

Matrix elements for processes that could compete in double beta decay

Mihai Horoi

Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA

Support from NSF grant PHY-1068217 and DOE/SciDAC grant DE-SC0008529 is acknowledged

INT August 23, 2013

Plan of the talk

- Short overview of "standard" (light neutrino exchange) DBD mechanism
- Other mechanisms: right-handed currents, heavy neutrinos, R-parity SUSY, etc, ...
- 48 Ca: 2*v* and 0*v* nuclear matrix elements
 - The right-handed currents contribution
 - The effect of larger model spaces
 - Beyond closure approximation
- ¹³⁶Xe results

August 23, 2013

CENTRAL MICHIGAN

UNIVERSITY

Isotope

⁴⁸Ca

⁷⁶Ge

⁸²Se

 ^{96}Zr ¹⁰⁰Mo

¹¹⁶Cd

¹²⁸Te

¹³⁰Te

150Nd

238U

 $^{136} Xe$

CENTRAL MICHIGAN

$$|\nu_{\alpha}\rangle = \sum_{\alpha} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$|\nu_{i}\rangle = \sum_{\alpha}^{+} U_{\alpha i} |\nu_{\alpha}\rangle$$
Neutrino Masses

$$U = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \\ 0 & 0 & 1 \end{bmatrix}$$

$$PMNS - matrix$$

$$c_{12} = \cos\theta_{12}, s_{12} = \sin\theta_{12}, etc$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}2\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}2\theta_{23} > 0.92, \sin^{2}\theta_{13} = 0.1$$

$$\tan^{2}\theta_{12} = 0.452, \sin^{2}\theta_{13} = 0.1$$

$$\tan^{2}\theta_{13} = 0.1$$

$$m_1 + m_2 + m_3 < 0.6 eV$$

INT August 23, 2013 M. Horoi CMU

Two neutrino mass hierarchies

Neutrino effective mass: the sterile

10 3+1 v (IS) 3+1 v (NS) [] 10⁻¹ [] 10⁻² [] 10⁻³ 10⁰ 3+2 v (IS) 3+2 v (NS) 10⁻¹ 10⁻¹ 10⁻³ 10-4 10⁻² 10⁰ 10⁻² 10⁻¹ 10⁻³ 10⁻¹ 10⁰ m_o[eV] m_o [eV]

effects

Vergados, Ejiri, Simkovic, Rep. Prog. Phys. **75**, 106301 (2012)

$$\left\langle m_{\beta\beta}\right\rangle = \left|\sum_{k=1}^{4,5} m_k U_{ek}^2\right|$$

$$T_{1/2}^{-1}(0v) = G_{0v}(Q_{\beta\beta}) \left[M^{0v}(0^+) \right]^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_e} \right)^2$$

Figure 7: (Color online) The same as in Fig. 6, if one considers one (version 3+1) or two (version 3+2) sterile neutrinos, which are heavier than the standard neutrinos. Best fit points for the 3+1 ($\Delta m_{41}^2 = 1.78 \ eV^2$, $U_{e4} = 0.151$) and 3+2 ($\Delta m_{41}^2 = 0.46 \ eV^2$, $U_{e4} = 0.108$ and $\Delta m_{51}^2 = 0.89 \ eV^2$, $U_{e5} = 0.124$) scenarios from reactor antineutrino data are taken into account [186]. In addition, best fit values $\Delta m_{ATM}^2 = 2.43 \times 10^{-3} \ eV^2$ [158], $\Delta m_{SUN}^2 = 7.65 \times 10^{-5} \ eV^2$ [81], $\tan^2\theta_{12} = 0.452$ [159] and $\sin^2 2\theta_{13} = 0.092 \pm 0.016$

