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*** Many-[composite]-body physics: nuclear matter
phase diagram vs (temperature T , density ↔ µB)



Water changes its state when heated or compressed

What happens to quarks and gluons when heated or compressed?



The phase diagram of QCD according to Wikipedia

Current conjecture

quark = 1
3µBaryon

T or µ →∞:
interaction weak

(asymptotic freedom)

Also:
• crystal phase(s)
• quarkyonic phase
• strangelets
. . .

A vast world to explore and map out!
A “race” between experiment (heavy-ion collisions) & theory (lattice QCD)



Heavy-ion collisions
T

µ

confined

QGP

Color superconductor

Tc ♥QCD critical point

Knobs to turn:
- atomic number of ions
- collision energy

√
s

So far, no sign of QCD critical point
(esp. RHIC beam energy scan)



Lattice QCD

Degrees of freedom at each Euclidean time:

positions of N particles (x1, x2, .., xN) −→ field φ(x)



Lattice QCD

space + imag. time → 4d hypercubic grid:

a

quark

gluon

ψ(x)

Uµ(x) 3×3
matrix

Z =
∫
DUDψ̄Dψe−SE [{U,ψ̄,ψ}]

• Discretized action SE :

• −→ ψ̄(x)Uµ(x)ψ(x + µ̂) + h.c ., Dirac operator
ψ̄D/ ψ

• , −→ β ReTrUP , UP plaquette matrix Yang-Mills action
1
4 FµνFµν

• Monte Carlo: with Grassmann variables ψ(x)ψ(y)=−ψ(y)ψ(x) ??
Integrate out analytically (Gaussian) → determinant non-local

Prob(config{U}) ∝ det2 D/ ({U}) e+β
∑

P ReTrUP real non-negative when µ = 0



Lattice QCD Monte Carlo: sources of errors

• Systematic errors:
L→∞, thermodynamic limit

a→ 0, continuum limit

mq ↘ mphys

Extrapolations guided by analytic ansätze (asymptotic freedom, χPT)

• Statistical (Monte Carlo) errors: ∝ 1/
√

#configs.

30 years of steady progress since Mike Creutz, 1980:

Both errors have been shrinking thanks to hardware + algorithmic progress

→ Universal tool for static, equilibrium properties of QFT



Non-zero chemical potential µ =⇒ complex determinant

• µ > 0 favors quarks over anti-quarks, ie. breaks charge-conjugation symmetry

• Charge conjugation ∼ complex conjugation −→ det 6= det∗ when µ > 0

• Formally: γ5-hermiticity → det D/ (µ) = det∗ D/ (−µ∗)
determinant real only if µ = 0 (or iµi ), otherwise complex⇒

µ 6= 0: no probabilistic interpretation of det D/ ∈ C , ie. “sign problem”
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Sampling oscillatory integrands

• Example: Z (λ) =
∫

dx exp(−x2 + iλx) =
∫

dx exp(−x2) cos(λx)
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lambda=  0
lambda=20

• Z (λ)/Z (0) = exp(−λ2/4): exponential cancellations
→ truncating deep in the tail at x ∼ λ gives O(100%) error

“Every x is important” ↔ How to sample?



Reweighting and optimal sampling of oscillatory integrand

• To study: Zf ≡
∫

dx f (x), f (x) ∈ R, with f (x) sometimes negative

Sample w.r.t. auxiliary partition function Zg ≡
∫

dx g(x), g(x) ≥ 0 ∀x

〈W 〉f ≡
∫
dx W (x)f (x)∫

dx f (x)
=

1
Zg

∫
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1
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=
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Reweighting and optimal sampling of oscillatory integrand
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• Optimal g? Minimize relative fluctuations of denom.→ g(x)= |f (x)| , f
g =sign(f )

〈W 〉f =
〈W sign(f )〉|f |
〈sign(f )〉|f |

“put sign in observable”

• 〈sign(f )〉|f | =
∫
dx sign(f (x))|f (x)|∫

dx |f (x)| = Zf

Zg
= exp(−V

T ∆f (µ2,T )︸ ︷︷ ︸
diff. free energy dens.

), exponentially small

Each meas. of f
g gives value ±1 =⇒ statistical error ≈ 1√

# meas.

Constant relative accuracy =⇒ need statistics ∝ exp(+2V
T∆f )

Large V , low T inaccessible: signal/noise ratio degrades exponentially

∆f measures severity of sign pb.



