# The sign problem in Lattice QCD

Philippe de Forcrand ETH Zürich & CERN

#### INT-13-2a, Advances in Quantum Monte Carlo, July 18, 2013



<ロト (四) (三) (三) (三)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Scope of lattice QCD simulations: Physics of color singlets

\* "One-body" physics: confinement hadron masses form factors, etc..





# Scope of lattice QCD simulations: Physics of color singlets





\*\* "Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al







hard-core + pion exchange?

Scope of lattice QCD simulations: Physics of color singlets



"Two-body" physics: nuclear interactions pioneers Hatsuda et al, Savage et al









\*\*\* Many-[composite]-body physics: nuclear matter phase diagram vs (temperature T, density  $\leftrightarrow \mu_B$ )

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

#### Water changes its state when heated or compressed



What happens to quarks and gluons when heated or compressed?

# The phase diagram of QCD according to Wikipedia Current conjecture



A vast world to explore and map out! A "race" between experiment (heavy-ion collisions) & theory (lattice QCD)

### Heavy-ion collisions





Knobs to turn:

- atomic number of ions
- collision energy  $\sqrt{s}$

So far, no sign of QCD critical point (esp. RHIC beam energy scan)

## Lattice QCD

Degrees of freedom at each Euclidean time:

positions of N particles  $(x_1, x_2, .., x_N) \longrightarrow field \phi(x)$ 

# Lattice QCD

space + imag. time  $\rightarrow$  4*d* hypercubic grid:

$$Z = \int \mathcal{D}U \mathcal{D}\bar{\psi}\mathcal{D}\psi e^{-S_E[\{U,\bar{\psi},\psi\}]}$$



• Discretized action S<sub>E</sub>:

• 
$$\psi(x) U_{\mu}(x) \psi(x + \hat{\mu}) + h.c.,$$
  
•  $\psi(x) U_{\mu}(x) \psi(x + \hat{\mu}) + h.c.,$   
•  $\psi(x) U_{\mu}(x) \psi(x) \psi(x + \hat{\mu}) + h.c.,$   
•  $\psi(x) U_{\mu}(x) \psi(x) \psi(x) \psi(x + \hat{\mu}) + h.c.,$   
•  $\psi(x) U_{\mu}(x) \psi(x) \psi(x) \psi(x) + h.c.,$   
•  $\psi(x) U_{\mu}(x) \psi(x) \psi(x) \psi(x) + h.c.,$ 

• Monte Carlo: with Grassmann variables  $\psi(x)\psi(y) = -\psi(y)\psi(x)$  ?? Integrate out analytically (Gaussian)  $\rightarrow$  determinant *non-local* 

Prob(config{U})  $\propto \det^2 \mathcal{D}(\{U\}) e^{+\beta \sum_{\rho} \operatorname{ReTr} U_{\rho}}$  real non-negative when  $\mu = 0$ 

# Lattice QCD Monte Carlo: sources of errors

#### • Systematic errors:

 $\begin{cases} L \to \infty, \text{ thermodynamic limit} \\ a \to 0, \text{ continuum limit} \\ m_a \searrow m_{\text{phys}} \end{cases}$ 

Extrapolations guided by analytic ansätze (asymptotic freedom,  $\chi$ PT)

• Statistical (Monte Carlo) errors:  $\propto 1/\sqrt{\# configs.}$ 

30 years of steady progress since Mike Creutz, 1980: Both errors have been shrinking thanks to hardware + algorithmic progress

 $\rightarrow$  Universal tool for *static, equilibrium* properties of QFT

### Non-zero chemical potential $\mu \Longrightarrow$ complex determinant

- $\mu > 0$  favors quarks over anti-quarks, ie. breaks charge-conjugation symmetry
- Charge conjugation  $\sim$  complex conjugation  $\longrightarrow$  det  $\neq$  det\* when  $\mu > 0$
- Formally:  $\gamma_5$ -hermiticity  $\rightarrow \det \mathcal{D}(\mu) = \det^* \mathcal{D}(-\mu^*)$ determinant real only if  $\mu = \underset{\mu}{0}$  (or  $i\mu_i$ ), otherwise complex



