KamLAND-Zen and the MAJORANA DEMONSTRATOR

> Jason Detwiler University of Washington

Nuclei and Fundamental Symmetries (INT-13-2b) Seattle, Aug. 21 2013

Outline

- Recent motivations for large mass, low background experiments
- Large Mass: KamLAND-Zen
- Low-Background: MAJORANA DEMONSTRATOR

Wednesday, August 21, 13

Inverted Hierarchy Sensitivity

Wednesday, August 21, 13

All isotopes are created equal...

0νββ Decay Experiments GERDA

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	16 kg	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Operating
GERDA II	Ge-76	Point contact Ge in LAr or LN	30-35 kg	Construction
Majorana Demonstrator	Ge-76	Point contact Ge	26 kg	Construction
1TGe (GERDA & MAJORANA)	Ge-76	Best technology from GERDA and MAJORANA	~ tonne	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	R&D
MOON	Mo-100	Mo sheets	200 kg	R&D
CAMEO	Cd-116	CdWO ₄ crystals	21 kg	R&D
COBRA	Cd-116, Te-130	CdZnTe detectors	10 kg	R&D
CUORICINO	Te-130	TeO ₂ Bolometer	11 kg	Complete
CUORE-0	Te-130	TeO ₂ Bolometer	11 kg	Operating
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Construction
SNO+	Te-130	0.3% natTe in liquid scint.	800 kg	Construction
KamLAND-ZEN	Xe-136	2.7% in liquid scint.	370 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	80 kg	R&D
EXO-200	Xe-136	Xe liquid TPC	160 kg	Operating
nEXO	Xe-136	Xe liquid TPC	5 tonnes	R&D
DCBA	Nd-150	Nd foils & tracking chambers	32 kg	R&D

MAJORANA

From J. F. Wilkerson

Jason Detwiler

Complete

Construction

Operating

Hints from Planck?

Would cure ga woes:

Mechanism Determination

Jason Detwiler

Outline

- Recent motivations for large mass, low background experiments
- Large Mass: KamLAND-Zen
- Low-Background: MAJORANA DEMONSTRATOR

KamLAND

KamLAND

KamLAND-Zen Upgrade

Inner Balloon Construction

- Ultra-low contamination heat-welded nylon film
 - ~25 µm thick
 - Straps made of identical material
 - U/Th/K $\lesssim 10^{-13}$ g/g

Xe Procurement

- Enrichment by gas centrifuge in Russia
- 190 kg purchased in 2009
- 210 kg purchased in 2010
- 400 kg more now in hand

Xe-LS R&D

- Maximize Xe mass in LS, but maintain light yield and transparency
- Must also match density of KamLAND LS for balloon integrity
- Increase PPO with Xe: optimal point at 2.7 g/L PPO = 2.5% ^{enr}Xe (by weight)

Jason Detwiler

KamLAND-Zen Timeline

- ~2008-2011: R&D, ^{enr}Xe procurement, installation of new infrastructure
- March 2011: Tohoku earthquake and tsunami, and Fukushima nuclear disaster
- Summer 2011: Inner balloon fabrication and installation, Xe-LS filling, commissioning
- Oct 2011 Jan 2012: First data set, published in PRC 85, 045504 (2012)
- Feb 2012: Stop for filtration (DS-I), published Majorana emission mode result - PRC 86 021601 (2012) (best 2νββ result)
- June 2012: Stop data taking (DS-2) for distillation, see PRL 110, 062502 (2013) (best 0vββ result, this talk)

ThO₂W Calibration

 $\sigma = (6.6 \pm 0.3)\% / \sqrt{MeV}$

In-situ²¹⁴Bi Fit

Candidate Selection

- Fiducial volume: R < 1.35 m (DS-2: cut out siphoning hardware)
- Detector vetos:
 - Muons (>10k p.e. or >5 OD hits) and the 2 ms following them
 - Bi-Po coincidences $(\Delta t < 3 \text{ ms}, 0.35 \text{ MeV} < E_{\text{prompt}} < 1.5 \text{ MeV})$ 112.3 days / 101.1 days
 - Antineutrinos $(\Delta t < I ms, E_{prompt} > I.5 MeV)$
- Cuts: Vertex-time-charge goodness-of-fit