The CPU effort grows exponentially with L3/T

CPU effort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...
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Crudely based on: • 10 sec on 1GF laptop for 24 lattice, a = 0.1 fm
• effort ∝ exp(2V

T ρnucl.(mB − 3/2mπ)︸ ︷︷ ︸
∆f

)



Sampling for QCD at finite µ

• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”

| det(µ)|Nf = det(+µ)
Nf
2 det(−µ)

Nf
2 , ie. isospin chemical potential µu = −µd

couples to ud̄ charged pions ⇒ Bose condensation of π+ when |µ| > µcrit(T )
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| det(µ)| 〉Z|QCD| = 〈e iθ〉 evaluated in isospin-µ ensemble

ZQCD ↔ Z|QCD| by changing fermion b.c. ⇒ ratio UV-finite
For T , µ� mρ, analytic results via RMT/χPT Splittorff, Verbaarschot et al.
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• av. sign = ZQCD(µ)
Z|QCD|(µ) = 〈 det(µ)

| det(µ)| 〉Z|QCD| = 〈e iθ〉 evaluated in isospin-µ ensemble

ZQCD ↔ Z|QCD| by changing fermion b.c. ⇒ ratio UV-finite
For T , µ� mρ, analytic results via RMT/χPT Splittorff, Verbaarschot et al.

• Can improve by incorporating baryons via HRG → Prediction: 1005.0539

〈sign〉 & 0.1 ⇔ O(10) baryons max. at T . Tc (less as T ↘, hardly more as V↗)
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Reweighting strategies

• Sample phase-quenched | det(µ)|+ reweight with e iθ → only 0711.0023, 1111.6363

• Sample µ = 0 ensemble? worse, because reweighting factor fluctuates also in
magnitude → increased statistical errors

• Further danger: “overlap pb.” between sampled and reweighted ensembles
→ WRONG estimates in reweighted ensemble for finite statistics

• Example: sample exp(− x2

2 ), reweight to exp(− (x−x0)2

2 ) → 〈x〉 = x0 ?
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• Estimated 〈x〉 saturates
at largest sampled x-value
• Error estimate too small

Insufficient overlap (x0 =5)
Very non-Gaussian distribu-
tion of reweighting factor
Log-normal Kaplan et al.



Reweighting from µ = 0: multi-parameter

• Fodor & Katz: sample (µ=0, β=βc) and reweight with
(

det(µ)
det(µ=0)×e−∆βSYM

)
along pseudo-critical line Tc(µ)

- fluctuations in reweighting factor compensate between det and SYM

- improved (ensured?) overlap: both phases sampled

•

hep-lat/0402006 (physical quark masses, Nt =4) → (µq
E ,TE )=(120(13), 162(2))MeV

• Abrupt qualitative change near µE :
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• Fodor & Katz: sample (µ=0, β=βc) and reweight with
(

det(µ)
det(µ=0)×e−∆βSYM

)
along pseudo-critical line Tc(µ)

- fluctuations in reweighting factor compensate between det and SYM

- improved (ensured?) overlap: both phases sampled

•
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Im
 β

0
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courtesy Z. Fodor
the whole story

hep-lat/0402006 (physical quark masses, Nt =4) → (µq
E ,TE )=(120(13), 162(2))MeV

• Abrupt qualitative change near µE :

abrupt change of physics or breakdown of reweighting ? (see later)

• Revival (fast det Wilson fermions): Ukawa et al., Nakamura et al.



Change of strategy

Reweighting gives exact answer in small volumes (work ∼ exp(V )) in principle

In practice: may fail without letting you know!

Try instead: approximate answer in large volume ?

And – perhaps – full confidence in results

Consider expansion parameter µ
T . 1:

• Truncated Taylor expansion about µ = 0

• Imaginary µ + polynomial fit + analytic continuation



Taylor expansion of pressure F. Karsch et al.

P(T , µ) = P(T , µ = 0)︸ ︷︷ ︸
indep. calc.

+∆P(T , µ), ∆P(T ,µ)
T 4 =

∑
k=1 c2k(T )

(
µ
T

)2k

c2k = 〈Tr(degree 2k polynomial in D/ −1, ∂D/∂µ )〉µ=0 → vanilla HMC

• From {c2k}, obtain all thermodynamic info: EOS and Tc(µ) and crit. pt. and ...

• As µ
T increases, need higher-order c2k ’s to control truncation error
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C. Schmidt, hep-lat/0610116



Taylor expansion: nitty-gritty

c6 →
∂6 ln det M

∂µ6
= tr

M−1 ∂
6M

∂µ6

 − 6tr

M−1 ∂M

∂µ
M−1 ∂

5M

∂µ5


−15tr

M−1 ∂
2M

∂µ2
M−1 ∂

4M

∂µ4

 − 10tr

M−1 ∂
3M

∂µ3
M−1 ∂

3M

∂µ3


+30tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

4M

∂µ4

 + 60tr

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂

3M

∂µ3


+60tr

M−1 ∂
2M

∂µ2
M−1 ∂M

∂µ
M−1 ∂

3M

∂µ3

 + 30tr

M−1 ∂
2M

∂µ2
M−1 ∂

2M

∂µ2
M−1 ∂

2M

∂µ2


−120tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

3M

∂µ3


−180tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂

2M

∂µ2


−90tr

M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2


+360tr

M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂

2M

∂µ2


−120tr

(
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ
M−1 ∂M

∂µ

)
.

