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Importance of Neutrinoless Double Beta Decay

If it’s observed, neutrinos
are their own antiparticles!

and

Rate proportional to square of
“effective mass”:

meff ≡
3∑
i=1

miU
2
ei

Normal Inverted

!!

Rate also depends on a nuclear matrix element
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Nuclear Matrix Element (Simplified)

M0ν = g2AM
GT
0ν − g2V MF

0ν + . . .

with

MGT
0ν ≈〈f |

∑
a,b

1

rab
~σa · ~σbτ+a τ+b |i〉

MF
0ν ≈〈f |

∑
a,b

1

rab
τ+a τ

+
b |i〉

Lots of corrections to these expressions.



Recent Level of Agreement

Same level of
agreement in 2013.

Results of recent calculations, references and comments on request

proton-neutron (pn) QRPA
Shell Model
Interacting Boson Model
Projected HFB
Generator Coordinates

From P. Vogel, 2010

Calculations fall into two broad classes:
I. “Energy-Density-Functional Theory”

Generator Coordinates
QRPA
Projected HFB

II. Shell Model and derivatives
Shell Model (Duh!)
IBM

Goal: Move each of
these to next level



Contrasting the Various Approaches

protons neutrons

QRPA

Shell
Model

protons neutrons

QRPA

Shell
Model

pn

protons neutrons

QRPA

Shell
Model

protons neutrons

QRPA

Shell
Model

Mean-field+extension: Large
single-particle spaces in arbitrary
mean field or set of mean fields;
simple correlations within the
spaces (pn correlations here in
QRPA).
Shell Model: Small single-particle
space in simple spherical mean
field; arbitrarily complex
correlations within the space.

IBM is somewhere in between, mapping matrix elements
from up to two shells but truncating to collective pairs.
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First Large-Scale Deformed QRPA

QRPA inserts complete set of states in intermediate nucleus,
provides single-beta matrix elements from ground states of
initial and final nuclei to this complete set.

We converted like-particle deformed Skyrme matrix QRPA to
proton-neutron channel. Used Skyrme functional SkM∗,
consumed ≈ 7M CPU hours.

Worth mentioning:

QRPA gives two sets of energies and strengths (but
not wave functions) for intermediate-nucleus states.
Doesn’t tell you how these two sets are related.

Must finesse the problem (i.e. cheat).



Sensitivity to Proton-Neutron Pairing
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Results
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QRPA (Tübingen)
QRPA (Jyväskylä)
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Results different from other QRPAs in some nuclei, but this
actually points to problems with method.



The QRPA has Some Issues. . .
Some of the nuclei in these decays don’t have well defined
shape.

EVOLUTION OF NUCLEAR SHAPES IN MEDIUM MASS . . . PHYSICAL REVIEW C 78, 034314 (2008)
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FIG. 1. Potential energy curves obtained with the Gogny D1S
force (full lines) for the isotopes of Pd. Along with each of them, the
quantity E(−β2) is plotted (dashed line) to stress the similarities or
differences between the prolate and oblate sides. The results obtained
with the Skyrme interaction SLy4 and a δ-pairing force with strength
g = 1000 MeV fm3 [19] are also plotted as dotted lines.

equations (i.e., successive iterations method) that the handling
of constraints is much more easily implemented. This is a nice
feature for the triaxial calculation as four constraints have to be
handled at the same time (proton and neutron number and the
two deformation parameters β2 and γ ). As it is customary in
all the mean-field calculations with the Gogny force, we have
subtracted the kinetic energy of the center-of-mass motion
from the Routhian to be minimized to ensure that the center
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FIG. 2. The same as Fig. 1 but for Xe isotopes. In this case no
Skyrme interaction results are included.

of mass is kept at rest. We have also dealt with the exchange
Coulomb energy in the Slater approximation and neglected
the contribution of the Coulomb interaction to the pairing
field. As mentioned above, we have used the parametrization
D1S [24] of the Gogny interaction [23]; this parameter set
was adjusted to reproduce basic nuclear matter parameters,
the binding energies of several magic and semimagic nuclei
and to have a more reasonable value of the surface energy
coefficient as = 19 MeV. The latter was considered to have a
better reproduction of the fission barrier properties of 240Pu.

