Early Results from Qweak

A search for parity violating new physics at the TeV scale by measurement of the Proton's weak charge.

> Roger D. Carlini Jefferson Laboratory

(Content of this talk includes the work of students, postdocs and collaborators.)

- Scatter longitudinally polarized electrons from liquid hydrogen
- Flip the electron spin and see how much the scattered fraction changes
- The difference is proportional to the weak charge of the proton
- Hadronic structure effects determined from global PVES measurements.

s(+

p

Precision Tests of the Standard Model

- Standard Model is known to be the effective low-energy theory of a more fundamental underlying structure. (Meaning its not complete!)
- Finding new physics beyond the SM: Two complementary approaches:
 - Energy Frontier (direct) : eg. Tevatron (deceased), LHC (dry well so far)
 - Precision Frontier (indirect) :
- Often at modest or low energy...
- μ (g-2) , EDM, $\beta\beta$ decay, $\mu \rightarrow e \gamma$, $\mu A \rightarrow eA$, $K^+ \rightarrow \pi^+ \nu \nu$, *etc.*
- *v* oscillations
- Atomic Parity violation
- Parity-violating electron scattering

Hallmark of the Precision Frontier: Choose observables that are *"precisely predicted"* or *"suppressed"* in Standard Model.

If new physics is "eventually" found in direct measurements, precision measurements also useful to determine e.g. couplings...

PV Measurements Relative "difficulty factor"

Statistical Errors:

- Higher beam currents
- Higher polarizations
- High power targets

Normalization/ systematic errors:

- Polarimetry
- Q² measurements

Additive systematic errors: improved control of helicity correlated beam properties

Status

- The Qweak experiment finished successfully
 - Precise measurement of \vec{e} -p analyzing power at low Q²
 - 2 years in situ, ~1 year of beam
 - Commissioning run analyzed:
 - ~ 4% of total data collected
 - Results presented here:

1st "Clean" Determination of Q_w(p), C_{1u}, C_{1d}, & Q_w(n)

- Remainder of experiment still being analyzed
 - Expect final result by end of 2014
 - Expect final result will have ~5x better precision

Qweak Experiment Objectives

10 years of development + 2 years on floor (~1 year beam time) International Collaboration: 23 institutions, 95 Collaborators (23 grad students,10 postdocs)

 Measured parity-violating e-p analyzing power with high precision at Q² ~ 0.025 (GeV/c)². Determine: Q^p_W, Qⁿ_W, Λ/g_{e-p}, C_{1u}, C_{1d}, sin² θ_W

Ancillary / Calibration Measurements: (Will be published as standalone results.)

- Parity-violating and conserving e-C and e-Al analyzing powers.
- Parity-allowed analyzing power with transverse-polarized beam on H and Al.
- Parity-violating and allowed analyzing powers on H in the N $\rightarrow \Delta$ (1232) region.
- PV asymmetries in pion photo-production.
- Transverse asymmetries in pion photo-production.
- Non-resonant inelastic measurement at 3.3 GeV to constrain γ-Z Box uncertainty.
- Transverse asymmetry in the PV inelastic scattering region (3.3 GeV).

Weak Charges

Govern strength of neutral current interaction with fermion

Charge Particle	Electric	Weak (vector)	
u	+2/3	$-2 C_{1u} = +1 - 8/3 \sin^2 \theta_{W}$	
d	-1/3	$-2 C_{1d} = -1 + 4/3 \frac{\sin^2 \theta_W}{\sin^2 \theta_W}$	
Proton uud	+1	Q _w ^p = 1 - 4 <mark>sin²θ</mark> _W ≈ 0.07	$\left.\right\} \xrightarrow{z^0} p$
<i>Neutron</i> udd	0	$Q_w^n = -1$	

Note "accidental" suppression of $Q_w^p \rightarrow sensitivity to new physics$

- Q^p_{weak} is a well-defined experimental observable.
- Q^p_{weak} has a definite prediction in the electroweak Standard Model.
- Q^e_{weak}: electron's weak charge was measured in PV Møller scattering (E158).