Wednesday, August 21, 13

Fiducial mass (DS-1 / DS-2): 179 kg / 125 kg ¹³⁶Xe

Livetime (DS-I / DS-2):

ε > 99.9%

Systematic Uncertainties

 Uniformity of ²¹⁴Bi in early data + total mass of Xe-LS filled gives FV uncertainty of 3.9% / 4.1% (DS-1 / DS-2)

Enrichment, E-scale, efficiency, livetime, Xe concentration, Xe-LS edge effect uncertainties all <0.4%

ββ Candidate R vs E

Fukushima Disaster

- Tohoku U and Inner Balloon fabrication lab

Jason Detwiler

- Search ENSDF for decays that can give a peak in KLZ between 2.4 and 2.8 MeV
- Account for all particle-dependent energy nonlinearities
- Require $\tau > 30$ days, or 100 s < $\tau < 30$ days if production cross section not too small

¹³⁶Xe spallation in $I GeV_{eq} p beam$

Jason Detwiler

Wednesday, August 21, 13

Phys. Rev. C 76, 064609 (2007).

Energy Spectrum

free parameter constrained

Components not shown have best fit = 0

Peak in the $0\nu\beta\beta$ window prefers to be ^{110m}Ag

 $T_{1/2}^{2v} = [2.30 \pm 0.02 \text{ (stat)} \pm 0.12 \text{ (syst)}] \times 10^{21} \text{ yr}$ (consistent with EXO-200)

0vββ Region

Alternative Hypotheses

Alternative Hypotheses

χ² for 2.2-3.0 MeV 112 days livetime (DS-1)

model	χ ²	d.o.f. (eff)
Full fit	11.6	12
0v+ ^{110m} Ag	13.1	14
0v+ ²⁰⁸ Bi	22.7	14
0ν+ ⁸⁸ Υ	22.2	14
0v+ ⁶⁰ Co	82.9	14
0v only	85.0	15

BG is likely ~1000 atoms of ^{110m}Ag

Comparison with ⁷⁶Ge

Jason Detwiler

M.Agostini et al., arXiv:1307.4720.
Purification / Upgrade Plan

Fire Accident, Nov. 20, 2012

Fire Accident, Nov. 20, 2012

Fire Accident, Nov. 20, 2012

- Thankfully, no one was injured
- No major structural damage
- DAQ restarted within I month
- Purification system restarted after
 ~6 months

Feb 2013

The future: KamLAND2-Zen

- Upgrade options (>2016)

 - High-performance LS R&D ⁻
 - Pressurized Xe-LS
 - Scintillating film balloons
- May be able to cover the inverted hierarchy

Outline

- Recent motivations for large mass, low background experiments
- Large Mass: KamLAND-Zen
- Low-Background: MAJORANA DEMONSTRATOR

Advantages of ⁷⁶Ge

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: 0.16% at 2039 keV (4 keV ROI)
- Powerful background rejection: segmentation, timing, pulse-shape discrimination
- Demonstrated ability to enrich from 7.44% to ≥86%

The MAJORANA DEMONSTRATOR (MJD)

- Located 4850' underground at Sanford Underground Research Facility
- 40-kg of Ge detectors, 30-kg enriched to 86% in ⁷⁶Ge
- 2 independent cryostats made of ultra-clean, electroformed Cu
- Compact Pb and Cu shield + muon veto
- Background goal: 3 counts in the $0\nu\beta\beta$ peak region of interest in a one tonne-year exposure

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.

Jason Detwiler

MJD Implementation

- Prototype Cryostat (2 strings, natGe): Summer 2013
- Cryostat I (3 strings enrGe & 4 strings natGe): Late 2013
- Cryostat 2 (7 strings enrGe): Fall 2014

Point-Contact Ge Detectors

Hole v_{drift} (mm/ns) w/ paths, isochrones

Point-Contact Ge Detectors

Jason Detwiler

47

Ultra-Pure Materials

Custom Low-BG Electronics:

fused silica clean Au+Ti traces amorphous Ge resistor FET w/clean silver epoxy electroformed Cu spring clip low-BG Sn contact pin

Also:

- Parylene coating / seals
- Vespel, PEEK supports
- Shields: Low-BG commercial Cu and Pb

Background Budget

Expected Backgrounds

MJD Spectrum after 3 Years

Simulated spectra, 60 kg yrs, detector resolution + all cuts applied

MJD Progress

Jason Detwiler

Site Infrastructure

- Under construction at 4850L of SURF
- Cu Electroforming facilities online since Spring 2011
- Beneficial occupancy of Davis Campus space since May 2012.
 Operational UG machine shop.

