Beta decays and non-standard interactions in the LHC era

Vincenzo Cirigliano

Theoretical Division, Los Alamos National Laboratory

Introduction

Why "beyond the Standard Model"?

 The SM is remarkably successful, but has no answer to a number of questions about our universe ⇒ new degrees of freedom

Empirical questions

Theoretical questions

Two Frontiers

Two complementary strategies to probe BSM physics:

Two Frontiers

Two complementary strategies to probe BSM physics:

• Both frontiers needed to reconstruct the structure, symmetries, and parameters of \mathcal{L}_{BSM} \Rightarrow address the outstanding open questions

Two Frontiers

Two complementary strategies to probe BSM physics:

 In this talk, take a fresh look at non-standard charged current interactions, using both Precision and Energy Frontier probes

CC interactions and BSM physics

• In the SM, W exchange \Rightarrow only V-A structure, universality relations

Lepton universality

$$[G_F]_{e}/[G_F]_{\mu} = 1 + \Delta_{e/\mu}$$

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{\text{CKM}}$

Cabibbo universality

CC interactions and BSM physics

• In the SM, W exchange \Rightarrow only V-A structure, universality relations

 BSM: sensitive to tree-level and loop corrections from large class of models → "broad band" probe of new physics Traditionally, field dominated by precision β decay measurements: rich experimental program worldwide, with precision approaching the 0.1%-level or better

 Here consider multi-scale analysis, with probes ranging from low energy (nuclei, neutron, and pion) to the LHC

Outline

EFT approach to Charged Current interactions

Beta-decay probes (Precision Frontier)

Collider probes (Energy Frontier)

- 1) T. Bhattacharya, VC, S.Cohen, A Filipuzzi, M. Gonzalez-Alonso, M. Graesser, R. Gupta, H.W.Lin, arXiv:1110.6448 [hep-ph], PR D85 (2012) 054512
- 2) VC, M. Gonzalez-Alonso, M. Graesser, arXiv:1205.2695, JHEP 1210 (2012) 025
- 3) V. Cirigliano, S. Gardner, B. R. Holstein, arXiv:1303.6953, Prog.Part.Nucl.Phys. 71 (2013) 93-118
- 4) VC, ,M. Graesser, E. Passemar, in progress

Framework

- In absence of an emerging BSM scenario, work within EFT framework
 - Assume separation of scales M_{BSM} >> M_W
 - New heavy BSM particles are "integrated out" and affect low-energy dynamics through local operators of dim > 4
 - If M_{BSM} ~ several TeV, one can use this framework to analyze LHC data.
 Will discuss relaxing this assumption at the end of the talk
- EFT approach can be used to put constraints on any UV model
- EFT approach misses possible correlations among observables

Е

LHC

∧ (~TeV)

SLC, LEP

 $M_{W,Z}$

12 SU(2)xU(1) gauge invariant operators O_i affect CC interactions

10 4-fermion

operators

Match to hadronic description (1)

- To disentangle short-distance physics, need hadronic matrix elements of SM (very precisely, 10-3 level) and BSM operators
- Tools:
 - symmetries of QCD (→ chiral EFT)
 - lattice QCD

Match to hadronic description (2)

Need the matrix elements of quark bilinears between nucleons

$$\langle p(p_p, s') | \bar{u} \Gamma d | n(p_n, s) \rangle = \bar{u}(p_p, s') f_{\Gamma}(q^2) u(p_n, s)$$

- Given the small momentum transfer in the decays $q/m_n \sim 10^{-3}$, can organize matching according to power counting in q/m_n
- At what order do we stop? Work to 1st order in

$$\epsilon_{\Gamma} \sim 10^{-3}$$
 $q/m_n \sim 10^{-3}$ $\alpha/\pi \sim 10^{-3}$

- Include $O(q/m_n)$ and rad. corr. only for SM operator
- Caveat: this counting neglects "2nd class currents" effects,
 O(10⁻⁵ ~ q/m_n × isospin-breaking)
 [Gardner-Plaster arXiv:1305.0014 discuss impact of these effects]

Low-energy probes

Low-scale Lagrangian (Ei~(v/\)2

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[(1 + \delta_{RC} + \epsilon_L) \ \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right]$$

$$+ \epsilon_R \ \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d$$

$$+ \epsilon_S \ \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} d$$

$$- \epsilon_P \ \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d$$

$$+ \epsilon_T \ \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

$$+ \epsilon_i \longrightarrow \tilde{\epsilon}_i \qquad (1 - \gamma_5) \nu_\ell \longrightarrow (1 + \gamma_5) \nu_\ell$$

How do we probe the E's?