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

### Sampling oscillatory integrands





# Reweighting and optimal sampling of oscillatory integrand

• To study:  $Z_f \equiv \int dx \ f(x), \ f(x) \in \mathbf{R}$ , with f(x) sometimes negative

Sample w.r.t. auxiliary partition function  $Z_g \equiv \int dx \ g(x)$ ,  $g(x) \ge 0 \ \forall x$ 

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)f(x)}{\int dx \ f(x)} = \frac{\frac{1}{Z_g} \int dx \ W(x) \frac{f(x)}{g(x)} \ g(x)}{\frac{1}{Z_g} \int dx \ \frac{f(x)}{g(x)} \ g(x)} = \begin{bmatrix} \frac{\langle W \frac{f}{g} \rangle_g}{\sqrt{\frac{f}{g}} \rangle_g} & \text{"reweighting"} \\ \frac{\langle W \frac{f}{g} \rangle_g}{\sqrt{\frac{f}{g}} \rangle_g} & \frac{f}{g} \text{ is "reweighting factor"} \end{bmatrix}$$

・ロト・日本・モート モー うへぐ

## Reweighting and optimal sampling of oscillatory integrand

• To study:  $Z_f \equiv \int dx \ f(x), \ f(x) \in \mathbf{R}$ , with f(x) sometimes negative

Sample w.r.t. auxiliary partition function  $Z_g \equiv \int dx \ g(x)$ ,  $g(x) \ge 0 \ \forall x$ 

$$\langle W \rangle_f \equiv \frac{\int dx \ W(x)f(x)}{\int dx \ f(x)} = \frac{\frac{1}{Z_g} \int dx \ W(x) \frac{f(x)}{g(x)} \ g(x)}{\frac{1}{Z_g} \int dx \ \frac{f(x)}{g(x)} \ g(x)} = \begin{bmatrix} \langle W \frac{f}{g} \rangle_g \\ \langle \frac{f}{g} \rangle_g \end{bmatrix} \qquad \frac{f}{g} \text{ in }$$

"reweighting"  $\frac{1}{2}$  is "reweighting factor"

• Optimal g? Minimize relative fluctuations of denom.  $\rightarrow g(x) = |f(x)|$ ,  $\frac{f}{g} = \text{sign}(f)$  $\langle W \rangle_f = \frac{\langle W \operatorname{sign}(f) \rangle_{|f|}}{\langle \operatorname{sign}(f) \rangle_{|f|}}$  "put sign in observable"



# Reweighting and optimal sampling of oscillatory integrand

• To study:  $Z_f \equiv \int dx f(x)$ ,  $f(x) \in \mathbf{R}$ , with f(x) sometimes negative

Sample w.r.t. auxiliary partition function  $Z_g \equiv \int dx \ g(x)$ ,  $g(x) \ge 0 \ \forall x$ 

• Optimal g? Minimize relative fluctuations of denom.  $\rightarrow g(x) = |f(x)|$ ,  $\frac{f}{g} = \text{sign}(f)$  $\langle W \rangle_f = \frac{\langle W \text{sign}(f) \rangle_{|f|}}{\langle \text{sign}(f) \rangle_{|f|}}$  "put sign in observable"

•  $\langle \operatorname{sign}(f) \rangle_{|f|} = \frac{\int dx \ \operatorname{sign}(f(x))|f(x)|}{\int dx \ |f(x)|} = \frac{Z_f}{Z_g} = \exp(-\frac{V}{T} \Delta f(\mu^2, T))$ , exponentially small diff. free energy dens. Each meas. of  $\frac{f}{g}$  gives value  $\pm 1 \Longrightarrow$  statistical error  $\approx \frac{1}{\sqrt{\# \text{ meas.}}}$ Constant relative accuracy  $\Longrightarrow$  need statistics  $\propto \exp(+2\frac{V}{T}\Delta f)$ Large V, low T inaccessible: signal/noise ratio degrades exponentially  $\Delta f$  measures severity of sign pb.

> <u>\_\_\_\_\_</u> ・ロト・(語) ・(語) ・(語) - 語 - のへ(で

# The CPU effort grows exponentially with $L^3/T$

CPU effort to study matter at nuclear density in a box of given size Give or take a few powers of 10...