INT August 23, 2013

M. Horoi CMU

 \tilde{H}_d

 $a_3\Lambda_j - \epsilon_j/\mu$

 $\begin{array}{c} h_b \\ & \swarrow \\ & \ddots \\ & \ddots \\ & & \\$

vj

 \tilde{H}_d

 $-h_b$ \widetilde{b}_R

 $s_{\tilde{b}}$

 \tilde{b}_2

Vi

 $a_3\Lambda_i - \epsilon_i/\mu$

CENTRAL MICHIGAN Possible contributions of other mechanisms

閫

UNIVERSITY

Possible contributions from other mechanisms

PRD 83, 113003 (2011)

$$\begin{cases} \mathbf{v}_{eL} = P_L \left[\sum_{k}^{light} U_{ek} \mathbf{v}_k + \sum_{k}^{heavy} U_{ek} N_k \right] & \eta_{vL} = \frac{\left\langle m_{\beta\beta} \right\rangle}{m_e} & \eta_{NL} = \sum_{k}^{heavy} U_{ek}^2 \frac{m_p}{M_k} & \eta_{NR} = \left(\frac{M_{WL}}{M_{WR}} \right)^4 \sum_{k}^{heavy} V_{ek}^2 \frac{m_p}{M_k} \\ \mathbf{v}_{eR}' = P_R \left[\sum_{k}^{light} V_{ek} \mathbf{v}_k + \sum_{k}^{heavy} V_{ek} N_k \right] & <\lambda >, <\eta > - mass - independent : |<\lambda >|, |<\eta >| << |\eta_{vL}|, |\eta_N| \end{cases}$$

$$\left[T_{1/2}^{0\nu} \right]^{-1} = G^{0\nu} \left| \sum_{j} M_{j} \eta_{j} \right|^{2} = G^{0\nu} \left| M^{(0\nu)} \eta_{kL} + M^{(0N)} (\eta_{NL} + \eta_{NR}) + \tilde{X}_{\lambda} \right| < \lambda > + \tilde{X}_{\eta} < \eta > + M^{(0\lambda)'} \eta_{\lambda'} + M^{(0\bar{q})} \eta_{\bar{q}} + \cdots \right|^{2}$$

$$\left[T_{1/2}^{0\nu} \right]^{-1} \cong G^{0\nu} \left| M^{(0\nu)} \eta_{kL} + M^{(0N)} \eta_{NR} \right|^{2} \approx G^{0\nu} \left[\left| M^{(0\nu)} \right|^{2} \left| \eta_{kL} \right|^{2} + \left| M^{(0N)} \right|^{2} \left| \eta_{NR} \right|^{2} \right]$$

INT August 23, 2013

儲

CENTRAL MICHIGAN

Matrix Elements: Light Neutrinos

Matrix Elements: Heavy Neutrinos

INT August 23, 2013

Neutrinoless Double Beta Decay Requires a Massive Majorana Neutrino

J. Schechter and J.W.F Valle, PRD 25, 2951 (1982)

(c) (d) FIG. 1. Diagrams for neutrinoless double- β decay in an SU(2)×U(1) gauge theory. The standard diagram is Fig. 1(a). It is the only one which contains a virtual neutrino (of four-momentum p). d and u are the down and up quarks.

> INT August 23, 2013

 $0\nu\beta\beta$ obs consequences: -Neutrinos are Majorana fermions (with m > 0).

Lepton numbersconservation is violated by2 units

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\overline{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

2v Double Beta Decay (DBD) of ⁴⁸Ca

$$T_{1/2}^{-1} = G_{2\nu}(Q_{\beta\beta}) \Big[M_{GT}^{2\nu}(0^+) \Big]^2$$

$$M_{\rm GT}^{2\nu}(0^+) = \sum_k \frac{\langle 0_f \| \sigma \tau^- \| 1_k^+ \rangle \langle 1_k^+ \| \sigma \tau^- \| 0_i \rangle}{E_k + E_0}$$

 $^{48}Ca \xrightarrow{2\nu\beta\beta} {}^{48}Ti$

The choice of valence space is important!

$$B(GT) = \frac{\left|\left\langle f \parallel \sigma \cdot \tau \parallel i\right\rangle\right|^2}{(2J_i + 1)}$$

ISR	48Ca	48 Ti
pf	24.0	12.0
f7 p3	10.3	5.2

INT August 23, 2013

 $Ikeda \; sum \; rule(ISR) = \sum B(GT; Z \rightarrow Z + 1) - \sum B(GT; Z \rightarrow Z - 1) = 3(N - Z)$

Horoi, Stoica, Brown, PRC **75**, 034303 (2007)

Double Beta Decay NME for ⁴⁸Ca

TABLE I. Matrix elements and half-lives for 2ν decay calculated using GXPF1A interaction and two quenching factors. Matrix elements are in MeV⁻¹ for transitions to 0⁺ states and in MeV⁻³ for transitions to 2⁺ states.