- Low-energy probes fall roughly in two classes:
- I. Differential decay rates: spectra, angular correlations (mostly non V-A)

Jackson-Treiman-Wyld 1957

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

How do we probe the E's?

- Low-energy probes fall roughly in two classes:
- I. Differential decay rates: spectra, angular correlations (mostly non V-A)

Jackson-Treiman-Wyld 1957

$$d\Gamma \propto F(E_e) \left. \left\{ 1 + \frac{\mathbf{b}}{E_e} \frac{m_e}{E_e} + \frac{\mathbf{a}}{E_e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[\left. \frac{\mathbf{A}}{E_e} \frac{\vec{p_e}}{E_e} + \frac{\mathbf{B}}{E_\nu} \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\} \right|$$

 $a(\epsilon_{\alpha})$, $A(\epsilon_{\alpha})$, $B(\epsilon_{\alpha})$ isolated via suitable experimental asymmetries

How do we probe the E's?

- Low-energy probes fall roughly in two classes:
 - 2. Total decay rates: normalization (mostly V, A) matters!

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{ub}|^2 = 1 + \Delta_{\text{CKM}}(\epsilon_i)$$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} (1 + \delta_{RC} + \epsilon_L + \epsilon_R)
\times \left[\bar{\ell} \gamma_{\mu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \gamma^{\mu} \left(1 - (1 - 2 \epsilon_R) \gamma_5 \right) d \right]
+ \epsilon_S \bar{\ell} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} d
- \epsilon_P \bar{\ell} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \gamma_5 d
+ \epsilon_T \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}
+ \epsilon_i \longrightarrow \tilde{\epsilon}_i \qquad (1 - \gamma_5) \nu_{\ell} \longrightarrow (1 + \gamma_5) \nu_{\ell}$$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{G} \left(1 + \delta_{RC} + \epsilon_L + \epsilon_R\right)$$

- "No interference" between SM amplitude and $\widetilde{\epsilon}_i$ couplings (m_v/E_v)
- Spectra and angular correlations probe $\widetilde{\epsilon}_i$ to quadratic order
- Generally weaker bounds (5-10% level)

$$-\epsilon_{\mathbf{P}} \bar{\ell}(1-\gamma_5)\nu_{\ell}\cdot \bar{u}\gamma_5 d$$

+
$$\epsilon_{\mathbf{T}} \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.}$$

$$+ \qquad \epsilon_i \longrightarrow \tilde{\epsilon}_i \qquad (1-\gamma_5)\nu_\ell \longrightarrow (1+\gamma_5)\nu_\ell$$

$$\mathcal{L}_{\text{CC}} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left(1 + \delta_{RC} + \epsilon_L + \epsilon_R \right)$$

- Affects overall normalization of "semi-leptonic" $G_F = V_{us}$
- Strong constraints from Cabibbo universality tests,

$$\Delta_{\text{CKM}} = (1 \pm 6) * 10^{-4}$$

$$\epsilon_{L} + \epsilon_{R} < 5*10^{-4}$$
 @ 90% CL $\Lambda > 11 \text{ TeV}$

$$\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left(1 + \delta_{RC} + \epsilon_L + \epsilon_R \right)$$

$$\times \left[\bar{\ell} \gamma_{\mu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \gamma^{\mu} \left(1 - (1 - 2 \epsilon_R) \gamma_5 \right) d \right]$$

- + ϵ_S $ar{\ell}($ -Affects relative normalization of axial and vector currents

- Neutron and nuclear decays sensitive to $(1-2\epsilon_R)^*g_A$

- $-\epsilon_P$ $\bar{\ell}($ Disentangling ϵ_R requires precision lattice calculations of ϵ_R : we are not there (yet)

+
$$\epsilon_T$$
 $\bar{\ell}\sigma_{\mu\nu}(1-\gamma_5)\nu_\ell \cdot a\sigma$ $(1-\gamma_5)a$ + n.c.

$$\mathcal{L}_{\text{CC}} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left(1 + \delta_{RC} + \epsilon_L + \epsilon_R \right)$$

$$\times | \bar{\ell} \gamma_{\mu}$$

× $\bar{\ell}\gamma_{\mu}$ - Strong constraints from R_π = $\Gamma(\pi \to e\nu)/\Gamma(\pi \to \mu\nu)$ (depend on the structure of $(\mathcal{E}_P)^{ab}$ in lepton flavor space)

$$+$$
 ϵ_{S} $ar{\ell}$

$$-\epsilon_P$$

$$+$$
 ϵ_T

$$\Delta_{e/\mu} = (R_{\pi})/(R_{\pi})_{SM}-1 = (-3 \pm 3)*10^{-3}$$

$$|\epsilon_L - \epsilon_R| < 2.5 * 10^{-3}$$
 $\Lambda_{L-R} > 3.5 \text{ TeV}$ $|\epsilon_P| < 6 * 10^{-4}$ $\Lambda_P > 7 \text{ TeV}$