The advantage of the Gogny interaction over other alterna-
tives, like Skyrme or relativistic interactions, is that its finite

034314-3

β2

Robledo et al.: Energy
minima at β2 ≈ ±.15
Solid line is actual result;
dashed line a symmetric
potential for comparison
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration

5

β2

Rodríguez and Martinez-Pinedo: Wave
functions peaked at β2 ≈ ±.2



Beyond QRPA

Want to avoid the problems:

1. Overlap of intermediate states not well defined
2. No mixing of mean fields with different shapes, pairing. . .
3. Simplicity of correlations
4. Unrealistically strong response to proton-neutron pairing

(as phase transition to pn pairing is approached)?

For 0ν decay we only need ground state. Generator-
coordinate method takes advantage of that, and avoids
problems 1, 2, and (to some extent) 3.

We’re generalizing it to include proton-neutron pairing and
spin-isospin correlations, deal with problem 4.



Rodríguez et al Generator-Coordinate Calculation

Basic idea: Construct set of
mean fields by constraining
coordinate(s), e.g. quadrupole
moment 〈Q0〉. Minimize

〈H ′〉 = 〈H〉 − λ 〈Q0〉

Then use 〈Q0〉 as a collective
coordinate; diagonalize H in
space of number- and
angular-momentum-projected
quasiparticle vacua with
different values of 〈Q0〉.
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
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different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration

5

Rodríguez and Martinez-Pinedo



Adding pn Correlations to GCM
GCM results missing physics that affects QRPA calculations.

So we generalize the approach:
1. Pairing currently treated as mean field, but not pn pairing.

So we construct quasiparticles that mix not only particles
and holes, but also neutrons and protons.

2. Constrain proton-neutron pairing and particle-hole
condensation as well as deformation, i.e. minimize

H ′ = H − λQ 〈Q0〉 − λP 〈P †0 〉 − λστ 〈Oστ 〉
with

P †0 =
∑
l

[
a†l a
†
l

]L=0,S=1,T=0

MS=0
, Oστ =

∑
i

σz(i)
(
τ+(i) + τ−(i)

)
The pn operators have zero expectation value at HFB
minimum, but we add quasiparticle vacua with non-zero values.



Test in Solvable SO(8) Model

Consider many degenerate oscillator levels with orbital
angular momentum l:

Pairing Operators

S†ν =
∑
l

[
a†l ãl

]L=−0,S=0,T=1

MT=ν
P †µ =

∑
l

[
a†l ãl

]S=1,T=0

MS=µ

Usual spin-
singlet pair op-
erators

pn (spin-triplet)
pair operators

Hamiltonian is

H = −1 + x

2

∑
ν

S†νSν −
1− x
2

∑
µ

P †µPµ + gph
∑
ij

~σi~σj~τi~τj

Competition between ordinary pairing and spin-triplet pairing.



SO(8) Results

-40

-30

-20

-10

 0

 10

 20

-1-0.5 0 0.5 1

M
2ν

 (
cl

)

x

exact
QRPA

+ ang. mom. and num. proj.

exact
QRPA
GCM



Calculation in fp + sdg Shells
H contains quadrupole-quadrupole, isovector/isoscalar pairing,
and στστ interactions. Reproduces 2+ levels in, e.g., 76Se.

Total β+ strength in 96Pd (closed neutron shell)
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Ordinary GCM would give about 11 here.



Deformation Distributions for A = 76
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dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
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different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
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0ν Decay of 76Ge
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We still need to:
1. Add στ coordinate and improve its treatment. Currently

leave out Fock terms. We’re adding them and trying S(β+)
as particle-hole coordinate. But may have to get fancier.