Cleanliness exceeds specifications.

Materials and Assay

- Assay of all samples (gamma, NAA, ICPMS...)
- Significant improvements in Cu assay (sub µBq/kg)
- Operating 10 EFCu baths at SURF, 6 at PNNL.
- >75% of Cu production is complete

EFCu inspection during growth

Enriched Ge

Delivery to Oak Ridge

- 42.5 kg of 86% enriched Ge procured from Russia
- Shipped in shielded container
- Reduced to electronic grade Ge with 98% yield

Enriched Ge

- 42.5 kg of 86% enriched Ge procured from Russia
- Shipped in shielded container
- Reduced to electronic grade Ge with 98% yield

Zone refining ^{enr}Ge

Electronic grade enrGe

Detectors

- I0 PPCs of ^{enr}Ge (9.5 kg) produced by ORTEC and UG at SURF
- Two strings of ^{nat}Ge built in UG glove boxes and under testing
- Prototype cryostat assembled and operated with pulse-tube cooler

Prototype Cryostat

NatGe ORTEC PPC in String Test Cryostat (⁶⁰Co Calibration)

Shield

- Shield table and monolith carts in use
- Lead bricks cleaned, stacking about to start
- Veto panels delivered to site and ready for installation

DAQ and Software

- Slow controls and monitoring running and stable since 2011
- ORCA DAQ implemented andin use
- Simulations co-developed with GERDA since 2004.Wellvalidated
- Analysis of characterization data in progress

lason Detwiler

Slow controls web monitoring

Vacuum monitoring/control

MALBEK Data compared to simulations

Upcoming Activities

2014-15

2013-14

Continue to operate Cryostat 1 at MJD Commission Cryostat 1, operate Prototype ٠ Cryostat and Cryostat 1 at MJD Davis Lab Davis Lab - detector operations - detector operations simulations with as built activities simulations with as built activities data analysis data analysis physics papers on Prototype Cryostat Commission Cryostat 2 at MJD Davis Lab results - detector operations Fabricate and assemble Cryostat 2 at MJD simulations with as built activities Davis Lab data analysis - underground machining Operate the DEMONSTRATOR array. characterize enriched PPC detectors build and test Cryostat 2 strings Assay of materials in Cryostat 2 ٠ Complete manufacture of enriched PPC detectors, electroformed Cu, assembly of shield, lab infrastructure

GERDA

- Immerse detectors directly in liquid Ar
- Phase I: I 5 kg at LNGS with H-M / IGEX detectors
- Phase II: 30-35 kg low-bg PPCs

Intend to merge GERDA + MJD for tonne-scale experiment

GERDA Phase I

62

Background: ~40 counts/ROI/t/y, meets Phase I goal

Phase II bg goal similar to MJD

MJD Background Budget

MJD $\beta\beta(0v)$ background goals [cnts/ROI-t-y]

Tonne-Scale Projection

Tonne-scale 76Ge 0vββ ROI backgrounds [c/ROI/t/y]

Inverted Hierarchy Sensitivity

Wednesday, August 21, 13

Summary

- Low background is essential for IH sensitivity.
- Discovery may be just around the corner!
- If the $0\nu\beta\beta$ -region background can be removed, KamLAND-Zen could cover much of the available space
- MJD and GERDA are aiming for the lowest background levels in the *current* generation: 3-4 c/ROI/t/y, projecting to <1 c/ROI/t/y without requiring new reduction techniques

Spare Slides

MJD Collaboration

Jason Detwiler

Black Hills

TUNL

Wednesday, August 21, 13

Inner Balloon R&D

- Ultra-low contamination heat-welded nylon film
 - ~25 μ m thick
 - Straps made of identical material
 - U/Th/K $\lesssim 10^{-13}$ g/g

3m, 12cmé

6.27m×5, 4cm¢

sphere 16.52n

total 17.17m

Jason Detwiler

69

Xe-LS Handling System

Jason Detwiler

70

Electronics Upgrade

- I GHz flash ADCs
- Eliminate post-muon dead time to remove >90% ¹¹C, ¹⁰C
- Fully operational and in use, data analysis underway
- Not used for first results