@ 90% CL

$$\mathcal{L}_{\text{CC}} \ = \ -\frac{G_F^{(0)} V_{ud}}{\sqrt{1 - S}} - \text{Neutron and nuclear decay correlation coefficients and spectra} \\ \times \ \left[\ \bar{\ell} \gamma_{\mu} (-\pi \rightarrow \text{e V Y Dalitz plot (tensor coupling)} \right] \\ + \ \epsilon_S \ \ \bar{\ell} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} d \\ - \ \epsilon_P \ \ \bar{\ell} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \gamma_5 d \\ + \ \epsilon_T \ \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_{\ell} \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \ \right] + \text{h.c.}$$

- Only Es,T contribute to decay correlations to linear order E's
 - b and B = $B_0 + b_v m_e/E_e$ directly sensitive to $E_{S,T}$
 - a and A indirectly sensitive to $\mathcal{E}_{S,T}$ via b in the asymmetry "denominator"

$$\tilde{a} = \frac{a_{SM}}{1 + b \langle m_e/E_e \rangle}$$
 $\tilde{A} = \frac{A_{SM}}{1 + b \langle m_e/E_e \rangle}$

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{e} \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[\frac{A}{E_e} \frac{\vec{p_e}}{E_e} + \frac{B}{E_\nu} \frac{\vec{p_\nu}}{E_\nu} + \cdots \right] \right\}$$

• Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \vee \gamma$ and neutron + nuclear decays

 $-1.0 \times 10^{-3} < gs \ \epsilon_S < 3.2 \times 10^{-3}$

$$b_{\rm F} = 2\gamma g_{\rm S} \epsilon_{\rm S}$$

$$-2.0 \times 10^{-4} < f_{T} \epsilon_{T} < 2.6 \times 10^{-4}$$

$$f_T = 0.24(4) \Leftrightarrow \frac{\pi}{---}$$

Mateu-Portoles 07

• Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \vee \gamma$ and neutron + nuclear decays

This plot uses

$$g_S = 0.8 (4)$$

from LQCD

Bhattacharya, Cirigliano, Cohen, Filipuzzi, Gonzalez-Alonso, Graesser, Gupta, Lin, 2011

• Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \nu \gamma$ and neutron + nuclear decays

Wauters-Garcia-Hong 1306.2608

Based on global analysis of nuclear decays & neutron lifetime + beta asymmetry "A"

- Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \vee \gamma$ and neutron + nuclear decays
- Future: neutron b, B = B₀ + b_v m_e/E_e @ 10^{-3} ; ⁶He (b_{GT}) @ 10^{-3}

Sensitive to different combinations of E_S and E_T

$$b_{\text{GT}} = -(8\gamma/\lambda) g_{\text{T}} \epsilon_{\text{T}}$$

$$b = \frac{2}{1+3\lambda^2} \left[g_{\text{S}} \epsilon_{\text{S}} - 12\lambda g_{\text{T}} \epsilon_{\text{T}} \right]$$

$$b_{\nu} = \frac{2}{1+3\lambda^2} \left[\lambda g_{S} \epsilon_{S} - 4(1+2\lambda) g_{T} \epsilon_{T} \right]$$

- Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \vee \gamma$
- Future: neutron b, B = B₀ + b_v m_e/E_e @ 10^{-3} ; ⁶He (b_{GT}) @ 10^{-3}

- Current: $0^+ \rightarrow 0^+$ (b_F) and $\pi \rightarrow e \vee \gamma$
- Future: neutron b, B = B₀ + b_v m_e/E_e @ 10^{-3} ; ⁶He (b_{GT}) @ 10^{-3}

Impact of QCD uncertainties

- Hadronic uncertainties $(g_{S,T})$ strongly dilute significance of bounds
- Future LQCD calculations will improve constraints