M. Horoi, PRC 87, 014320 (2013)

for tra	nsitions to 2 ⁺	states.			$M_{\sigma\pi}^{2\nu}(0^+) = \sum \frac{\langle 0_f \ \sigma \tau^- \ 1_k^+ \rangle \langle 1_k^+ \ \sigma \tau^- \ 0_i \rangle}{\langle 0_f \ \sigma \tau^- \ 0_i \rangle}$
	qf	= 0.77	qf	² = 0.74	$E_k = E_k + E_0$
J_n^{π}	$M^{2\nu}$	$T_{1/2}^{2\nu}$ (yr)	$M^{2\nu}$	$T_{1/2}^{2\nu}$ (yr)	
01+	0.054	$3.3 imes 10^{19}$	0.050	3.9 × 10 ¹⁹ ←	$(T_{1/2}^{2\nu}) = \left[4.4^{+0.6}_{-0.5}(stat) \pm 0.4(syst)\right] \times 10^{19} yr$
2_{1}^{+}	0.012	8.5×10^{23}	0.010	1.0×10^{24}	
0 ⁺ ₂	0.050	1.6×10^{24}	0.043	1.9×10^{24}	

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left| \tilde{\eta}_{\nu L} M_{\nu}^{0\nu} + \tilde{\eta}_{N} M_{N}^{0\nu} + \eta_{\lambda'} M_{\lambda'}^{0\nu} + \eta_{\tilde{q}} M_{\tilde{q}}^{0\nu} \right|^{2},$$

TABLE II. Matrix elements for 0ν decay using the GXPF1A interaction and two SRC models [61], CD-Bonn (SRC1) and Argonne (SRC2). For comparison, the values labeled (a) are taken from Ref. [27], and the value labeled (b) is taken from Ref. [62] for $g_{pp} = 1$ and no SRC.

	Model	$M_{\nu}^{0 u}$	$M_N^{0 u}$	$M^{0 u}_{\lambda'}$	$M_q^{0\nu}$
01+	SRC1	0.90	75.5	618	86.7
	SRC2	0.82	52.9	453	81.8
	others	2.3 ^(a)	46.3 ^(a)	392 ^(b)	
0^{+}_{2}	SRC1	0.80	57.2	486	84.2
	SRC2	0.75	40.6	357	80.6

INT August 23, 2013

儲 **CENTRAL MICHIGAN** Possible contributions from right-handed currents

CMU

$$dW_{0^{+} \to 0^{+}}^{0v} = \frac{a_{0v}}{(m_{e}R)^{2}} \Big[A(\varepsilon_{1}) + B(\varepsilon_{1})\cos\theta_{12} \Big] W_{0v}(\varepsilon_{1}) d\varepsilon_{1} d(\cos\theta_{12}) \\ \Big[T_{1/2}^{0v} \Big]^{-1} = \frac{1}{\ln 2} \int dW_{0^{+} \to 0^{+}}^{0v} = \frac{a_{0v}}{\ln 2(m_{e}R)^{2}} \int A(\varepsilon_{1}) d\varepsilon_{1} d(\cos\theta_{12}) \\ \eta_{vL} = \frac{\Big| < m_{\beta\beta} > \Big|}{m_{e}} = \frac{1}{m_{e}} \sum_{k}^{light} U_{ek}^{2} m_{k} \approx 10^{-6} \\ \langle \eta \rangle = \xi \sum_{k}^{light} U_{ek} V_{ek} \approx \xi \sqrt{\frac{m_{v}}{M_{N_{R}}}} \approx 10^{-3} \sqrt{\frac{10^{-1}}{10^{11}}} \approx 10^{-9} \\ \langle \lambda \rangle = \left(\frac{M_{WL}}{M_{WR}}\right)^{2} \sum_{k}^{light} U_{ek} V_{ek} \approx \left(\frac{M_{WL}}{M_{WR}}\right)^{2} \sqrt{\frac{m_{v}}{M_{N_{R}}}} \approx 10^{-9} \\ W_{R} \approx \xi W_{1} + W_{2} \\ \Big|$$

