Nuclear Polarization Contribution to the Lamb Shift in Muonic Atoms

Chen Ji¹, Nir Nevo Dinur², Sonia Bacca¹, Nir Barnea²

¹TRIUMF, Vancouver, Canada ²The Hebrew University, Jerusalem, Israel

Aug 5, 2013

INT Program INT-13-2b

Chen Ji (TRIUMF)

arXiv:1307.6577

Proton radius puzzle

How small is the proton?

electron-proton

- **1.** *e*-*p* scattering: $r_p = 0.875(10)$ fm
- 2. eH atomic spectroscopy: $r_p = 0.8768(69)$ fm
- 3. CODATA-2010: $r_p = 0.8775(51) \text{ fm}$

Mohr et al., Rev. Mod. Phys. (2012)

Proton radius puzzle

How small is the proton?

electron-proton

- 1. *e-p* scattering: $r_p = 0.875(10)$ fm
- 2. eH atomic spectroscopy: $r_p = 0.8768(69)$ fm
- 3. CODATA-2010: $r_p = 0.8775(51)$ fm Mohr *et al.*, Rev. Mod. Phys. (2012)

• muonic hydrogen Lamb shift (2S-2P)

- 1. μ H 2S^{F=1}_{1/2}-2P^{F=2}_{3/2}: $r_p = 0.84184(67)$ fm (5 σ) Pohl *et al.*, Nature (2010)
- 2. Combine μ H 2S^{F=0}_{1/2}-2P^{F=1}_{3/2}: $r_p = 0.84087(39)$ fm (7 σ) Antognini *et al.*, Science (2013)

μ H Lamb shift experiment

Lamb Shift: 2S-2P splitting in atomic spectrum

- a. prompt X-ray ($t \sim 0$)
 - μ^- stopped in H₂ gases • 99% \rightarrow 1S
 - 1% \rightarrow 2S ($\tau_{2S} \approx 1 \mu s$)
- **b.** delayed X-ray ($t \sim 1 \mu s$)
 - laser induced $2S \rightarrow 2P$
 - measure $K_{\alpha}^{\text{delayed}}/K_{\alpha}^{\text{prompt}}$

•
$$f_{res} = \Delta E_{LS}$$

Figure from Pohl et al. Nature (2010)

μH Lamb shift experiment

r_p from μ H experiment disagrees with eH (ep) by 7σ !

Origins of the discrepancy?

Discrepancy of r_p between ep and μp measurements

• study r_p 's discrepancy between μp and ep experiments

- systematic errors in ep scattering
- ullet new physics that distinguishes μp and ep interactions
- high-precision measurements \iff accurate theoretical inputs

• study r_p 's discrepancy between μp and ep experiments

- systematic errors in ep scattering
- ullet new physics that distinguishes μp and ep interactions
- high-precision measurements \iff accurate theoretical inputs

new experiments at PSI

• Lamb shift in μD

CREMA collaboration, finishing

• Lamb shift in muonic helium

CREMA collaboration, planned in 2013

• μp scattering experiment

MUSE collaboration, in development

$$\Delta E_{LS} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

$$\Delta E_{LS} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

• QED corrections:

- vacuum polarization
- lepton self energy
- relativistic recoil effects

$$\Delta E_{LS} = \delta_{QED} + \frac{\delta_{pol}}{12} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

- Nuclear polarization corrections (inelastic):
 - exchange of two virtual photons
 - dominant contribution $\sim (Z\alpha)^5$

$$\Delta E_{LS} = \delta_{QED} + \delta_{pol} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

- Nuclear finite-size corrections (elastic):
 - leading term $\sim (Z\alpha)^4 : \; \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle$
 - Zemach moment $\sim (Z\alpha)^5$: $-\frac{m_r^4}{24}(Z\alpha)^5\langle r^3 \rangle_{(2)} \propto \langle r^2 \rangle^{3/2}$

$$\Delta E_{LS} = \delta_{QED} + \boldsymbol{\delta_{pol}} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