Balloon and Xe-LS Backgrounds

(other than U/Th/K)

Spallation Products

- ^{II}C: I.II ± 0.28 a/t/d
- ${}^{10}C: (0.0211 \pm 0.0044) a/t/d$
- Spallation neutron yield 13±6% higher (absorb in yield systematics)
- n capture on H, C; no evidence of n capture on Xe
- No evidence of muon followers with $\tau < 100s$

Fit Residuals and Stability

Jason Detwiler

Wednesday, August 21, 13

Majoron Emission

Model	Decay Mode	NG boson	L	n
IB	$0 uetaeta\chi^0$	no	0	1
IC	$0 uetaeta\chi^0$	yes	0	1
ID	$0 uetaeta\chi^0\chi^0$	no	0	3
IE	$0 uetaeta\chi^0\chi^0$	yes	0	3
IIB	$0 uetaeta\chi^0$	no	-2	1
IIC	$0 uetaeta\chi^0$	yes	-2	3
IID	$0 uetaeta\chi^0\chi^0$	no	-1	3
IIE	$0 uetaeta\chi^0\chi^0$	yes	-1	7
IIF	$0 uetaeta\chi^0$	gauge boson	-2	3
"bulk"	$0 uetaeta\chi^0$	bulk field	0	2

Majoron Emission Mode Limits

Future Options

Super-KamLAND-Zen

water or LS Xenon-LS normal LS

Low-background Laboratory

Low-Energy Performance

Dark Matter

Galactic rotation curves

CMB

Jason Detwiler

Our Universe

K. G. Begeman *et al.*, MNRAS **249**, 523 (1991). <u>http://chandra.harvard.edu/photo/2006/1e0657/more.html</u> <u>http://wmap.gsfc.nasa.gov/media/101080/</u>

"The WIMP Miracle"

 $\sigma_A \sim$ weak scale for $m_{DM} \sim 10 \text{ GeV}$ - few TeV

WIMP Detection

WIMP Searches with PPCs

Jason Detwiler

C.E. Aalseth *et al.*, Phys. Rev. Lett. **107**, 141301 (2011). G. Giovanetti, TAUP 2011.

Neutron EDM

d ~ θ x 10⁻¹⁶ e cm "Naturalness": θ ~ O(1) Experiment: θ < 10⁻¹⁰ "The Strong CP Problem" Solution: $U(I)_{PQ}$ symmetry spontaneously broken at scale f_a , explicitly broken by QCD vacuum:

Massive pseudo-NG-boson: the axion! mass & couplings ~ I/f_a

Axion coupling to quarks implies photon interaction:

off of Ge lattice

Z.Ahmed *et al.*, Phys. Rev. Lett. **103**, 141802 (2009). <u>http://phycomp.technion.ac.il/~nika/diamond_structure.html</u>

140

Wednesday, August 21, 13

Z.Ahmed et al., Phys. Rev. Lett. **103**, 141802 (2009). http://phycomp.technion.ac.il/~nika/diamond_structure.html

Wednesday, August 21, 13

PEP-Violation, e⁻ Decay

Normal 2p 🗲 1s transition

PEP violating 2p \rightarrow 1s transition

J. Marton *et al.*, J. Phys. Conf. Ser. **35**, 012060 (2011). C.E. Aalseth *et al.*, Phys. Rev. Lett. **107**, 141301 (2011). S.R. Elliott *et al.*, arXiv:1107.3118v1 [nucl-ex] (2011).

Neutrino Magnetic Moment

R. Henning, arXiv:1011.3811v1 (2010).

Other *BB* Physics

- High-statistics 2νββ
 spectral measurement
 - Majoron emissions modes
 - Nuclear model tests
 - Bosonic V mixing
- $\beta\beta$ decay to excited states
 - Constrain NME

Other *BB* Physics

- High-statistics 2νββ
 spectral measurement
 - Majoron emissions modes
 - Nuclear model tests
 - Bosonic V mixing
- $\beta\beta$ decay to excited states
 - Constrain NME

Low-E Backgrounds

MJD expectation: factor ~100 reduction

Ton-Scale Design

