Double-Beta Decay from Several Perspectives

with N. Hinohara, J.D. Holt, M. Mustonen, P. Navratil, D. Shukla

August 19, 2013

Importance of Neutrinoless Double Beta Decay

Rate proportional to square of "effective mass": If it's observed, neutrinos and 3 are their own antiparticles! $m_\text{eff} \equiv \sum m_i U_{ei}^2$ $i=1$ Mass (eV) a mand a community 1000 m u tau Degenerate Effective $\beta\beta$ Mass (meV) 00 0.058 Inverted Solar 0.050 0.049 $10 -$ Atmospheric Atmospheric **Normal** 0.009 Solar \mathbf{v} $= 0$ $= 0$ 0.1 10 1000 100 Normal Inverted Minimum Neutrino Mass (meV)

Importance of Neutrinoless Double Beta Decay

Nuclear Matrix Element (Simplified)

$$
M_{0\nu} = g_A^2 M_{0\nu}^{GT} - g_V^2 M_{0\nu}^F + \dots
$$

with

$$
M_{0\nu}^{GT} \approx \langle f | \sum_{a,b} \frac{1}{r_{ab}} \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle
$$

$$
M_{0\nu}^F \approx \langle f | \sum_{a,b} \frac{1}{r_{ab}} \tau_a^+ \tau_b^+ | i \rangle
$$

Lots of corrections to these expressions.

 $\sf{Calculations}$ fall into two broad classes: $\sf{Cal}(\sf{collations})$

- I. "Energy-Density-Functional Theory"
	- Generator Coordinates
	- **ORPA**
	- Projected HFB

II. Shell Model and derivatives

- Shell Model (Duh!)
- IBM

Goal: Move each of

these to next level

protons neutrons

QRPA pn

> Shell single-particle spaces in arbitrary $_{\mathsf{Mo}}$ mean field or set of mean fields; Mean-field+extension: Large simple correlations within the spaces (pn correlations here in QRPA).

Shell Model: Small single-particle space in simple spherical mean field; arbitrarily complex correlations within the space.

IBM is somewhere in between, mapping matrix elements from up to two shells but truncating to collective pairs.

Shell Model

> Shell Model: Small single-particle space in simple spherical mean field; arbitrarily complex correlations within the space.

First Large-Scale Deformed QRPA

QRPA inserts complete set of states in intermediate nucleus, provides single-beta matrix elements from ground states of initial and final nuclei to this complete set.

We converted like-particle deformed Skyrme matrix QRPA to proton-neutron channel. Used Skyrme functional SkM∗ , consumed $\approx 7M$ CPU hours.

Worth mentioning:

QRPA gives two sets of energies and strengths (but not wave functions) for intermediate-nucleus states. Doesn't tell you how these two sets are related.

Must finesse the problem (i.e. cheat).

Sensitivity to Proton-Neutron Pairing

Have to do usual tuning of g_{pp} . Can cover up of virtues as well as sins.

Results

Results different from other QRPAs in some nuclei, but this actually points to problems with method.

The QRPA has Some Issues. . . 5.0 $rac{e}{s}$

Some of the nuclei in these decays don't have well defined shape.

5.0 Solid line is actual result; Robledo et al.: Energy minima at $\beta_2 \approx \pm .15$

dashed line a symmetric potential for comparison

Rodríguez and Martinez-Pinedo: Wave functions peaked at $\beta_2 \approx \pm .2$

Beyond QRPA

Want to avoid the problems:

- 1. Overlap of intermediate states not well defined
- 2. No mixing of mean fields with different shapes, pairing. . .
- 3. Simplicity of correlations
- 4. **Unrealistically strong response to proton-neutron pairing** (as phase transition to pn pairing is approached)?

For 0ν decay we only need ground state. Generatorcoordinate method takes advantage of that, and avoids problems 1, 2, and (to some extent) 3.

We're generalizing it to include proton-neutron pairing and spin-isospin correlations, deal with problem 4.

Rodríguez et al Generator-Coordinate Calculation

Basic idea: Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\langle Q_0 \rangle$. Minimize

 $\langle H' \rangle = \langle H \rangle - \lambda \langle Q_0 \rangle$

Then use $\langle Q_0 \rangle$ as a collective coordinate; diagonalize H in space of number- and angular-momentum-projected quasiparticle vacua with different values of $\langle Q_0 \rangle$.

