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Tests of fundamental symmetries 
with atoms and molecules 



Listening to an atom 
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q Coulomb forces + Quantum Electro-Dynamics 
    => a relatively simple interpretation 
 
q Unprecedented control over internal and external degrees of freedom 
    precision 17-digit spectroscopy 

Al+ clock = several parts per quintillion (1018) 

Andrei Derevianko 



Precision AMO tests of fundamental 
symmetries  
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q  Discrete: 
q   Atomic parity violation  (weak charge/anapole moments) 
q   Electric dipole moments (T-odd, P-odd) 
q   T-odd P-even interactions 

q  Continuous: 
q  Lorentz 
q  Time/space variation of fundamental constants (also Lorentz) 

Other fundamental physics tests in AMO:  
Equivalence principle, photon boson statistics,  QED tests (alpha/e g-factor),  Bell 
inequalities,  … 

Andrei Derevianko 



Outline 
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Part I : Atomic Parity Violation 
 
 
 
Part II: Nuclear clock and variation of 
fundamental constants 

Andrei Derevianko 



Part I 
 
 

Atomic Parity Violation 
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Primer on evaluating theoretical error bars 

Andrei Derevianko 
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Atomic parity violation (APV) 
Parity transformation: i i→ −r r

[Hatomic, P]=0 =>  Atomic stationary states are eigenstates of Parity 

Z-boson exchange spoils parity conservation 

Electromagnetic Electroweak 

What is the strength of electroweak coupling of quarks and electrons? 

Andrei Derevianko 
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 Atomic searches for new physics  

Table top experiment with 133Cs atoms  
on parity violation 
Boulder (C. Wieman group)  

1 eV  -> New physics constraints  at 1 TeV mass scale 

Atomic experiments are both unique and complementary to particle colliders 

Andrei Derevianko 
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“The Colorado comparison reveals 
a small but intriguing discrepancy 
between theory and observation, 
perhaps indicating some new 
physics to be explored“ 

Elementary particles community: 
Numerous papers commenting on 
the discrepancy, e.g., extra Z-bosons  

Cs PV experiment: Physics news (1999) 
Annual survey of important physics  stories 

Andrei Derevianko 
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Parity-violating 7S-6S Amplitude in Cs 
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Weak charge extraction 
Electron-quark PV interaction (exchange of virtual Z0 boson) 
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Weak charge  
neutron distribution 

PV signal inferred
WPV PVE Qk=

measured 
atomic-structure calculations 
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Weak charge of  133Cs  (as of 1999) 

Experiment: Wood et al. (1997); Bennett and Wieman  (1999) (Boulder group) 
Theory: Dzuba, Sushkov, Flambaum (1989); Blundell, Johnson, and Sapirstein (1990). 
SM calculations: Marciano and Rosner PRL (1990);  Groom et al  Eur. Phys. J (2000) 
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New physics scenarios:  
 extra Z-bosons, scalar leptoquarks, four-fermion contact interactions, etc 

inferr SMed
WWQ Q≠

2.5σ deviation (??? new physics, other corrections ???)  

Bennett & Wieman: reanalysis of the PV measurement+ reduction of theory error  
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Breit interaction 
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Deviation from the Standard Model in PV with 133Cs (2005)  
expt theor0.53% ( 0.35%, 0.4%)σ σ σ= = =

1999 Based on decade-old 
calculations by Dzuba et al. and 
Blundell et al. 

2.5σ Bennett & Wieman 1999 

Breit interaction -1.2σ 
 

Derevianko (2000) , Dzuba et al 
(2001), Kozlov et al (2001); 
Shabaev et al. (2005) 

Vacuum polarization (+ 0.8 σ) 
Vertex/self-energy ( -1.3 σ) 

-0.5σ Johnson et al. (2002);Milstein & 
Sushkov (2002);Kuchiev & 
Flambaum (2002);Sapirstein et al. 
(2003);Shabaev et al. (2005) 

Neutron skin -0.4σ Derevianko (2002) 

Updated correlated value and 
vec. trans. polarizability  

+0.7σ Dzuba, Flambaum & Ginges (2002) 

PV e-e, renormalization q->0, 
virtual exc. of the giant nuc. res. 

-0.08 σ Sushkov & Flambaum (1978) 
Milstein,Sushkov&Terekhov (2002) 

Total deviation  1.0 σ 

Andrei Derevianko 



Theoretical progress 
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inferred
WPV PVE Qk=

measured 
atomic-structure calculations 

Coulomb interaction 

Breit 
QED 

Neutron skin ? 

Andrei Derevianko 
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How to reduce σ? 