$$T_{1/2}^{0\nu}]^{-1} = \left[C_{mm} \left(\frac{\langle m_{\beta\beta} \rangle}{m_e} \right)^2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{m\lambda} \frac{\langle m_{\beta\beta} \rangle}{m_e} \langle \lambda \rangle \cos \phi_1 + C_{m\eta} \frac{\langle m_{\beta\beta} \rangle}{m_e} \langle \eta \rangle \cos \phi_2 + C_{\lambda\eta} \langle \lambda \rangle \langle \eta \rangle \cos(\phi_1 - \phi_2) \right]$$

INT M. Horoi

August 23, 2013

The effect of larger model spaces for ⁴⁸Ca

M(0 v)	SDPFU	SDPFMUP
0 ħω	0.941	0.623
$0+2\hbar\omega$	1.182 (26%)	1.004 (61%)

SDPFU: PRC 79, 014310 (2009)

SDPFMUP: PRC 86, 051301(R) (2012)

	M(0v)
$0 \hbar \omega / \text{GXPF1A}$	0.733
$0 \hbar \omega + 2^{nd}$ ord./GXPF1A	1.301 (77%)

arXiv:1308.3815

PRC 87, 064315 (2013)

Closure approximation for the $M^{0\nu}$ PRC 81, 024321 (2010) $T_{1/2}^{-1}(0v) = G_{0v}(Q_{\beta\beta}) \left[M^{0v}(0^+) \right]^2 \left(\frac{\langle m_{\beta\beta} \rangle}{m_a} \right)^2$ - Closure approximation - Includes higher order corrections in $M^{0v} = \left(M^{0v}_{GT}\right) - \left(\frac{g_V}{g_A}\right)^2 M^{0v}_F + M^{0v}_T$ the nucleon currents $M_{S}^{0v} = \sum_{\substack{p < p' \\ n < n' \\ n < n'}} \left(\Gamma \right) \left\langle 0_{f}^{+} \left| \left[\left(a_{p}^{+} a_{p'}^{+} \right)^{J} \left(\tilde{a}_{n'} \tilde{a}_{n} \right)^{J} \right]^{0} \left| 0_{i}^{+} \right\rangle \right\rangle \left\langle p p'; J \left| \int q^{2} dq \left[\hat{S} \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \right| n n'; J \right\rangle - closure$ - Old and new short range $0^{+}T = 4$ correlations included ^{48}Ca **\ - No quenching** - New technique to calculate the $0^{+}T = 2$ many body part of M ^{48}Ti

Effective Hamiltonians for Large N $\hbar\omega$ Excitation Model Spaces

Renormalization methods:

- G-matrix: Physics Reports 261, 125 (1995)
- Lee-Suzuki (NCSM): PRC 61, 044001 (2000)
- V_{low k} : PRC 65, 051301(R) (2002)
- Unitary Correlation Operator: PRC 72, 034002 (2004)
- Similarity Renormalization Group (SRG): PRL 103, 082501 (2009)
 - "Bare" Nucleon-Nucleon Potentials:
 - Argonne V18: PRC 56, 1720 (1997)
 - CD-Bonn 2000: PRC 63, 024001 (2000)
 - N³LO: PRC 68, 041001 (2003)
 - INOY: PRC 69, 054001 (2004)

INT August 23, 2013 $PP \qquad PQ = 0$ $QP = 0 \qquad QQ$

$$H = T + \sum_{i < j} V_{ij} + \sum_{i < j < k} V_{ijk} + \cdots$$

 $\Psi_{\mathcal{P}} \xrightarrow{-} \Psi_{P} = P \Psi_{\mathcal{P}}$

$$\mathcal{H} = U H U^+ = \mathcal{H}_2 + \mathcal{H}_3 + \mathcal{H}_4 + \dots$$