 QCD: sample with |Re(det(μ)<sup>N<sub>f</sub></sup>)| optimal, but not equiv. to Gaussian integral Can choose instead: |det(μ)|<sup>N<sub>f</sub></sup>, i.e. "phase quenched" |det(μ)|<sup>N<sub>f</sub></sup> = det(+μ)<sup>N<sub>f</sub>/2</sup> det(-μ)<sup>N<sub>f</sub>/2</sup>, i.e. isospin chemical potential μ<sub>u</sub> = -μ<sub>d</sub> couples to ud charged pions ⇒ Bose condensation of π<sup>+</sup> when |μ| > μ<sub>crit</sub>(T)

• QCD: sample with  $|\operatorname{Re}(\operatorname{det}(\mu)^{N_f})|$  optimal, but not equiv. to Gaussian integral Can choose instead:  $|\operatorname{det}(\mu)|^{N_f}$ , i.e. "phase quenched"  $|\operatorname{det}(\mu)|^{N_f} = \operatorname{det}(+\mu)^{\frac{N_f}{2}} \operatorname{det}(-\mu)^{\frac{N_f}{2}}$ , ie. isospin chemical potential  $\mu_u = -\mu_d$ couples to  $u\overline{d}$  charged pions  $\Rightarrow$  Bose condensation of  $\pi^+$  when  $|\mu| > \mu_{\operatorname{crit}}(T)$ 

• av. sign = 
$$\frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$$
 (for  $N_f = 2$ )  
•  $\sqrt{\pi^2 + 0}$   
•  $\sqrt{\pi^2 + 0}$   
•  $\sqrt{f(\mu^2, T)}$  large in the Bose phase  $\rightarrow$  "severe" sign pb.

• QCD: sample with  $|\text{Re}(\det(\mu)^{N_f})|$  optimal, but not equiv. to Gaussian integral Can choose instead:  $|\det(\mu)|^{N_f}$ , i.e. "phase quenched"  $|\det(\mu)|^{N_f} = \det(+\mu)^{\frac{N_f}{2}} \det(-\mu)^{\frac{N_f}{2}}$ , ie. isospin chemical potential  $\mu_{\mu} = -\mu_d$ couples to  $u\bar{d}$  charged pions  $\Rightarrow$  Bose condensation of  $\pi^+$  when  $|\mu| > \mu_{\rm crit}(T)$ • av. sign =  $\frac{Z_{QCD}(\mu)}{Z_{|QCD|}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$ (for  $N_f = 2$ )  $\Delta f(\mu^2, T) \text{ large in the Bose phase} \rightarrow \text{"severe" sign pb.}$ • av. sign  $= \frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = \langle \frac{\det(\mu)}{|\det(\mu)|} \rangle_{Z_{|\text{QCD}|}} = \langle e^{i\theta} \rangle$  evaluated in *isospin-µ* ensemble  $Z_{\text{OCD}} \leftrightarrow Z_{|\text{OCD}|}$  by changing fermion b.c.  $\Rightarrow$  ratio UV-finite For T,  $\mu \ll m_{\rho}$ , analytic results via RMT/ $\chi$ PT Splittorff, Verbaarschot et al.