Theoretical uncertainty is limited by  
an accuracy of solving   

the basic correlation atomic-structure 
problem 
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Why is it so difficult? 
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Cs atom: correlated motion of 55 electrons 
55x3=165 coordinates 
For a coarse 10-point grid per dimension 

# of  points in Hilbert space 10165 

Exceeds estimated number of atoms in the Universe 

Andrei Derevianko 



17 

Requirements to 
atomic-structure calculations 

Ø            Weak interaction occurs in the nucleus  
 

~ 0.5 for Csv Z
c

α ≈

Ab initio relativistic calculations based on Dirac equation 

Ø           Calculations should have uncertainty better than 0.35% 

Hartree-Fock calculations are off  by 50% for  
important atomic properties 

Many-body perturbation theory 

Treat interaction beyond the Hartree-Fock as a perturbation 

Technically difficult task: 100 Gb of storage, several weeks of CPU time 

Andrei Derevianko 
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Coupled cluster method as a systematic 

approach 
The accuracy of calculations based on SD method for PNC 
amplitude in Cs is ~ 1% (Blundell, Johnson, Sapirstein 1990)  

Triple and higher-rank excitations are missing from the exact 
wavefunction. =>  
Next systematic step: include triples + non-linear product states.  

+ …. 

Andrei Derevianko 



19 

Our CCSDvT approximation 

[ 1,000-fold increase in computational complexity 
over previous calculations (ND:100 Mb à 100 Gb) 

( )0211 ...
2!v vK N K⎛ ⎞⎡ ⎤Ψ = + + + Ψ⎜ ⎟⎣ ⎦⎝ ⎠
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Our method 
[ Ab initio relativistic many-body method 
[ Based on coupled-cluster scheme (additional 

inclusion of triple excitations + non-linear terms) 
[ 1,000-fold increase in computational complexity over 

previous calculations (100 Mb à 100 Gb) 
[ Code quality control: 2 person team + symbolic tools 
[ Exact for 3e lithium: 0.01% accuracy demonstrated 
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Eight years, dozen of papers, 3,648 diagrams later … 

Andrei Derevianko 



PV amplitude  
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Main +tail 
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99% of the sum comes from n=6,7,8,9  (main term CCSDvT) 
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Theoretical accuracy: weak interaction 
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Average deviation 0.2% 

Andrei Derevianko 



Theoretical accuracy: dipoles 

24 Andrei Derevianko 



Andrei Derevianko 

PV Amplitude 
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Overall error 0.27% - better than the experiment 
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Theoretical progress 
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Factor of two reduction in theoretical error + shift of the central value 

S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009) 
S. G. Porsev, K. Beloy and A. Derevianko, Phys. Rev. D 82, 036008 (2010) 



Reasons for the shift of EPV 
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(a)  Direct contribution of triples to 
matrix elements (0.3%) 

(b) line-dressing of 
matrix elements (0.3%) 

(c) Consistent removal of Breit and QED effects from experimental energies (0.3%) 



New twist in the Cs saga (2012) 
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PV Amplitude (2012) 
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0.8977 (40) 

0.0256(36) 

Dzuba et al (2012)  

•  2 sigma shift in the tail contribution 
•  Increase in the error bar L 
•  Total error is dominated by the error in the “tail” 
•  Technical problem: summation must be over complete set of many-body states: 

Sydney basis is not the same as ours used for the “Main” term 
•  Possible solution: CC method in the parity-mixed basis 



Theoretical progress (2012) 
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Lessons on estimating theoretical 
errors 
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q  Enormous Hilbert space ----> no exact solutions:  
     High-accuracy experimental data points is a must (energies, lifetimes, HFS constants, …) 
q  Self-consistency checks (e.g. different gauges) 
q  Fits to high-accuracy experimental values to estimate missing higher-order effects 
q  Numerical error: Basis saturation tests 
q  Checks for simple systems where method is exact 
q  Blind test 
q  Quality control – use symbolic tools for repetitive tasks/coding and deriving diagrams 
q  Competing groups – independent tests – complementary techniques help 



Atomic parity violation: future 
experiments 

Andrei Derevianko 33 

 
q Cs refined (Dan Elliot - Purdue) 
q Dy (Berkeley) 
q Fr (TRIUMF-Canada [Maryland/Manitoba/Willam&Mary/San Luis Potosi] ) 
q Ra+ (KVI/the Netherlands) 
q Hg  (Greece)  
 
 



Part II: 
 

Nuclear clock and variation of 
fundamental constants 
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A
tom

ic clocks 
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Shrink the quantum oscillator size   ==>  
reduced couplings to external perturbations ==> 
better accuracy 

Andrei Derevianko 



Nuclear clock 
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Two directions: 
 
•    Solid state devices with 1010 Th nuclei => high-stability (not so accurate) 
•    Ion clocks => high accuracy  (not so stable)  

E. Peik and Chr. Tamm,  Europhys. Lett. 61, 181 (2003) 

www.thorium.at 

????? 
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Uncertainty budget 
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Sensitivity to variation of fundamental 
constants 
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Cosmological indications for spatial variation of alpha (dipole) 
The Earth moves : d lnα/dt = 10-18/year 
 
 Current limit: d lnα/dt  < 10-17/year (Al+/Hg+ clock) 
 

Flambaum (2006) : 105 enhancement in 229Th 