M. Horoi CMU $O \rightarrow U O U^+$

pp'nn' J k J

Beyond Closure in Shell Model

$$M_{S}^{0v} = \sum_{\substack{p < p' \\ n < n' \\ p < n}} (\Gamma) \left\langle 0_{f}^{+} \left\| \left[\left(a_{p}^{+} a_{p'}^{+}\right)^{J} \left(\tilde{a}_{n'} \tilde{a}_{n}\right)^{J} \right]^{0} \left| 0_{i}^{+} \right\rangle \right\rangle \left\langle p \ p'; J \right| \int q^{2} dq \left[\hat{S} \ \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E \rangle)} \tau_{1-} \tau_{2-} \right] \left| n \ n'; J \right\rangle - closure$$

$$M_{S}^{0v} = \sum_{\substack{pp' nn \\ J \\ k \ J}} (\tilde{\Gamma}) \left\langle 0_{f}^{+} \right\| \left(a_{p}^{+} \tilde{a}_{n}\right)^{J} \left\| J_{k} \right\rangle \left\langle J_{k} \right\| \left(a_{p}^{+} \tilde{a}_{n}\right)^{J} \left\| 0_{i}^{+} \right\rangle \left\langle p \ p'; J \right| \int q^{2} dq \left[\hat{S} \ \frac{h(q) j_{\kappa}(qr) G_{FS}^{2} f_{SRC}^{2}}{q(q + \langle E_{k} \rangle)} \tau_{1-} \tau_{2-} \right] \left| n \ n'; \mathcal{J} \right\rangle - exact$$

Challenge: there are about 100,000 J_k states in the sum for 48Ca

Much more intermediate states for heavier nuclei, such as ⁷⁶Ge!!!

No-closure may need states out of the model space (not considered).

Minimal model spaces

⁸²Se : 6,146,681 ¹³⁰Te : 22,437,983 ⁷⁶Ge: 89,472,767

INT August 23, 2013

Volume 242, number 1

CENTRA UNI

PHYSICS LETTERS B

NEUTRINOLESS DOUBLE BETA DECAY MATRIX ELEMENTS **BEYOND CLOSURE APPROXIMATION**

G. PANTIS¹

Institut für Theoretische Physik, Universität Tübingen, D-7400 Tübingen, FRG

and

J.D. VERGADOS¹

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 18 December 1989; revised manuscript received 20 February 1990

K. Muto, NPA (1994) QRPA

Table I The matrix e an average en nucleon form The decay to	lements of a a tactor, (B) the 0 ⁺ ₁ is ex	ll the ope ergy of 2. correlat perimen	erators discu 5 MeV and ion and nuc tally interes	issed in the ED corres leon form t sting, 0 ⁺ at	e text which sponds to the factor, (C) and 0^+_3 were	appear in the exact en- correlation included fo	the Ον ββ-d ergy depen without n or compari	lecay of ⁴⁸ Ca dent treatm ucleon form son only.	⊨ eni fa
Final Case)	M _F	M _{GT}	M' _F	M' _{GT}	M'T	M _{Fw}	М _{СТи} ,	

state

Table 1

Shell model: only $f_{7/2}$

·				1.017	0.1004	1.016	0 3441	0.2906	-1.2160
	A	CL	0.2906	-1,210	0.2900	- 1,210	0.1111	0.2757	1 0/41
		CL(E)	0.2864	-1.110	0.2905	-1,1860	0.5285	0.2131	- 1.0712
		ר, - י ד ח	02873	-145	0.2908	-1,1880	0.3348	0.2837	-1.0/12
	*	CT.	0.1041	0 7308	0 0871	-0.5324	0.3299	0.1541	-0.7309
	R		0.1600	0,7500	0.0001	_0.5170	0.3156	0.1473	-0.6101
		$\operatorname{CL}(E)$	0.1508	-0.0000	0.0070	0.0170	0.0160	0 1 4 3 3	-0.6516
)+		ED	0,1447	-0.6983	0.0808	-0.3024	0.0102	0,1700	0.0558
	ſ	CL	0.1703	-0 8588	0.1654	-0.8412	0.3458	0.1703	-0.0000
	Ų	ED	0.1688	_0.7700	0.1660	-0,8151	0.3364	0.1671	-0,7218
		CD Ct	0.1000	0.0061	0 0020	-0.6349	0.3224	0.2137	-0.9861
	D	ÇL	0,2100	-0.9001	0.0707	1.4110	0.2800	0 2906	-1.1847
)¦	В	ED	0.2971	-1.3323	().24)7	1,411V	0.2000	0,2700	
.1					0.01/0	1 7020	0 2023	0 2772	-3.5370
0;†		ED	0.2826	-4,1478	0.2169	-4.1930	0.0400	()(5)	1 51 86
n+		ED	7,3790	-1.7124	8.9921	-1,7470	0.3955	0.3033	1,0100
03									······