・ロト・西ト・ヨト・ヨー もんぐ

• QCD: sample with  $|\text{Re}(\det(\mu)^{N_f})|$  optimal, but not equiv. to Gaussian integral Can choose instead:  $|\det(\mu)|^{N_f}$ , i.e. "phase quenched"  $|\det(\mu)|^{N_f} = \det(+\mu)^{\frac{N_f}{2}} \det(-\mu)^{\frac{N_f}{2}}$ , ie. isospin chemical potential  $\mu_{\mu} = -\mu_d$ couples to *ud* charged pions  $\Rightarrow$  Bose condensation of  $\pi^+$  when  $|\mu| > \mu_{\text{crit}}(T)$ • av. sign =  $\frac{Z_{\text{QCD}}(\mu)}{Z_{\text{[QCD]}}(\mu)} = e^{-\frac{V}{T}[f(\mu_u = +\mu, \mu_d = +\mu) - f(\mu_u = +\mu, \mu_d = -\mu)]}$ (for  $N_f = 2$ )  $<\pi^+ \neq 0$ severe sign problem  $\Delta f(\mu^2, T)$  large in the Bose phase  $\rightarrow$  "severe" sign pb. • av. sign  $= \frac{Z_{\text{QCD}}(\mu)}{Z_{|\text{QCD}|}(\mu)} = \langle \frac{\det(\mu)}{|\det(\mu)|} \rangle_{Z_{|\text{QCD}|}} = \langle e^{i\theta} \rangle$  evaluated in *isospin-µ* ensemble  $Z_{\text{OCD}} \leftrightarrow Z_{|\text{OCD}|}$  by changing fermion b.c.  $\Rightarrow$  ratio UV-finite For T,  $\mu \ll m_o$ , analytic results via RMT/ $\chi$ PT Splittorff, Verbaarschot et al. • Can improve by incorporating baryons via HRG  $\rightarrow$  Prediction: 1005.0539  $(\text{sign}) \gtrsim 0.1 \Leftrightarrow \mathcal{O}(10)$  baryons max. at  $T \lesssim T_c$  (less as  $T \searrow$ , hardly more as  $V \nearrow$ ) ・ロト ・ 雪 ト ・ ヨ ト 3

# Reweighting strategies

• Sample phase-quenched  $|\det(\mu)|$  + reweight with  $e^{i\theta} \rightarrow$  only 0711.0023, 1111.6363

(ロ)、(型)、(E)、(E)、 E) の(の)

## Reweighting strategies

• Sample phase-quenched  $|\det(\mu)|$  + reweight with  $e^{i\theta} \rightarrow$  only 0711.0023, 1111.6363

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Sample  $\mu = 0$  ensemble? worse, because reweighting factor fluctuates also in magnitude  $\rightarrow$  increased statistical errors

# Reweighting strategies

- Sample phase-quenched  $|\det(\mu)|$  + reweight with  $e^{i\theta} \rightarrow$  only 0711.0023, 1111.6363
- Sample  $\mu = 0$  ensemble? worse, because reweighting factor fluctuates also in magnitude  $\rightarrow$  increased statistical errors
- Further danger: "overlap pb." between sampled and reweighted ensembles  $\rightarrow$  WRONG estimates in reweighted ensemble for finite statistics

• Example: sample 
$$\exp(-\frac{x^2}{2})$$
, reweight to  $\exp(-\frac{(x-x_0)^2}{2}) \rightarrow \langle x \rangle = x_0$ ?





Insufficient overlap ( $x_0 = 5$ )



Very non-Gaussian distribution of reweighting factor Log-normal Kaplan et al.

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

## Reweighting from $\mu = 0$ : multi-parameter

- Fodor & Katz: sample  $(\mu = 0, \beta = \beta_c)$  and reweight with  $\left(\frac{\det(\mu)}{\det(\mu=0)} \times e^{-\Delta\beta S_{YM}}\right)$  along pseudo-critical line  $T_c(\mu)$ 
  - fluctuations in reweighting factor compensate between det and  $S_{YM}$
  - improved (ensured?) overlap: both phases sampled



hep-lat/0402006 (physical quark masses,  $N_t = 4$ )  $\rightarrow (\mu_E^q, T_E) = (120(13), 162(2)) \text{MeV}$ 

• Abrupt qualitative change near  $\mu_E$ :

# Reweighting from $\mu = 0$ : multi-parameter

- Fodor & Katz: sample  $(\mu = 0, \beta = \beta_c)$  and reweight with  $\left(\frac{\det(\mu)}{\det(\mu=0)} \times e^{-\Delta\beta S_{YM}}\right)$  along pseudo-critical line  $T_c(\mu)$ 
  - fluctuations in reweighting factor compensate between det and  $S_{YM}$
  - improved (ensured?) overlap: both phases sampled



hep-lat/0402006 (physical quark masses,  $N_t = 4$ )  $\rightarrow (\mu_E^q, T_E) = (120(13), 162(2)) \text{MeV}$ 

• Abrupt qualitative change near  $\mu_E$ :

abrupt change of physics or breakdown of reweighting ? (see later)

Revival (fast det Wilson fermions): Ukawa et al., Nakamura et al.