 $\bullet\,$ The accuracy in determining $\langle r^2\rangle$ relies on the accuracy of δ_{pol}

$$\Delta E_{LS} = \delta_{QED} + \boldsymbol{\delta_{pol}} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

- The accuracy in determining $\langle r^2
 angle$ relies on the accuracy of δ_{pol}
- Nuclear polarization \implies inputs from nuclear response function

$$\Delta E_{LS} = \delta_{QED} + \boldsymbol{\delta_{pol}} + \frac{m_r^3}{12} (Z\alpha)^4 \langle r^2 \rangle - \frac{m_r^4}{24} (Z\alpha)^5 \langle r^3 \rangle_{(2)}$$

- The accuracy in determining $\langle r^2
 angle$ relies on the accuracy of δ_{pol}
- Nuclear polarization \implies inputs from nuclear response function

• Early calculations of δ_{pol} in muonic atoms: $\Rightarrow S_O(\omega)$ inputs were not accurate enough

• Toy models

- μ^{12} C (square-well) Rosenfelder '83
- µD (Yamaguchi) Lu & Rosenfelder '93

• Toy models

- μ^{12} C (square-well) Rosenfelder '83
- μD (Yamaguchi) Lu & Rosenfelder '93

• $S_O(\omega)$ from photoabsorption cross sections

- μ^{4} He⁺: Bernabeu & Jarlskog '74; Rinker '76; Friar '77
- $\delta_{pol} = -3.1 \text{ meV} \pm 20\%$
- $\, \bullet \,$ c.f. experimental requirement $\sim \pm 5\%$

Toy models

- μ^{12} C (square-well) Rosenfelder '83
- μD (Yamaguchi) Lu & Rosenfelder '93

• $S_O(\omega)$ from photoabsorption cross sections

- μ^{4} He⁺: Bernabeu & Jarlskog '74; Rinker '76; Friar '77
- $\delta_{pol} = -3.1 \text{ meV} \pm 20\%$
- c.f. experimental requirement $\sim\pm5\%$

• state of the art potentials

• μD: AV14 (Leidemann & Rosenfelder, '95); AV18 (Pachucki, '11)

Toy models

- μ^{12} C (square-well) Rosenfelder '83
- μD (Yamaguchi) Lu & Rosenfelder '93

• $S_O(\omega)$ from photoabsorption cross sections

- μ^{4} He⁺: Bernabeu & Jarlskog '74; Rinker '76; Friar '77
- $\delta_{pol} = -3.1 \text{ meV} \pm 20\%$
- c.f. experimental requirement $\sim\pm5\%$
- state of the art potentials
 - μD: AV14 (Leidemann & Rosenfelder, '95); AV18 (Pachucki, '11)
- δ_{pol} in other light muonic atoms (e.g., μ³He⁺, μ⁴He⁺, ...)
 need to calculate S_Q using modern potentials *ab-initio* methods

• Argonne v_{18} fitted to

- 1787 pp & 2514 np observables for $E_{lab} \leq 350$ MeV with $\chi^2/{
 m datum} = 1.1$
- ullet nn scattering length & $^2{
 m H}$ binding energy

• Argonne v₁₈ fitted to

- 1787 pp & 2514 np observables for $E_{lab} \leq 350$ MeV with $\chi^2/{
 m datum} = 1.1$
- ullet nn scattering length & $^2{
 m H}$ binding energy

Chiral EFT potential

Chiral EFT potential

based on

spontaneous breaking of chiral symmetry

- separation of scales $Q \ll \Lambda \sim 500 \ {\rm MeV}$
- nuclear forces

are built in systematic expansions of Q/Λ

 coupling constants fitted to nuclear data

We perform the first *ab-initio* calculation of nuclear polarization in μ^4 He⁺ with state-of-the-art potentials

Ji, Nevo Dinur, Bacca & Barnea, arXiv:1307.6577 (2013)

Hyperspherical Harmonics + AV18/UIX and EFT ⇒ response functions
 response functions ⇔ nuclear polarization in µ⁴He⁺