Beyond Closure in Shell Model

¹³⁶Xe $\beta\beta$ Experimental Results $M_{exp}^{2\nu} = 0.019 MeV^{-1}$

Publication	Experiment	$T^{2v}_{1/2}$	T ^{0v} _{1/2}	T ^{0v} _{1/2} (Maj)
PRL 110, 062502	KamLAND-Zen		> 1.9x10 ²⁵ y	
PRL 107, 212501	EXO-200	$(2.11\pm0.04\pm0.21)$ x10 ²¹ y		
PRL 109, 032505	EXO-200	$(2.23\pm0.017\pm0.22)$ x10 ²¹ y	>1.6x10 ²⁵ y	
PRC 85, 045504	KamLAND-Zen	$(2.38 \pm 0.02 \pm 0.14) \times 10^{21} \text{ y}$	>5.7x10 ²⁴ y	
PRC 86, 021601	KamLAND-Zen		>6.2x10 ²⁴ y	>2.6x10 ²⁴ y
10^{20} (a) (b) (b) (c)	GEH arXi	RDA iv:1307.4720 M. Horoi CN 10^{5} (a) DS-1 + 10^{4}	DS-2 — Data — Total — Total — (0vββ U.L.) — 1 ³⁶ Xe 2vββ — Total — (0vββ U.L.) — 1 ³⁶ Xe 0vββ (90% C.L. U.I — ++++++++++++++++++++++++++++++++++++	$\begin{array}{c} & ^{208}\text{Bi} \\ & & ^{88}\text{Y} \\ & ^{110m}\text{Ag} \\ & & ^{238}\text{U} + ^{232}\text{Th} \\ & & + ^{210}\text{Bi} + ^{85}\text{Kr} \\ \text{L.} & & \text{IB/External} \\ & \text{Spallation} \\ \end{array}$

CENTRAL MICHIGAN

Shell Model description of the $\beta\beta$ decay of ¹³⁶Xe

E. Caurier^a, F. Nowacki^a, A. Poves^{b,*}

Table 2

Physics Letters B 711 (2012) 62-64

 $\sigma\tau \xrightarrow{quenched} q \sigma\tau$

The ISM predictions for the matrix element of several 2ν double beta decays (in MeV⁻¹). See text for the definitions of the valence spaces and interactions.

		$M^{2\nu}(exp)$	q	$M^{2\nu}(th)$	INT
	$^{48}Ca \rightarrow {}^{48}Ti$	0.047 ± 0.003	0.74	0.047	kb3
	⁴⁸ Ca → ⁴⁸ Ti	0.047 ± 0.003	0.74	0.048	kb3g
	⁴⁸ Ca → ⁴⁸ Ti	0.047 ± 0.003	0.74	0.065	gxpf1
	$^{76}Ge \rightarrow ^{76}Se$	0.140 ± 0.005	0.60	0.116	gcn28:50
	$^{76}Ge \rightarrow ^{76}Se$	0.140 ± 0.005	0.60	0.120	jun45
	82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.126	gcn28:50
	82 Se $\rightarrow {}^{82}$ Kr	0.098 ± 0.004	0.60	0.124	jun45
	128 Te $\rightarrow ^{128}$ Xe	0.049 ± 0.006	0.57	0.059	gcn50:82
	$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	0.034 ± 0.003	0.57	0.043	gcn50:82
	136 Xe $\rightarrow $ ¹³⁶ Ba	0.019±0.002	0.45	0.025	gcn50:82
	(0 1 + \ / 1 +				1
$M_{\rm GT}^{2\nu}(0^+) = \sum_k$	$\frac{\langle 0_f \ \sigma \tau^- \ 1_k^+ \rangle \langle 1_k^+}{E_k + E_0}$	$\frac{\ \sigma\tau\ 0_i\rangle}{0}$ $0g_{j}$	$_{7/2} Id_{5/2} Id_$	$d_{3/2} \ 2s_{5/2} \ 0h_{11}$	/2 valence space
INT		M. Horoi	CMU		