# Change of strategy

Reweighting gives exact answer in small volumes (work  $\sim \exp(V)$ ) in principle In practice: may fail without letting you know!

Try instead: approximate answer in large volume ?

And – perhaps – full confidence in results

Consider expansion parameter  $\frac{\mu}{T} \lesssim 1$ :

- Truncated Taylor expansion about  $\mu = 0$
- Imaginary  $\mu$  + polynomial fit + analytic continuation

#### Taylor expansion of pressure F. Karsch et al.

$$P(T,\mu) = \underbrace{P(T,\mu=0)}_{\text{indep. calc.}} + \Delta P(T,\mu), \qquad \underbrace{\frac{\Delta P(T,\mu)}{T^4} = \sum_{k=1} c_{2k}(T) \left(\frac{\mu}{T}\right)^{2k}}_{\text{indep. calc.}}$$

$$c_{2k} = \langle \text{Tr}(\text{degree } 2k \text{ polynomial in } \not D^{-1}, \frac{\partial \not D}{\partial \mu}) \rangle_{\mu=0} \to \text{vanilla HMC}$$

- From  $\{c_{2k}\}$ , obtain all thermodynamic info: EOS and  $T_c(\mu)$  and crit. pt. and ...
- As  $\frac{\mu}{T}$  increases, need higher-order  $c_{2k}$ 's to control truncation error



### Taylor expansion: nitty-gritty

$$\begin{split} \mathbf{c_6} &\rightarrow \frac{\partial^6 \ln \det M}{\partial \mu^6} &= \operatorname{tr} \left( M^{-1} \frac{\partial^6 M}{\partial \mu^6} \right) - \operatorname{6tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^5 M}{\partial \mu^5} \right) \\ &- 15 \operatorname{tr} \left( M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^4 M}{\partial \mu^4} \right) - \operatorname{1otr} \left( M^{-1} \frac{\partial^3 M}{\partial \mu^3} M^{-1} \frac{\partial^3 M}{\partial \mu^3} \right) \\ &+ 30 \operatorname{tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^4 M}{\partial \mu^4} \right) + \operatorname{6otr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^3 M}{\partial \mu^3} \right) \\ &+ \operatorname{6otr} \left( M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^3 M}{\partial \mu^3} \right) + 30 \operatorname{tr} \left( M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^2 M}{\partial \mu^2} \right) \\ &- 120 \operatorname{tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^2 M}{\partial \mu^2} \right) \\ &- 180 \operatorname{tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^2 M}{\partial \mu^2} M^{-1} \frac{\partial^2 M}{\partial \mu^2} \right) \\ &- 90 \operatorname{tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial M}{\partial \mu} M^{-1} \frac{\partial^2 M}{\partial \mu^2} \right) \\ &- 120 \operatorname{tr} \left( M^{-1} \frac{\partial M}{\partial \mu} M^{-$$

Now estimate all Traces by sandwiching between noise vectors:

$$\operatorname{Tr}\mathcal{O} = \langle \eta^{\dagger}\mathcal{O}\eta \rangle_{\eta}, \text{ where } \langle \eta_{x}^{\dagger}\eta_{y} \rangle = \delta_{xy} \longrightarrow \operatorname{GPU} \operatorname{farm}$$

### Complexity of Taylor expansion approach?

Effects of increasing Taylor order k:

•  $c_{2k} = \langle \text{Tr}(\text{ degree } 2k \text{ polynomial in } \not D^{-1}, \frac{\partial \not D}{\partial \mu}) \rangle_{\mu=0} \rightarrow \text{nb. terms} \sim 6^{2k}$ 

• Cancellations:  $c_{2k}$  finite as  $V \rightarrow \infty$ , but sum of terms, each possibly  $\sim V^{2k}$ 

ie. the sign problem fights back!