We perform the first *ab-initio* calculation of nuclear polarization in μ^4 He⁺ with state-of-the-art potentials

Ji, Nevo Dinur, Bacca & Barnea, arXiv:1307.6577 (2013)

- Hyperspherical Harmonics + AV18/UIX and EFT ⇒ response functions
 response functions ⇔ nuclear polarization in µ⁴He⁺
- discrepancy of δ_{pol} in two potentials \implies uncertainty in nuclear physics
- estimate systematic errors in atomic physics

We perform the first *ab-initio* calculation of nuclear polarization in μ^4 He⁺ with state-of-the-art potentials

Ji, Nevo Dinur, Bacca & Barnea, arXiv:1307.6577 (2013)

- Hyperspherical Harmonics + AV18/UIX and EFT ⇒ response functions
 response functions ⇔ nuclear polarization in µ⁴He⁺
- discrepancy of δ_{pol} in two potentials \implies uncertainty in nuclear physics
- estimate systematic errors in atomic physics

• Final Goal:

provide δ_{pol} with an accuracy comparable to the $\pm 5\%$ experimental needs

Ab-initio response functions

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

Ab-initio response functions

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

• Lorentz integral transform (LIT) method

$$\mathcal{L}(\sigma,\Gamma) = \int d\omega \frac{S_O(\omega)}{(\sigma-\omega)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle$$

 $\, \bullet \,$ Since r.h.s. is finite, $| \tilde{\psi} \rangle$ has bound-state asymptotic behavior

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

• Lorentz integral transform (LIT) method

$$\mathcal{L}(\sigma,\Gamma) = \int d\omega \frac{S_O(\omega)}{(\sigma-\omega)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle$$

 $\, \bullet \,$ Since r.h.s. is finite, $| \tilde{\psi} \rangle$ has bound-state asymptotic behavior

• Few-body methods for bound-state problems \rightarrow Hyperspherical Harmonics

- applicable for $3 \leqslant A \leqslant 8$
- can accommodate local and non-local two/three body forces $AV18 + UIX \& NN(N^3LO) + NNN(N^2LO)$

Details in tomorrow's talk by Sonia Bacca

⁴He photoabsorption cross sections

electric-dipole photoabsorption cross section $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$

Chen Ji (TRIUMF)

TRIUMF

⁴He photoabsorption cross sections

electric-dipole photoabsorption cross section $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$

Chen Ji (TRIUMF)

TRIUMF

• Hamiltonian for muonic atoms

$$H = H_{nucl} + H_{\mu} + \Delta H$$
$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

• Corrections to the point Coulomb

$$\Delta H = \alpha \sum_{i}^{Z} \Delta V(\boldsymbol{r}, \boldsymbol{R}_{i}) \equiv \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|}\right)$$

• Evaluate ΔH 's inelastic effects to the muonic atom spectrum in 2nd-order perturbation theory

$$\delta_{pol} = \sum_{N \neq N_0} \langle N_0 \phi_x | \Delta H | N \rangle \frac{1}{E_{N_0} - E_N + \epsilon_{\mu_0} - H_\mu} \langle N | \Delta H | \phi_x N_0 \rangle$$

 ϕ_x : muon wave function for 2S/2P state

Systematic contributions to nuclear polarization

- non-relativistic limit (multipole expansion)
- relativistic dipole polarization
- Coulomb distortion in dipole polarization
- corrections from finite nucleon sizes

• Neglect Coulomb interactions in the intermediate state

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers $\sqrt{2m_r\omega}|{m R}-{m R}'|$

$$P \simeq rac{m_r^3 (Zlpha)^5}{12} \sqrt{rac{2m_r}{\omega}} \left[|m{R} - m{R}'|^2 - rac{\sqrt{2m_r\omega}}{4} |m{R} - m{R}'|^3 + rac{m_r\omega}{10} |m{R} - m{R}'|^4
ight]$$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers $\sqrt{2m_r\omega}|{m R}-{m R}'|$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|\sim\sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu\,{}^4{
m He^+}$