The Weak Charges

 $Q_w(p)$ is the neutral-weak analog of the proton's electric charge The Standard Model makes a firm prediction of Q_W^p

Q-weak is particularly sensitive to the quark vector couplings C_{1u}& C_{1d}

- General: $Q_w(Z,N) = -2\{C_{1u}(2Z+N) + C_{1d}(Z+2N)\}$
 - Ex: $Q_w(p) = -2(2C_{1u} + C_{1d})$ (<u>this experiment</u>)
 - Uses higher Q² PVES data to constrain hadronic corrections (about 20%)
 - Ex: $Q_w(^{133}Cs) = -2(188C_{1u} + 211C_{1d})$ (APV)
 - Latest atomic corrections from PRL 109, 203003 (2012)
- Combining Qw(p) and Qw(¹³³Cs) \rightarrow C_{1u} & C_{1d}, Q_w(n)

Q^p_{Weak} : Extract from Parity-Violating Electron Scattering

As $Q^2 \rightarrow 0$

measures Q^p – proton's electric charge

measures Q^p_{Weak} – proton's weak charge

$$A = \frac{2M_{NC}}{M_{EM}} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + F^p(Q^2,\theta)\right]$$

$$\xrightarrow{Q^2 \to 0}_{\theta \to 0} = \left[\frac{-G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q^2 Q_{weak}^p + Q^4 B(Q^2)\right]$$

$$Q_{weak}^p = 1 - 4\sin^2\theta_W \sim 0.072 \quad \text{(at tree level)} \quad \text{(at tree level)} \quad \text{(at tree level)}$$

The **lower** the momentum transfer, Q, the more the proton looks like a point and the less important are the form factor corrections.

PVES and Hadronic Structure Effects

assume charge symmetry:

$$4G_{E,M}^{pZ} = (1 - 4\sin^2\theta_W)G_{E,M}^{p\gamma} - G_{E,M}^{n\gamma} - G_{E,M}^{s}$$
Proton weak charge
(tree level)
Strangeness
(Now measured to be
relatively small!)

Note: Parity-violating asymmetry is sensitive to both weak charges *and* to hadron structure.

Qweak Apparatus

Quartz Cerenkov Bars

The Apparatus (before shielding)

Quartz Cerenkov Detectors

Polarized Injector

- Pockels cell for fast helicity reversal
- Helicity reversal frequency: 960 Hz (to "freeze" bubble motion in the target)
- Helicity pattern: pseudo-random "quartets" (+--+ or -++-, asymmetry calculated for each quartet)
- Insertable Half-Wave Plate: for "slow reversal" of helicity to check systematic effects and cancel certain false asymmetries. Less frequently, by Wien filter.

- Wien magnets at 10A and chopper magnets at 4A. Might be able to push to higher gun voltage but risk damaging magnets (note, chopper magnets are captured on beamline)
- Modeling suggests Capture Section optimized for 130kV beam....

Two-Wien Spin Flipper

flip spin each month to cancel out HC laser spot variation

Experiment	Energy (GeV)	Ι (μΑ)	Target	A _{pv} (ppb)	Maximum Charge Asym (ppb)	Maximum Position Diff (nm)	Maximum Angle Diff (nrad)	Maximum Size Diff (δσ/σ)
HAPPEx-II (Achieved)	3.0	55	¹ H (20 cm)	1400	400	1	0.2	Was not specified
HAPPEx-III (Achieved)	3.484	100	¹ H (25 cm)	16900	200±100	3±3	0.5±0.1	10 ⁻³
PREx	1.063	70	²⁰⁸ Pb (0.5 mm)	500	100±10	2±1	0.3±0.1	10-4
QWeak	1.162	180	¹ H (35 cm)	234	100±10	2±1	30±3	10-4
Møller	11.0	75	¹ H (150 cm)	35.6	10±10	0.5±0.5	0.05±0.05	10 ⁻⁴

Overview of Beam Properties

		Achieved		
Beam value	Requirement	Run I	Run II	
X-position at target [nm]	<2	3.6 +/- 0.39	-0.95 +/- 0.06	
Y-position at target [nm]	<2	-6.9 +/- 0.39	-0.24 +/- 0.28	
X-angle at target [nrad]	<30	-0.22 +/- 0.012	-0.07 +/- 0.017	
Y-angle at target [nrad]	<30	-0.18 +- 0.015	-0.06 +/- 0.011	
Position at dispersion (3c12X)[nm]	-	-13.6 +/- 0.23	-0.83 +/- 0.30	
Energy dE/E [ppb] <1		<3.8 +/- 0.06	<0.23 +/- 0.08	