- $c_{2k}$  obtained as average over less and less Gaussian dist.  $\rightarrow$  stat. error?
- $c_{2k} \sim 2k$ -point function  $\rightarrow$  need larger volumes

Current best:  $N_t = 6$ , 8th order  $(c_2, c_4, c_6, c_8)$  Gavai & Gupta, 0806.2233



Need *much* higher order to estimate convergence radius  $\rightarrow$  critical point Karsch, Schaefer et al, 1009.5211

Imaginary  $\mu$ : similar but simpler – probably cheaper

- Simulate at several values of  $\mu = i\mu_I$ : no sign pb.
- Fit  $\langle \mathcal{O} \rangle(\mu_I) = \sum_k \frac{d_k}{T} \left(\frac{\mu_I}{T}\right)^k$ 
  - For pressure, take eg.  $\mathcal{O} = n_B = \frac{\partial P}{\partial \mu_B}$  and integrate fitted polynomial
  - Analytic continuation trivial:  $i\mu_I 
    ightarrow \mu$
  - Stat. error analysis simple: data at different  $\mu_I$ 's uncorrelated
  - Systematic error: order of truncation, fitting range

No free lunch: fit insensitive to  $d_k$  because  $\left(\frac{\mu_l}{T}\right)^k \ll 1$ 

Advantage over Taylor expansion: milder V-dependence?

•  $|\frac{\mu_l}{T}| < \frac{\pi}{3}$ , Roberge-Weiss singularity Conformal mapping to unit disk

Morita et al., 1008.4549

### Other approaches

 Canonical ensemble: Z<sub>Q</sub> = ∫ d(<sup>μ</sup>/<sub>T</sub>)e<sup>i<sup>μ</sup>/<sub>T</sub>QZ(μ = iμ<sub>I</sub>) now with fast and accurate Fourier transform Alford, Wilczek et al., PdF & Kratochvila, K.F. Liu et al., Nakamura, Wenger,...
</sup>

• Density of states a.k.a. histogram method:

$$Z(\mu) = \int dx \underbrace{\int \mathcal{D}U \, \delta(W(U) - x) \det(\mu) e^{-S_{\text{YM}}}}_{\rho(W;x)}$$
  
2d variant  $\rho(P, \left|\frac{\det(\mu)}{\det(0)}\right|)$  Ejiri et WHOT-QCD

Considerable technical progress but no breakthrough so far

Complex Langevin? progress: now *converges* to the right or wrong answer
 Aarts, Seiler, Stamatescu

## Valuable crosschecks



# State of the art



Baryonic chemical potential (MeV)

- $T_c(\mu)$  flatter than experimental heavy-ion freeze-out curve (different things)
- Different definitions of  $T_c(\mu)$  do not meet: no signal of critical point for  $\frac{\mu_q}{T} \lesssim O(1)$

# State of the art



Baryonic chemical potential (MeV)

- $T_c(\mu)$  flatter than experimental heavy-ion freeze-out curve (different things)
- Different definitions of  $T_c(\mu)$  do not meet: no signal of critical point for  $\frac{\mu_q}{T} \lesssim \mathcal{O}(1)$
- $\bullet \star$  is old (reweighting) critical point of Fodor & Katz: not really consistent

# State of the art



Baryonic chemical potential (MeV)

- $T_c(\mu)$  flatter than experimental heavy-ion freeze-out curve (different things)
- Different definitions of  $T_c(\mu)$  do not meet: no signal of critical point for  $\frac{\mu_q}{T} \lesssim \mathcal{O}(1)$
- $\bullet$   $\star$  is old (reweighting) critical point of Fodor & Katz: not really consistent
- Next order (8 deriv. of P) on coarse lattice: weakening of transition PdF & Philipsen



Exciting!



μ



μ



μ



μ





Boring but plausible!

Determining the QCD phase diagram remains just as important

cf. Georges Charpak

## How to make the sign problem milder?

• Severity of sign pb. is representation dependent:  $Z = \text{Tr} e^{-\beta H} = \text{Tr} \left| e^{-\frac{\beta}{N}H} \left( \sum |\psi\rangle \langle \psi| \right) e^{-\frac{\beta}{N}H} \left( \sum |\psi\rangle \langle \psi| \right) \cdots \right|$ Any complete set  $\{|\psi\rangle\}$  will do

If  $\{|\psi\rangle\}$  form an eigenbasis of H, then  $\langle\psi_k|e^{-\frac{\beta}{N}H}|\psi_l\rangle = e^{-\frac{\beta}{N}E_k}\delta_{kl} \ge 0 \rightarrow \text{no sign pb}$ 