Adding pn Correlations to GCM

GCM results missing physics that affects QRPA calculations.

So we generalize the approach:

- 1. Pairing currently treated as mean field, but not pn pairing. So we construct quasiparticles that mix not only particles and holes, but also neutrons and protons.
- 2. Constrain proton-neutron pairing and particle-hole condensation as well as deformation, i.e. minimize

$$
H' = H - \lambda_Q \langle Q_0 \rangle - \lambda_P \langle P_0^{\dagger} \rangle - \lambda_{\sigma\tau} \langle O_{\sigma\tau} \rangle
$$

with

$$
P_0^{\dagger} = \sum_{l} \left[a_l^{\dagger} a_l^{\dagger} \right]_{M_S=0}^{L=0, S=1, T=0}, \quad O_{\sigma\tau} = \sum_{i} \sigma_z(i) \left(\tau^+(i) + \tau^-(i) \right)
$$

The pn operators have zero expectation value at HFB minimum, but we add quasiparticle vacua with non-zero values.

Test in Solvable SO(8) Model

Consider many degenerate oscillator levels with orbital angular momentum l:

Hamiltonian is

$$
H=-\frac{1+x}{2}\sum_\nu S^\dagger_\nu S_\nu-\frac{1-x}{2}\sum_\mu P^\dagger_\mu P_\mu+g_{ph}\sum_{ij}\vec{\sigma}_i\vec{\sigma}_j\vec{\tau}_i\vec{\tau}_j
$$

Competition between ordinary pairing and spin-triplet pairing.

SO(8) Results

Calculation in *fp* **+** *sdg* **Shells**

 H contains quadrupole-quadrupole, isovector/isoscalar pairing, and $\sigma\tau\sigma\tau$ interactions. Reproduces 2^+ levels in, e.g., 76 Se.

Total β ⁺ **strength in** ⁹⁶**Pd (closed neutron shell)**

Ordinary GCM would give about 11 here.

Deformation Distributions for A = 76

<mark>Hinohara</mark>

0ν **Decay of** ⁷⁶**Ge**

We still need to:

- 1. Add $\sigma\tau$ coordinate and improve its treatment. Currently leave out Fock terms. We're adding them and trying $S(\beta^+)$ as particle-hole coordinate. But may have to get fancier.
- 2. Determine appropriate value for q_{nn} .

After that: Add proton-neutron physics to Gogny- or Skyrmebased GCM.

Corrected Shell Model

Partition of Full Hilbert Space

 $P =$ valence space $Q =$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q , with H_{eff} in P reproducing d most important eigenvalues.

Shell model done here

Corrected Shell Model

Partition of Full Hilbert Space

 $P =$ valence space $Q =$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with H_{eff} in P reproducing d most important eigenvalues.

For transition operator \hat{M} , must apply same transformation to get \hat{M}_{eff} .

Shell model done here

Corrected Shell Model

Partition of Full Hilbert Space

 $P =$ valence space $Q =$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with H_{eff} in P reproducing d most important eigenvalues.

For transition operator \hat{M} , must apply same transformation to get \hat{M}_{eff} .

<u>Sheit modet done here</u> This is as difficult as solving full problem. But the idea is that N-body effective operators may not be important for $N > 2$ or 3.