- Neglect Coulomb interactions in the intermediate state
- Expand muon matrix element in powers $\sqrt{2m_r\omega}|{m R}-{m R}'|$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- uncertainty principal $|{m R}-{m R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|\sim\sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu\,^4{
m He^+}$

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow \text{LO} + \text{NLO} + \text{N}^2\text{LO}$$

- $\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$
- $\delta_{NR}^{(0)} \propto |\boldsymbol{R} \boldsymbol{R}'|^2$

$$\delta_{D1}^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{2m_r}{\omega}} S_{D_1}(\omega)$$

- $S_{D_1}(\omega) \Longrightarrow$ electric dipole response function
- $\delta_{D1}^{(0)}$ is the dominant contribution to δ_{pol}

$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$$

•
$$\delta_{NR}^{(1)}\propto |m{R}-m{R}'|^3$$

$$\delta_{NR}^{(1)} = \delta_{R3pp}^{(1)} + \delta_{Z3}^{(1)}$$

$$\delta_{R3pp}^{(1)} = -\frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle$$

$$\delta_{Z3}^{(1)} = \frac{m_r^4}{24} (Z\alpha)^5 \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'|^3 \rho_0(\mathbf{R}) \rho_0(\mathbf{R}')$$

•
$$\delta^{(1)}_{R3pp} \Longrightarrow$$
 3rd-order proton charge correlation

• $\delta_{Z3}^{(1)} \Longrightarrow$ 3rd-order Zemach moment cancels Zemach moment in finite-size corrections c.f. Pachucki '11 & Friar '13 (μ D)

- $\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$
- $\delta_{NR}^{(2)} \propto |\mathbf{R} \mathbf{R}'|^4$ $\delta_{NR}^{(2)} = \frac{m_r^5}{18} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{\omega}{2m_r}} \left[S_{R^2}(\omega) + \frac{16\pi}{25} S_Q(\omega) + \frac{16\pi}{5} S_{D_1D_3}(\omega) \right]$
- $S_{R^2}(\omega) \Longrightarrow$ monopole response function
- $S_Q(\omega) \Longrightarrow$ quadrupole response function
- $S_{D_1D_3}(\omega) \Longrightarrow$ interference between D_1 and D_3 [$\hat{D}_3 = R^3 Y_1(\hat{R})$]

Relativistic dipole polarization

longitudinal

- Longitudinal contributions
 - exchange Coulomb photon

Relativistic dipole polarization

$$K_T \approx \frac{\omega}{m_r} \left(1 + \ln \frac{2\omega}{m_r} \right) + \cdots$$

• Non-perturbative Coulomb interaction in intermediate state

 ${\, \bullet \, }$ contributes to both 2S and 2P atomic states

• Non-perturbative Coulomb interaction in intermediate state

- ${\, \bullet \, }$ contributes to both 2S and 2P atomic states
- naive estimation: $\delta_C^{(0)} \sim (Z\alpha)^6$
- full analysis: correct $\delta_{D1}^{(0)}$ in order of $Z\alpha\sqrt{\frac{m_r}{\omega}}$

 $\mu {\rm D:} \ Z\alpha \sqrt{\frac{m_r}{\omega}} \sim 0.05 \quad \& \quad \mu^4 {\rm He:} \ Z\alpha \sqrt{\frac{m_r}{\omega}} \sim 0.03$

• Non-perturbative Coulomb interaction in intermediate state

- ${\scriptstyle \bullet}\,$ contributes to both 2S and 2P atomic states
- naive estimation: $\delta_C^{(0)} \sim (Z\alpha)^6$
- full analysis: correct $\delta_{D1}^{(0)}$ in order of $Z\alpha\sqrt{\frac{m_r}{\omega}}$ μ D: $Z\alpha\sqrt{\frac{m_r}{\omega}} \sim 0.05$ & μ^4 He: $Z\alpha\sqrt{\frac{m_r}{\omega}} \sim 0.03$

$$\delta_C^{(0)} = -\frac{2\pi m_r^3}{9} (Z\alpha)^6 \int_{\omega_{\rm th}}^\infty d\omega \, \frac{m_r}{\omega} \left(\frac{1}{6} + \ln \frac{2Z^2 \alpha^2 m_r}{\omega}\right) \, S_{D_1}(\omega)$$