August 23, 2013

¹³⁶Xe $2\nu\beta\beta$ Results $M_{exp}^{2\nu} = 0.019 MeV^{-1}$

New effective interaction, $\sigma \tau \rightarrow 0.74 \sigma \tau$ quenching $a(0^+)$ $0g_{7/2} 1d_{5/2} 1d_{3/2} 2s_{5/2} 0h_{11/2}$ model space $\sum B(GT; Z \rightarrow Z + 1) - \sum B(GT; Z \rightarrow Z - 1) = 52$ *Ikeda*: 3(N - Z) = 84 $M^{2\nu} = 0.064 \ MeV^{-1}$

$$\begin{array}{ll} \partial g_{9/2} \ \partial g_{7/2} ld_{5/2} \ ld_{3/2} \ 2s_{5/2} \ \partial h_{11/2} \ \partial h_{9/2} \\ & \sum B(GT; Z \rightarrow Z+1) - \sum B(GT; Z \rightarrow Z-1) = 84 \\ Ikeda: & 3(N-Z) = 84 \end{array}$$

n (0+)	n (1+)	M(2v)
0	0	0.062
0	1	0.091
1	1	0.037
1	2	0.020

INT August 23, 2013

¹³⁶Xe $0\nu\beta\beta$ Results

 $^{134}Te \rightarrow ^{134}Xe$

n(0+)	n(1+)	M(2v)	M(0v)
0	0	0.045	1.8
0	1	0.071	
1	1	0.20	1.2
1	2	0.012	
2	2	0.016	1.5

$$\eta_{NR} = \left(\frac{M_{WL}}{M_{WR}}\right)^4 \sum_{k}^{heavy} V_{ek}^2 \frac{m_p}{M_k}$$
$$\approx \left(\frac{80}{2400}\right)^4 \frac{1}{100} = 10^{-8}$$

M. Horoi and B.A. Brown, Phys. Rev. Lett. **110**, 222502 (2013)

TABLE II. Matrix elements for 0ν decay using two SRC models [13], CD-Bonn (SRC1), and Argonne (SRC2). The upper values of the neutrino physics parameters η_j^{up} in units of 10^{-7} are calculated using the $G^{0\nu}$ from Refs. [9,35].

		$M^{0 u}_{ u}$	$M_N^{0 u}$	$M^{0 u}_{\lambda'}$	$M^{0 u}_{ ilde{q}}$
n = 0	SRC1	2.21	143.0	1106	206.8
	SRC2	2.06	98.79	849.0	197.2
n = 1	SRC1	1.46	128.0	1007	157.8
	$ \eta_{i}^{up} $ [9]	8.19	0.093	0.012	0.075
	$ \eta_{j}^{up} $ [35]	9.02	0.103	0.013	0.083

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} |\eta_{\nu L} M_{\nu}^{0\nu} + \eta_N M_N^{0\nu} + \eta_{\lambda'} M_{\lambda'}^{0\nu} + \eta_{\tilde{q}} M_{\tilde{q}}^{0\nu}|^2,$$

INT August 23, 2013

Comparisons of $M^{0\nu} 0\nu\beta\beta$ Results

- Observation of neutrinoless double beta decay would signal physics beyond the Standard Model: massive Majorana neutrinos, right-handed currents, SUSY LNV, etc
- ⁴⁸Ca case suggests that 2v double-beta decay can be described reasonably within the shell model with standard quenching, provided that all spin-orbit partners are included.
- Higher order effects for 0v NME included: range 0.6 1.4
- Reliable $0\nu\beta\beta$ nuclear matrix elements could be used to identify the dominant mechanism if energy/angular correlations and data for several isotopes become available.
- The effects of the quenching and the missing spin-orbit partners are important (see the ¹³⁶Xe case), and they need to be further investigated for ⁷⁶Ge, ⁸²Se and ¹³⁰Te.

INT August 23, 2013