Summary of low-E constraints

	$\mathrm{Re}(\epsilon_L \)$	$\mathrm{Re}(\epsilon_R)$	$\mathrm{Re}(\epsilon_P)$	$\mathrm{Re}(\epsilon_S)$	$\mathrm{Re}(\epsilon_T)$	×10 ⁻²
β decays	0.05	0.05	0.06	0.8	0.1	

$$\Gamma(\pi \rightarrow ev) / \Gamma(\pi \rightarrow \mu v)$$

	$\mathrm{Re}(ilde{\epsilon}_L)$	$\mathrm{Re}(ilde{\epsilon}_R)$	$\mathrm{Re}(\tilde{\epsilon}_P)$	$\mathrm{Re}(ilde{\epsilon}_S)$	$\mathrm{Re}(ilde{\epsilon}_T)$	×10 ⁻²
β decays	6	6	0.03	14	3.0	•

High-energy probes

Constraints from LEP & SLC

- The weak-scale operators that contribute to the ε_{α} , affect other observables (precision EW + collider)
- Strongest constraints on "L" coupling

Constraints from LEP & SLC

- The weak-scale operators that contribute to the ε_{α} , affect other observables (precision EW + collider)
- Strongest constraints on "L" coupling

- Already strong constraints from Z-pole
- CKM is at the same level

Constraints from LEP & SLC

- The weak-scale operators that contribute to the ε_{α} , affect other observables (precision EW + collider)
- Strongest constraints on "L" coupling

- Already strong constraints from Z-pole
- CKM is at the same level

- Constraints from σ_{had} at LEP would allow $\Delta_{CKM} \sim 0.01$!!
- CKM "wins" by factor of ~ 10

LHC (I): contact interactions

• If the new physics originates at scales $\Lambda > \text{TeV}$, then can use EFT framework at LHC energies

• The effective couplings ε_{α} contribute to the process $p p \rightarrow e V + X$

Bhattacharya, Cirigliano, Cohen, Filipuzzi, Gonzalez-Alonso, Graesser, Gupta, Lin, 2011

LHC (I): contact interactions

• If the new physics originates at scales $\Lambda > \text{TeV}$, then can use EFT framework at LHC energies

• The effective couplings ε_{α} contribute to the process $p p \rightarrow e V + X$

No excess
 events in
 transverse mass
 distribution:
 bounds on ε_α

Bounds on the effective scalar and tensor couplings:

Bounds on the effective scalar and tensor couplings:

$$n_{obs} (m_T > m_{T,cut}) = \epsilon_{eff} \times \mathcal{L} \times (\sigma_W + \sigma_S \times |\epsilon_S|^2 + \sigma_T \times |\epsilon_T|^2)$$

• BSM effects $_{\leq |E_{S,T}|^2}$, but (i) $\sigma_{S,T} >> \sigma_W$ and (ii) $\sigma_{S,T}$ and σ_W have different behavior in $m_T \Rightarrow$ to suppress bkg, use large $m_{T,cut}$

Bounds on the effective scalar and tensor couplings:

$$n_{obs} (m_T > m_{T,cut}) = \epsilon_{eff} \times \mathcal{L} \times (\sigma_W + \sigma_S \times |\epsilon_S|^2 + \sigma_T \times |\epsilon_T|^2)$$

• BSM effects $\propto |\mathcal{E}_{S,T}|^2$, but (i) $\sigma_{S,T} >> \sigma_W$ and (ii) $\sigma_{S,T}$ and σ_W have different behavior in $m_T \Rightarrow$ to suppress bkg, use large $m_{T,cut}$

Bounds on all the other effective couplings:

$$\sigma(m_{\mathrm{T}} > \overline{m}_{\mathrm{T,cut}}) = \sigma_{W} \left[(1 + \epsilon_{L}^{(v)})^{2} + |\tilde{\epsilon}_{L}|^{2} + |\epsilon_{R}|^{2} \right] - 2\sigma_{WL} \epsilon_{L}^{(c)} \left(1 + \epsilon_{L}^{(v)} \right) + \sigma_{R} \left[|\tilde{\epsilon}_{R}|^{2} + |\epsilon_{L}^{(c)}|^{2} \right] + \sigma_{S} \left[|\epsilon_{S}|^{2} + |\tilde{\epsilon}_{S}|^{2} + |\epsilon_{P}|^{2} + |\tilde{\epsilon}_{P}|^{2} \right] + \sigma_{T} \left[|\epsilon_{T}|^{2} + |\tilde{\epsilon}_{T}|^{2} \right],$$

- Strong bounds on S,T, P couplings with LH v's
- Strong bounds on S,T,P, R
 couplings with RH v's
- Less sensitivity to other couplings

Constraints form pp \rightarrow e⁺e⁻ + X

- Using SU(2) symmetry, ε_{α} contribute to pp \rightarrow e⁺e⁻ + X
- The resulting constraints are slightly stronger than $pp \rightarrow eV + X$

