^{-9}$	"
		10	$< 8.3 \cdot 10^{-10}$	$< 4.4 \cdot 10^{-9}$	$< 4.9 \cdot 10^{-9}$	"
Copper	TECM	0.1-10	$< 7 \cdot 10^{-8}$	$< 7 \cdot 10^{-8}$	$< 9 \cdot 10^{-7}$	bolometric $(T3)$
PEN cables	CUORE	0.1 - 30	$< 4 \cdot 10^{-6}$	$< 5 \cdot 10^{-6}$	$< 3 \cdot 10^{-5}$	Si diode
PTFE spacers	CUORE	0.1 - 30	$< 6 \cdot 10^{-7}$	$< 5 \cdot 10^{-7}$	$< 7 \cdot 10^{-6}$	bolometric $(T1)$
NTD Ge thermistors	test sample	0.1-10	$< 8 \cdot 10^{-6}$	$< 5 \cdot 10^{-6}$	$< 4 \cdot 10^{-5}$	Si diode

Anti-Coincidence Cut

Effect of anti-coincidence cut on TeO₂ surface backgrounds

08/21/2013

52

Surface in beta decay cascade in beta decay Dedicated run in Hall come ray Dedicated run in Hall come ray

50

from ²³²Th contamination

3 towers with copper processed by different techniques

TI- Polyethylene Cleaning: • Soap • H ₂ O ₂ + H ₂ O + Citric acid Polyethylene: 7 layers	T2 - Gran Sasso Chemical New Cleaning: • Soap • Electroerosion: 85% phosphoric acid, 5% butanol, 10% H ₂ O • Etching: Nitric acid •Passivation: H ₂ O ₂ + H ₂ O +	T3 - Legnaro Complete Legnaro procedure - TECM Cleaning: • Tumbling • Electropolishing • Chemical Etching • Magnetron (plasma)
From	Citric acid	

53

TTT Results

TT	Detector	3-4 MeV rate cnts / (keV kg y)	Sources
	T1 - copper wrapped with polyehtylene film	0.052 +/- 0.008 with single-hit cut	TeO ₂ crystals (partially subtracted) PTFE spacers polyehtylene film
	T2 - copper treated with an etching procedure	0.120 +/- 0.012 no coincidence cut	TeO ₂ crystals PTFE spacers copper
	T3 - copper treated with TECM procedure	0.072 +/- 0.008 no coincidence cut	TeO ₂ crystals PTFE spacers copper

Scaling to CUORE:

TECM process: rate < 0.017-0.035 c/(keV kg y) in ROI Poly wrapping: rate < 0.013-0.025 c/(keV kg y) in ROI

Surface Contamination Summary

Element	ROI rate	Notes
	$[\text{cnts}/(\text{keV}\cdot\text{kg}\cdot\text{y})]$	
TeO_2 crystal surface	$< 4 \cdot 10^{-3}$	upper limit due to poor statistics
Cu - TECM cleaning	$< 3 \cdot 10^{-2}$	no crystal background subtraction (T3 data)
Cu - polyethylene wrapping	$< 2 \cdot 10^{-2}$	partial crystal background subtraction (T1 data)
PTFE	$< 6 \cdot 10^{-2}$	new measurement in progress
PEN cables	$< 1 \cdot 10^{-3}$	new measurement in progress

CUORE Background Budget

Region	Source	ROI rate
		$\mathrm{cnts}/(\mathrm{keV}\cdot\mathrm{kg}\cdot\mathrm{y})$
Near	110m Ag 110 Ag (half-life = 250 days) in TeO ₂ crystals	$\sim 1 \cdot 10^{-3}$
Near	232 Th or 238 U in the Au bonding wires	$< 1 \cdot 10^{-3}$
Near	238 U in the NOSV Cu elements	$< 0.7 \cdot 10^{-3}$
Far	232 Th in the OFE Cu elements	$< 1.5 \cdot 10^{-3}$
Far	232 Th in the Roman lead shield	$< 4 \cdot 10^{-3}$
External	muon interaction	$\sim 1.8 \cdot 10^{-3}$
Near	TeO_2 crystals surface activity	$< 4 \cdot 10^{-3}$
Near	copper and/or PTFE surface activity	$<(2-6)\cdot 10^{-2}$

Scaling to CUORE-0

- Assume:
 - Similar surface contaminations as CUORE (Cu processed with LNL TECM technique)
 - Similar bulk TeO2 and Cu contamination
 - Additional bulk contribution from Hall A cryostat shields from Cuoricino of 0.05 c/(keV kg y)
 - Resolution 5 keV FWHM
- Best case: bkg of 0.05 c/(keV kg y)
- Worst case: 0.11 c/(keV kg y)