2. Determine appropriate value for gpp.
After that: Add proton-neutron physics to Gogny- or Skyrme-
based GCM.



Corrected Shell Model
Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

Shell model done here

P = valence space
Q = the rest

Task: Find unitary transformation
to make H block-diagonal in P
and Q, with Heff in P reproducing
d most important eigenvalues.

For transition operator M̂ , must
apply same transformation to get
M̂eff.

This is as difficult as solving full problem. But the idea is that
N-body effective operators may not be important for N > 2 or 3.
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Peturbation-Theory Approach
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Equation for Effective Transition Operator

〈cd|Meff |ab〉 =1 + 1

2

dQ̂(ε)

dε
+

1

2

d2Q̂(ε)

d2ε
Q̂(ε) +

3

8

(
dQ̂(ε)

dε

)2

. . .


×
[
X̂(ε) + Q̂(ε)

∂X̂(εf , ε)

∂εf

∣∣∣∣
εf=ε

+
∂X̂(ε, εi)

∂εi

∣∣∣∣
εi=ε

Q̂(ε) . . .

]

×

1 + 1

2

dQ̂(ε)

dε
+

1

2

d2Q̂(ε)

d2ε
Q̂(ε) +

3

8

(
dQ̂(ε)

dε

)2

. . .


cd,ab



Perturbative Effective Decay Operator
Evaluated ββ version of these (which are for effective interaction).

2

Vlow-k

εi

εf

Made nonstandard choice of
including occupation factors
with particle lines
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a

Three-body diagram on right (which we don’t in-
clude) would cancel diagram on left in multiparticle
system. Our prescription removes diagram on left.
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Results

See Jason’s talk next!

Can we really believe the results? Convergence is an issue, but
a deeper one may be effect of many-body induced operators.



Nonperturbative Test

Perturbation theory still may not be perfect so we also try to
do without it.

So far, have just tested in p shell:
Do pseudo-exact (6 or 8 ~ω) no-core calculations for 5He,
5Li, get p-shell single-particle energies
Do the same for 6He, 6Be, get effective p-shell two-body
interaction, effective two-body ββ operator.
Use those operators to calculate 7,8,10He −→ 7,8,10Be. Test
adequacy of two-body operator. Can do the same for
3-body Hamiltonian and decay operator.
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Want to test improvement from three-body operators.



Nonperturbative Future

Coupled Clusters: Solve the two-particle attached
problem (closed shell + 2) on top of e.g., 56Ni and
three-particle-attached in some approximation, do
Lee-Suzuki mapping of lowest eigenstates onto f5/2pg9/2,
determine effective Hamiltonian and decay operator (up to
three-body), calculate matrix element for 76Ge. Jannsen
and Hagen already working on this.
In-Medium SRG: Hergert, Bogner, et al have published
preliminary results for effective interaction in sd shell.
Should be able to extend procedure to decay operator and
f5/2pg9/2 shell.



Issue Facing All Models: “gA”
Forty(?)-year old problem: Single-beta rates, 2ν double-beta
rates, related observables overpredicted in heavy nuclei.

Typical solution: “Renormalize” gA to get correct results. But if
gA is renormalized by same amount in 0ν decay as in 2ν decay
(a lot in shell model), experiments will fail; rates go as (gA)

4.

Better solution: Understand reasons for overprediction. In mod-
ern language, must be due to

1. Many-body weak currents, either modeled as in GFMC or
from chiral EFT.
Who’s right? The many old-school practitioners who say
meson-exchange effects are small, or the chiral-EFT folk,
who say they can be large?

2. Truncation of model space, to be fixed in shell model as
already discussed discussed. Can treat “bare many-body”
operators as well.

People are attacking both sides of this problem.
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So. . .

Se should be able to improve nearly all methods for treating
double-beta decay.

Future is bright not at all dim.

That’s all.