Friar '77 & Pachucki '11

• In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|} + \frac{Z\alpha}{r}$$

In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|} + \frac{Z\alpha}{r}$$

• consider finite nucleon sizes \implies include nucleon charge density

$$\Delta H = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|} + \frac{Z\alpha}{r}$$

In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_i|} + \frac{Z\alpha}{r}$$

• consider finite nucleon sizes \implies include nucleon charge density

$$\Delta H = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|} + \frac{Z\alpha}{r}$$

• a low-momentum approximation of nucleon charge form factor

$$\tilde{n}_p(q) \simeq 1 - 2q^2/\beta^2 \implies \beta = \sqrt{12/\langle r_p^2 \rangle} = 4.12 \text{ fm}^{-1}$$

 $\tilde{n}_n(q) \simeq \lambda q^2 \implies \lambda = -\langle r_n^2 \rangle/6 = 0.0191 \text{ fm}^2$

Finite nucleon size corrections

• at LO $\delta^{(0)}$: zero contribution

• at LO $\delta^{(0)}$: zero contribution

• at NLO $\delta^{(1)}$:

$$\delta_{NS}^{(1)} = \delta_{R1pp}^{(1)} + \delta_{Z1}^{(1)}$$

$$= -m_r^4 (Z\alpha)^5 \left[\frac{2}{\beta^2} - \lambda\right] \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'| \left[\langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle - \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') \right]$$

•
$$\delta^{(1)}_{R1pp} \Longrightarrow$$
 1st-order proton charge correlation

•
$$\delta^{(1)}_{Z1} \Longrightarrow$$
 1st-order Zemach moment

• at LO $\delta^{(0)}$: zero contribution

• at NLO $\delta^{(1)}$:

$$\delta_{NS}^{(1)} = \delta_{R1pp}^{(1)} + \delta_{Z1}^{(1)}$$

$$= -m_r^4 (Z\alpha)^5 \left[\frac{2}{\beta^2} - \lambda\right] \iint d\mathbf{R} d\mathbf{R}' |\mathbf{R} - \mathbf{R}'| \left[\langle N_0 | \hat{\rho}^{\dagger}(\mathbf{R}) \hat{\rho}(\mathbf{R}') | N_0 \rangle - \rho_0(\mathbf{R}) \rho_0(\mathbf{R}') \right]$$

•
$$\delta^{(1)}_{R1pp} \Longrightarrow$$
 1st-order proton charge correlation

•
$$\delta^{(1)}_{Z1} \Longrightarrow$$
 1st-order Zemach moment

• at N²LO $\delta^{(2)}$:

$$\delta_{NS}^{(2)} = -\frac{16\pi}{9}m_r^5(Z\alpha)^5 \left[\frac{2}{\beta^2} - \lambda\right] \int_{\omega_{\rm th}}^{\infty} d\omega \sqrt{\frac{\omega}{2m_r}} S_{D_1}(\omega)$$

• Test Run: electric-dipole polarization effects in μ D

- μ -D's nuclear polarization (AV18): Pachucki, '11
- we calculate contributions from dipole excitation (AV18) $[S_{D_1}(\omega)$ from Bampa, Leidemann & Arenhövel '11]

$\delta^{(0)}$ [meV]	Pachucki, '11	Our work
non-rel dipole	$\delta_{D1}^{(0)}$	-1.910	-1.907
relativistic	$\delta_L^{(0)}$	0.035	0.029
	$\delta_T^{(0)}$	-	-0.012
Coulomb	$\delta_C^{(0)}$	0.261	0.259

 $K_L \& K_T$

In relativistic corrections

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)} \left(\frac{\omega}{m_r}\right) \, S_{D_1}(\omega)$$