• Strategy: choose  $\{|\psi\rangle\}$  "close" to physical eigenstates of H

QCD physical states are color singlets  $\rightarrow$  Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically  $\rightarrow \det(\{U\})$ • Monte Carlo over gluon fields  $\{U\}$ **Reverse order**: • integrate over gluons  $\{U\}$  analytically Monte Carlo over quark color singlets (hadrons)

• Caveat: so far, turn off 4-link coupling in  $\beta \sum_{P} \operatorname{ReTr} U_{P}$  by setting  $\beta = 0$ 

 $\beta = 0$ : strong-coupling limit  $\leftrightarrow$  continuum limit ( $\beta \rightarrow \infty$ )

#### Strong coupling limit at finite density Chandrasekharan, Wenger, PdF, Ohnishi, ...

• Integrate over U's, then over quarks: *exact* rewriting of  $Z(\beta = 0)$ 

New, discrete degrees of freedom: meson & baryon worldlines

• Constraint at every site (Grassmann): 3 meson symbols (•  $\psi\psi$ , meson hop) or a baryon loop Point-like, hard-core baryons in pion bath

#### Strong coupling limit at finite density Chandrasekharan, Wenger, PdF, Ohnishi, ...

• Integrate over U's, then over quarks: exact rewriting of  $Z(\beta = 0)$ 

New, discrete degrees of freedom: meson & baryon worldlines



#### Strong coupling limit at finite density Chandrasekharan, Wenger, PdF, Ohnishi, ...

• Integrate over U's, then over quarks: *exact* rewriting of  $Z(\beta = 0)$ 

New, discrete degrees of freedom: meson & baryon worldlines



# Conclusions

• Finite density LQCD suffers from sign problem:  $S/N \sim \exp(-\# d.o.f.)$ 

ightarrow only small V, small  $\mu/T$ 

- Simulations still at an early, "experimental" stage
- No reliable indication of QCD critical point [yet]
- Progress: analytic understanding of severity of sign problem
  - new direction: reverse order of integration (quarks  $\leftrightarrow$  gluons)

Finite density QCD is important enough to keep trying Hardware improvement alone will not suffice A true challenge (= opportunity) for computational physicists!

## Backup: complex Langevin 80's revival Aarts, Seiler, Stamatescu, Berges,...

• Real action S: Langevin evolution in Monte-Carlo time  $\tau$  Parisi-Wu  $\frac{\partial \phi}{\partial \tau} = -\frac{\delta S[\phi]}{\delta \phi} + \eta$ , ie. drift force + noise Can prove:  $\langle W[\phi] \rangle_{\tau} = \frac{1}{2} \int \mathcal{D}\phi \exp(-S[\phi]) W[\phi]$ 

• Complex action S ? Parisi, Klauder, Karsch, Ambjorn,... Drift force complex  $\rightarrow$  complexify field  $(\phi^R + i\phi^I)$  and simulate as before With luck:  $\langle W \left[ \phi^R + i\phi^I \right] \rangle_{\tau} = \frac{1}{Z} \int \mathcal{D}\phi \exp(-S\left[\phi\right]) W\left[\phi\right]$ 

- Only change since 1980's: adaptive stepsize ightarrow runaway sols disappear
- Gaussian example:

$$Z(\lambda) = \int dx \exp(-x^2 + \mathbf{i}\lambda \mathbf{x})$$

Complexify:  $\frac{d}{d\tau}(x + iy) = -2(x + iy) + i\lambda + \eta$ 

For any observable W,  $\langle W(x + iy) \rangle_{\tau} = \langle W(x) \rangle_{Z}$ 



## A precursor of the sign problem Lepage 1989

Signal-to-noise ratio of N-baryon correlator  $\propto \exp(-N(m_B - \frac{3}{2}m_{\pi})t)$ 



• Mitigated with variational baryon ops.  $\rightarrow m_{eff}$  plateau for 3 or 4 baryons ? Savage et al., 1004.2935 • At least 2 baryons  $\rightarrow$  nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Binding energy of <sup>3</sup>He, He

Kuramashi, Ukawa et al., 0912.1383

Here, we want a finite baryon density  $\rightarrow N \propto V$ , ie. chem. pot.  $\mu \neq 0$