Peturbation-Theory Approach

X-Box

Equation for Effective Transition Operator

$$
\langle cd| \mathcal{M}_{\text{eff}} |ab \rangle =
$$
\n
$$
\left(\left[1 + \frac{1}{2} \frac{d\hat{Q}(\varepsilon)}{d\varepsilon} + \frac{1}{2} \frac{d^2 \hat{Q}(\varepsilon)}{d^2 \varepsilon} \hat{Q}(\varepsilon) + \frac{3}{8} \left(\frac{d\hat{Q}(\varepsilon)}{d\varepsilon} \right)^2 \cdots \right] \times \left[\hat{X}(\varepsilon) + \hat{Q}(\varepsilon) \frac{\partial \hat{X}(\varepsilon_f, \varepsilon)}{\partial \varepsilon_f} \Big|_{\varepsilon_f = \varepsilon} + \frac{\partial \hat{X}(\varepsilon, \varepsilon_i)}{\partial \varepsilon_i} \Big|_{\varepsilon_i = \varepsilon} \hat{Q}(\varepsilon) \cdots \right]
$$
\n
$$
\times \left[1 + \frac{1}{2} \frac{d\hat{Q}(\varepsilon)}{d\varepsilon} + \frac{1}{2} \frac{d^2 \hat{Q}(\varepsilon)}{d^2 \varepsilon} \hat{Q}(\varepsilon) + \frac{3}{8} \left(\frac{d\hat{Q}(\varepsilon)}{d\varepsilon} \right)^2 \cdots \right] \right)_{cd,ab}
$$

Perturbative Effective Decay Operator

Evaluated $\beta\beta$ version of these (which are for effective interaction).

Perturbative Effective Decay Operator

Evaluated $\beta\beta$ version of these (which are for effective interaction).

See Jason's talk next!

Can we really believe the results? Convergence is an issue, but a deeper one may be effect of many-body induced operators.

Nonperturbative Test

Perturbation theory still may not be perfect so we also try to do without it.

So far, have just tested in p shell:

- Do pseudo-exact (6 or 8 $~\hbar\omega$) no-core calculations for ⁵He, ⁵Li, get p-shell single-particle energies
- \blacktriangleright Do the same for ⁶He, ⁶Be, get effective p-shell two-body interaction, effective two-body $\beta\beta$ operator.
- **Use those operators to calculate** 7,8,10 He \rightarrow 7,8,10 Be. Test adequacy of two-body operator. Can do the same for 3-body Hamiltonian and decay operator.

⁷**He**−→⁷**Be**

⁸**He**−→⁸**Be**

¹⁰**He**−→¹⁰**Be**

Want to test improvement from three-body operators.

Nonperturbative Future

- **Coupled Clusters:** Solve the two-particle attached problem (closed shell $+$ 2) on top of e.g., ⁵⁶Ni and three-particle-attached in some approximation, do Lee-Suzuki mapping of lowest eigenstates onto $f_{5/2} p g_{9/2}$, determine effective Hamiltonian and decay operator (up to three-body), calculate matrix element for ⁷⁶Ge. Jannsen and Hagen already working on this.
- **In-Medium SRG:** Hergert, Bogner, et al have published preliminary results for effective interaction in sd shell. Should be able to extend procedure to decay operator and $f_{5/2}pg_{9/2}$ shell.

Issue Facing All Models: "g_A"

Forty(?)-year old problem: Single-beta rates, 2ν double-beta rates, related observables overpredicted in heavy nuclei.

Typical solution: "Renormalize" g_A to get correct results. But if g_A is renormalized by same amount in 0ν decay as in 2ν decay (a lot in shell model), experiments will fail; rates go as $(g_A)^4$.

Better solution: Understand reasons for overprediction. In modern language, must be due to

1. Many-body weak currents, either modeled as in GFMC or from chiral EFT. Who's right? The many old-school practitioners who say

meson-exchange effects are small, or the chiral-EFT folk, who say they can be large?

2. Truncation of model space, to be fixed in shell model as already discussed discussed. Can treat "bare many-body" operators as well.

Issue Facing All Models: "g_A"

who say they can be larger than be larger

Forty(?)-year old problem: Single-beta rates, 2ν double-beta rates, related observables overpredicted in heavy nuclei.

Typical solution: "Renormalize" g_A to get correct results. But if g_A is renormalized by same amount in 0ν decay as in 2ν decay (a lot in shell model), experiments will fail; rates go as $(g_A)^4$.

Better solution: Understand reasons for overprediction. In modern language, must be due to

1. Many-body weak currents, either modeled as in GFMC or

People are attacking both sides of this problem. $\frac{h}{l}$ meson-exchange effects are small, or the chiral-EFT for the chiral-EFT for the chiral-EFT for the chiral-EFT fo

2. Truncation of model space, to be fixed in shell model as already discussed discussed. Can treat "bare many-body" operators as well.

So. . .

Se should be able to improve nearly all methods for treating double-beta decay.

Future is bright not at all dim.

That's all.