×10⁻²

β decays vs LHC

All ϵ 's in \overline{MS} @ $\mu = 2 \text{ GeV}$

	$\mathrm{Re}(\epsilon_L \)$	$\mathrm{Re}(\epsilon_R)$	$\mathrm{Re}(\epsilon_P)$	$\mathrm{Re}(\epsilon_S)$	$\mathrm{Re}(\epsilon_T)$
β decays	0.05	0.05	0.06	0.8	0.1
LHC $(e\nu)$	(-0.3, +0.8)	_	1.3	1.3	0.3
LHC (e^+e^-)	_	_	1.0	1.0	0.1

Unmatched lowenergy sensitivity

LHC limits close to low-energy. Interesting interplay in the future

	$\mathrm{Re}(ilde{\epsilon}_L)$	$\mathrm{Re}(ilde{\epsilon}_R)$	$\mathrm{Re}(ilde{\epsilon}_P)$	$\mathrm{Re}(ilde{\epsilon}_S)$	$\mathrm{Re}(\tilde{\epsilon}_T)$
β decays	6	6	0.03	14	3.0
LHC $(e\nu)$	_	0.5	1.3	1.3	0.3

×10⁻²

LHC stronger than low-energy! (except for P,L)

Take a closer look to scalar and tensor couplings

- LHC and b, B at 10^{-3} level will compete in setting strongest bounds on ϵ_S and ϵ_T probing effective scales $\Lambda_{S,T} \sim 7 \, \text{TeV}$
- b and B at 10⁻⁴ level would give unmatched sensitivity

LHC (II): beyond contact

- What if new interactions are not "contact" at LHC energy?
 How are the E bounds affected?
- Explore classes of models generating E_{S,T} at tree-level.
 Low-energy vs LHC amplitude:

$$A_{\beta} \sim g_1 g_2 / M^2 \equiv \epsilon$$

$$A_{LHC} \sim \epsilon F[\sqrt{s/M}, \sqrt{s/\Gamma(\epsilon)}]$$

Study dependence of the E bounds on the mediator mass M

s-channel mediator

- Scalar resonance in s-channel
- Upper bound on Es based on m_{T,cut} = I TeV

t-channel mediator

- Scalar leptoquark S_0 (3*,1,1/3)
- $\varepsilon_T = -1/4 \ \varepsilon_S = -1/4 \ \varepsilon_P$

t-channel mediator

Ū _ e⁻

Messages

- For mediator mass > ITeV, LHC bounds on E's based on contact interactions are "conservative": actual bound is stronger for s-channel resonance, comparable for t-channel
- For low mass mediators (m < 0.5 TeV), the LHC bounds on E's quickly deteriorate: limits based on contact interactions are unreliable

1/(

What if LHC sees something?

• If "bump" in m_T is due to a scalar resonance coupling to e + V_e

• ...then we a lower bound on ε_S : β -decays provide diagnostic power

$$\sigma \cdot \text{BR} \leq \frac{|V_{ud}|}{12v^2} \frac{\pi}{\sqrt{2N_c}} |\epsilon_S| \tau L(\tau)$$
$$L(\tau) = \int_{\tau}^{1} dx f_q(x) f_q'(\tau/x) / x$$

 $\tau = m^2/s$

What if LHC sees something?

• If "bump" in m_T is due to a scalar resonance coupling to $e + V_e$

Diagnostic power

- Spin of resonance
- Nature of "MET" (is it V_e ?)
- Additional scalars? (suppression of ε_S through interference)

$$\sigma \cdot \text{BR} \leq \frac{|V_{ud}|}{12v^2} \frac{\pi}{\sqrt{2N_c}} |\epsilon_S| \tau L(\tau)$$

$$L(\tau) = \int_{\tau}^{1} dx f_{q}(x) f'_{q}(\tau/x) / x$$
$$\tau = m^{2} / s$$

Conclusions

- Precise (≤0.1%) beta decays: "broad band" probe of new physics
- If new physics arises above the TeV scale, EFT approach gives model-independent connection between β-decays and HEP
- Positive outlook: for operators involving V_L , beta decays probe effective scales in the multi-TeV range
 - "Nightmare scenario" (mediators not accessible at the LHC): 0.1%-level β decays can be more sensitive than LHC
 - "Optimistic scenario": β decays provide diagnostic power to reconstruct TeV-scale dynamics seen at the LHC

Either way, relevance of beta decays well in the LHC era