Constructing the Asymmetry

False Asymmetries	Backgrounds
 A_{msr} = A_{raw} + A_T - A_{reg} A_{raw} = (Y⁺ - Y⁻) / (Y⁺ + Y⁻) Charge normalized ep yields for ± e-helicity A_T = remnant transverse asymmetry measured with explicitly P_T beam A_{reg} = Σ (∂A/∂χi) Δχi, measured with natural & driven beam motion for (x, y, x', y', E) using BPMs A_Q driven to 0 with feedback 	• $A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1}^{4} f_i A_i}{1 - f_{tot}}$ • $R_{tot} = R_{Q^2} R_{RC} R_{Det} R_{Bin} = 0.98$ • $f_{tot} = \sum f_i = 3.6\%$ • $f_i = \text{fraction of yield from bkg}$ • $A_i = \text{asymmetry of bkg i}$ • b_1 from Al windows of tgt cell (dominant bkg) • b_2 from beamline bkg • b_3 from other soft neutral bk • b_4 from N $\rightarrow \Delta$ inelastic bkg

Ex:/ Aluminum Window Background

Large A (asymmetry) & f (fraction) make this our largest correction. Determined from explicit measurements using Al dummy targets & empty H₂ cell.

$$C_{\rm Al} = -64 \pm 10 \text{ ppb}$$

 $A_{\rm Al} = 1.76 \pm 0.26 \text{ ppm}$

$$f_{
m Al} = 3.23 \pm 0.24~\%$$

- Dilution from windows measured with empty target (actual target cell windows).
- Corrected for effect of H₂ using simulation and data driven models of elastic and quasi-elastic scattering.

- Asymmetry measured from thick AI targets
- Measured asymmetry agrees with expectations from scaling.

$$A_{PV}\binom{N}{Z}X) = -\frac{Q^2G_F}{4\pi\alpha\sqrt{2}} \left[Q_W^p + \left(\frac{N}{Z}\right)Q_W^n\right]$$

Precision Polarimetry

Qweak requires $\Delta P/P \le 1\%$

Strategy: use 2 independent polarimeters

- Use existing <1% Hall C Møller polarimeter:
 - Low beam currents, invasive
 - Known analyzing power provided by polarized Fe foil in a 3.5 T field.
- Use new Compton polarimeter (1%/h)
 - Continuous, non-invasive
 - Known analyzing power provided by circularly-polarized laser

Target Performance

Measured helicity correlated target noise.

At **960 Hz reversal rate**, the target noise (< 50 ppm) is very small compared to our measured helicity quartet ($\pm \mp \mp \pm$) asymmetry width (~230 ppm). (statistical power ~ $\Delta A \downarrow$ quartet / $\sqrt{N} \downarrow$ quartets).

Determining the Kinematics

 A_{PV} :

 $\frac{1}{4\sqrt{2}\pi\alpha}$

Required uncertainty on Q² is 0.5% Combination of tracking and simulation

- HDCs before magnet to msr θ • $Q^2 \neq 2E^2 (1 - \cos\theta) / [1 + E/M(1 - \cos\theta)]$
- VDCs & trigger scintillators after • magnet to msr light weighted Q² across quartz bars

22

• $A_{ep} = \left[\frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}\right] \sim \frac{|M_{weak}^{PV}|}{|M_{EM}|}$ where σ^{\pm} is $\vec{e}p$ x-sec for e's of helicity ± 1

Determining Q_w(p) +

- $A_{ep} = \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{\epsilon G_E^{\gamma} G_E^{Z} + \tau G_M^{\gamma} G_M^{Z} (1 4\sin^2\theta_w)\epsilon' G_M^{\gamma} G_A^{Z}}{\epsilon (G_E^{\gamma})^2 + \tau (G_M^{\gamma})^2}$
 - where $\varepsilon = [1 + 2(1 + \tau) \tan^2(\theta/2)]^{-1}$, $\varepsilon' = \sqrt{\tau(1 + \tau)(1 \varepsilon^2)}$, $\tau = Q^2/4M^2$, $G_{E,M}^{\gamma}$ are EM FFs, $G_{E,M}^Z$ & G_A^Z are strange & axial FFs, and $\sin^2 \theta_w = 1 - (M_W / M_Z)^2$ = weak mixing angle
- Recast $A_{ep} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[Q_w^p + Q^2 B(Q^2,\theta) \right]$
 - So in a plot of $A_{ep} / \left[\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \right] vs Q^2$:

This Experiment

- Q_w^p is the <u>intercept</u> (anchored by precise data near Q²=0) \leftarrow
- $B(Q^2, \theta)$ is the <u>slope</u> (determined from higher Q² PVES data)

Global PVES Fit Details

- Effectively 5 free parameters:
 - C_{1u} , C_{1dv} ρ_s , μ_s , & isovector axial FF G_A^Z
 - $G_E^S = \rho_s Q^2 G_D$, $G_M^S = \mu_s G_D$, & G_A^Z use G_D where
 - $G_D = (1 + Q^2/\lambda^2)^{-2}$ with $\lambda = 1$ GeV/c
- Employs all PVES data up to $Q^2 = 0.63 (GeV/c)^2$
 - On p, d, & ⁴He targets, forward and back-angle data
 - SAMPLE, HAPPEX, GO, PVA4
- Uses constraints on isoscalar axial FF G_A^Z
 - Zhu, et al., PRD 62, 033008 (2000)
- All data corrected for E & Q² dependence of □_{vz} RC
 - Hall et al., arXiv:1304.7877 (2013) & Gorchtein et al., PRC84, 015502 (2011)
- Effects of varying Q^2 , θ , & λ studied, found to be small

Electroweak Corrections

Global Fit of Q²<0.63 (GeV/c)² PVES Data

Combined Analysis Extract: C_{1u}, C_{1d}, Qⁿ_W

Qweak + Higher Q² PVES Extract: Q^p_w, sin² θ_w

Remainder of experiment still being analyzed, final result before end of 2014. Expect final ΔA_{e-p} result will have ~5 x better precision.

Teaser: Simulated Fit !!

(Assuming anticipated final uncertainties and SM result)

Summary

- Measured A_{ep} = -279 ± 35 (statistics) ± 31 (systematics) ppb – Smallest & most precise ep asymmetry ever measured!
- First determination of Q_W(p):
 - $Q_w(p) = 0.064 \pm 0.012$ (from only 4% of all data collected)
 - (SM value = 0.0710(7))
 - New physics reach $\Lambda/g > 1 \text{ TeV}$
- First determination of $Q_W(n) = -2(C_{1u} + 2C_{1d})$:
 - By combining our result with APV
 - $Q_w(n) = -0.975 \pm 0.010$ (SM value = -0.9890(7))
- Expect to report an A_{ep} with about 5 times smaller uncertainty in about a year
 - Expected physics reach of $\Lambda/g > 2$ TeV.
 - SM test, sensitive to Z's and LQs

The Qweak Collaboration

- 95 collaborators
- 23 grad students
- 10 post docs
- 23 institutions:

JLab, W&M, UConn, TRIUMF, MIT, UMan., Winnipeg, VPI, LaTech, Yerevan, MSU, OU, UVa, GWU, Zagreb, CNU, HU, UNBC, Hendrix, SUNO, ISU, UNH, Adelaide

D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R.S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini¹, J.C. Cornejo, S. Covrig, M.M. Dalton, C.A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J.F. Dowd, J.A. Dunne, D. Dutta, W.S. Duvall, M. Elaasar,
W.R. Falk, J.M. Finn¹, T. Forest, D. Gaskell, M.T.W. Gericke, J. Grames, V.M. Gray, K. Grimm, F. Guo, J.R. Hoskins, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, P.M. King, E. Korkmaz,
S. Kowalski¹, J. Leacock, J. Leckey, A.R. Lee, J.H. Lee, L. Lee, S. MacEwan, D. Mack, J.A. Magee, R. Mahurin, J. Marmei, J. Martin, M.J. McHugh, J. Mei, R. Michaels, A. Micherdzinska, K.E. Myers,
A. Mkrtchyan, H. Mkrtchyan, A. Narayan, L.Z. Ndukum, V. Nelyubin, Nuruzzaman, W.T.H van Oers, A.K. Opper, S.A. Page¹, J. Pan, K. Paschke, S.K. Phillips, M.L. Pitt, M. Poelker, J.F. Rajotte,
W.D. Ramsay, J. Roche, B. Sawatzky, T. Seva, M.H. Shabestari, R. Silwal, N. Simicevic, G.R. Smith²,
P. Solvignon, D.T. Spayde, A. Subedi, R. Subedi, R. Suleiman, V.Tadevosyan, W.A. Tobias, V.Tvaskis, B. Waidyawansa, P. Wang, S.P.Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan

¹Spokespersons ²Project Manager Grad Students