Pachucki '11:

low-energy approximation of $K_{L(T)}$

$$K_L = \frac{\pi}{2} \sqrt{\frac{\omega}{m_r}} \& K_T = 0$$

• this approximation is not accurate enough

[meV]	AV18/UIX	χ EFT*
	$\delta_{D1}^{(0)}$	-4.418	-4.701
x (0)	$\delta_L^{(0)}$	0.289	0.308
0	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]	AV18/UIX	χ EFT*
	$\delta_{D1}^{(0)}$	-4.418	-4.701
$\boldsymbol{\zeta}(0)$	$\delta_L^{(0)}$	0.289	0.308
0	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\delta^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0.	$\delta^{(1)}_{Z3}$	4.183	4.526

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]		AV18/UIX	χEFT^{\bigstar}
	$\delta_{D1}^{(0)}$	-4.418	-4.701
$\delta^{(0)}$	$\delta_L^{(0)}$	0.289	0.308
	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\mathbf{x}^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0	$\delta^{(1)}_{Z3}$	4.183	4.526
	$\delta^{(2)}_{R2}$	0.259	0.324
$\delta^{(2)}$	$\delta_Q^{(2)}$	0.484	0.561
	$\delta^{(2)}_{D1D3}$	-0.666	-0.784

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]		AV18/UIX	χEFT^{\bigstar}
	$\delta_{D1}^{(0)}$	-4.418	-4.701
(0)	$\delta_L^{(0)}$	0.289	0.308
0 * *	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\boldsymbol{\lambda}^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0	$\delta^{(1)}_{Z3}$	4.183	4.526
	$\delta^{(2)}_{R2}$	0.259	0.324
$\delta^{(2)}$	$\delta_Q^{(2)}$	0.484	0.561
	$\delta^{(2)}_{D1D3}$	-0.666	-0.784
	$\delta^{(1)}_{R1pp}$	-1.036	-1.071
δ_{NS}	$\delta^{(1)}_{Z1}$	1.753	1.811
	$\delta_{NS}^{(2)}$	-0.200	-0.210

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]		AV18/UIX	χEFT^{\bigstar}
	$\delta^{(0)}_{D1}$	-4.418	-4.701
$\delta^{(0)}$	$\delta_L^{(0)}$	0.289	0.308
0	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\boldsymbol{\lambda}^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0	$\delta^{(1)}_{Z3}$	4.183	4.526
	$\delta^{(2)}_{R2}$	0.259	0.324
$\delta^{(2)}$	$\delta_Q^{(2)}$	0.484	0.561
	$\delta^{(2)}_{D1D3}$	-0.666	-0.784
	$\delta^{(1)}_{R1pp}$	-1.036	-1.071
δ_{NS}	$\delta^{(1)}_{Z1}$	1.753	1.811
	$\delta_{NS}^{(2)}$	-0.200	-0.210
δ_{pol}		-2.408	-2.542

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]	AV18/UIX	χ EFT*
$\delta^{(0)}$	-3.743	-3.981
$\delta^{(1)}$	0.741	0.809
$\delta^{(2)}$	0.077	0.101
δ_{NS}	0.517	0.530
δ_{pol}	-2.408	-2.542

•	Convergence from $\delta^{(0)}$ to $\delta^{(2)}$
	in a systematic expansion of
	$\sqrt{2m_r\omega} \boldsymbol{R}-\boldsymbol{R}' \sim\sqrt{m_r/M_N}pprox 0.17$

★ $NN(N^{3}LO)/3N(N^{2}LO)$ $c_{D}=1, c_{E}=-0.029$

[meV]	AV18/UIX	χ EFT*	
$\delta^{(0)}$	-3.743	-3.981	• Convergence from $\delta^{(0)}$ to $\delta^{(2)}$ in a systematic expansion of $\sqrt{2m_r\omega} \mathbf{R}-\mathbf{R}' \sim \sqrt{m_r/M_N} \approx 0.$
$\delta^{(1)}$	0.741	0.809	• δ_{pol} with AV18/UIX & χ EFT differ: $\sim 5.5\%$ (0.134 meV)
$\delta^{(2)}$	0.077	0.101	
δ_{NS}	0.517	0.530	★ $NN(N^3LO)/3N(N^2LO)$
δ_{pol}	-2.408	-2.542	$c_D = 1, c_E = -0.0$

The work is not completed yet ...

Nuclear physics uncertainty

⁴ He	AV18/UIX	χ EFT	Difference
	1	1	

$\mu{}^{4}{ m He}^{+}$ nuclear polarization	δ_{pol} [meV]	-2.408	-2.542	5.5%
---	----------------------	--------	--------	------

⁴ He		AV18/UIX	$\chi {\sf EFT}$	Difference
binding energy	$B_0 \; [{\sf MeV}]$	28.422	28.343	0.28%
point-proton radius	R_{pp} [fm]	1.432	1.475	3.0%
electric-dipole polarizability	$\alpha_E \; [\text{fm}^3]$	0.0651	0.0694	6.4%
$\mu{}^{4}\mathrm{He}^{+}$ nuclear polarization	$\delta_{pol} [{\rm meV}]$	-2.408	-2.542	5.5%

 B₀, R_{pp} & α_E in good agreement with previous calculations Kievsky *et al.* '08, Gazit *et al.* '06 & Stetcu *et al.* '09

⁴ He		AV18/UIX	$\chi {\sf EFT}$	Difference
binding energy	$B_0 \; [{\sf MeV}]$	28.422	28.343	0.28%
point-proton radius	R_{pp} [fm]	1.432	1.475	3.0%
electric-dipole polarizability	$\alpha_E \; [\mathrm{fm}^3]$	0.0651	0.0694	6.4%
$\mu{}^{4}\mathrm{He}^{+}$ nuclear polarization	$\delta_{pol} \; [{\rm meV}]$	-2.408	-2.542	5.5%

- B_0 , R_{pp} & α_E in good agreement with previous calculations Kievsky *et al.* '08, Gazit *et al.* '06 & Stetcu *et al.* '09
- $\bullet\,$ systematic uncertainty in δ_{pol} from nuclear physics:

 $\implies \frac{5.5\%}{\sqrt{2}} \rightarrow \pm 4\%$

Numerical accuracy

- Convergence with the largest model space K_{max}
- Difference btw K_{max} & $K_{max} 4$
 - AV18/UIX $\sim 0.4\%$
 - EFT $\sim 0.2\%$

- $(Z\alpha)^6$ effects (beyond 2nd-order perturbation theory)
- relativistic & Coulomb corrections to other multipoles (other than dipole)
- higher-order nucleon-size corrections
- ullet combine these corrections \Longrightarrow an additional few percent error

- combine all errors in a quadratic sum
- our prediction: $\delta_{pol} = -2.47 \text{ meV} \pm 6\%$
- more accurate than early calculations: $\delta_{pol} = -3.1 \text{ meV} \pm 20\%$ Bernabeu & Jarlskog '74; Rinker '76; Friar '77
- our accuracy is comparable to the 5% requirement for the future μ^{4} He⁺ Lamb shift measurement Antognini *et al.* '11

• Lamb shifts in muonic atoms

- raise interesting questions about lepton symmetry
- connect nuclear and atomic physics
- $\bullet\,$ We perform the first *ab-initio* calculation for $\mu\,{}^4\mathrm{He^+}$ polarization corrections
 - combine Hyperspherical Harmonics methods with modern phenomenological & chiral potentials
- We obtain $\delta_{pol} = -2.47 \text{ meV} \pm 6\%$
 - more accurate than early calculations
 - will significantly improve the precision of $\langle r^2\rangle$ extracted from future $\mu\,{}^4{\rm He^+}$ Lamb shift measurement (2013)

- Study higher-order atomic-physics corrections
- Narrow uncertainty in nuclear physics
 - understand the discrepancy btw AV18/UIX & EFT results
 - explore other choices for potential parameterizations
 - include higher-order χEFT forces
- Investigate nuclear polarization in e.g. $\mu^{3}\mathrm{He^{+}}$, \cdots