Now estimate all Traces by sandwiching between noise vectors:

TrO = 〈η†Oη〉η, where 〈η†xηy 〉 = δxy −→ GPU farm



Complexity of Taylor expansion approach?
Effects of increasing Taylor order k :

• c2k = 〈Tr( degree 2k polynomial in D/ −1, ∂D/∂µ )〉µ=0 → nb. terms ∼ 62k

• Cancellations: c2k finite as V→∞, but sum of terms, each possibly∼V 2k

ie. the sign problem fights back!

• c2k obtained as average over less and less Gaussian dist. → stat. error?

• c2k ∼ 2k-point function → need larger volumes

Current best: Nt =6, 8th order (c2, c4, c6, c8) Gavai & Gupta, 0806.2233

T

µ

confined

QGP

Color superconductor

♥
(TE,µE)

ρ

Need much higher order

to estimate convergence radius → critical point

Karsch, Schaefer et al, 1009.5211



Imaginary µ: similar but simpler – probably cheaper

• Simulate at several values of µ = iµI : no sign pb.

• Fit 〈O〉(µI ) =
∑

k dk

(
µI

T

)k
- For pressure, take eg. O=nB = ∂P

∂µB
and integrate fitted polynomial

- Analytic continuation trivial: iµI → µ

- Stat. error analysis simple: data at different µI ’s uncorrelated

- Systematic error: order of truncation, fitting range

No free lunch: fit insensitive to dk because
(
µI

T

)k � 1

Advantage over Taylor expansion: milder V -dependence?

• |µI

T | <
π
3 , Roberge-Weiss singularity

Conformal mapping to unit disk Morita et al., 1008.4549



Other approaches

• Canonical ensemble: ZQ =
∫

d(µI

T )e i
µI
T QZ (µ = iµI )

now with fast and accurate Fourier transform

Alford, Wilczek et al., PdF & Kratochvila, K.F. Liu et al., Nakamura, Wenger,..

• Density of states a.k.a. histogram method:

Z (µ) =
∫

dx

∫
DU δ(W (U)− x) det(µ)e−SYM︸ ︷︷ ︸

ρ(W ;x)

2d variant ρ(P,
∣∣∣ det(µ)

det(0)

∣∣∣) Ejiri et WHOT-QCD

Considerable technical progress but no breakthrough so far

• Complex Langevin? progress: now converges to the right or wrong answer

Aarts, Seiler, Stamatescu



Valuable crosschecks

All methods agree for µ/T . O(1) on small lattices

Here, Tc(µ) vs µ/T
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imaginary µ

2 param. imag. µ

dble reweighting, LY zeros

Same, susceptibilities

canonical

Nf = 4 staggered,

amq = 0.05,Nt = 4

PdF & Kratochvila

LAT05

More recent crosschecks (Wilson fermions):
- Reweighting ↔ Taylor expansion Nagata & Nakamura
- Reweighting ↔ canonical Takeda, Kuramashi & Ukawa



State of the art

• Curvature of crossover Tc(µ) in continuum limit (4 deriv. of P)
Fodor, Katz et al.

• Tc(µ) flatter than experimental heavy-ion freeze-out curve (different things)

• Different definitions of Tc(µ) do not meet: no signal of critical point for
µq

T .O(1)
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State of the art

• Curvature of crossover Tc(µ) in continuum limit (4 deriv. of P)
Fodor, Katz et al.

?

• Tc(µ) flatter than experimental heavy-ion freeze-out curve (different things)

• Different definitions of Tc(µ) do not meet: no signal of critical point for
µq

T .O(1)

• ? is old (reweighting) critical point of Fodor & Katz: not really consistent

• Next order (8 deriv. of P) on coarse lattice: weakening of transition PdF & Philipsen
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Possible phase diagrams of QCD

Where is the QCD critical point?

T

µ

confined

QGP

Tc

Boring but plausible!
Determining the QCD phase diagram remains just as important

cf. Georges Charpak



How to make the sign problem milder?

• Severity of sign pb. is representation dependent:

Z = Tre−βH = Tr
[
e−

β
N H (

∑
|ψ〉〈ψ|) e−

β
N H (

∑
|ψ〉〈ψ|) · · ·

]
Any complete set {|ψ〉} will do

If {|ψ〉} form an eigenbasis of H, then 〈ψk |e−
β
N H |ψl〉=e−

β
N Ek δkl ≥ 0 → no sign pb

• Strategy: choose {|ψ〉} “close” to physical eigenstates of H

QCD physical states are color singlets → Monte Carlo on colored gluon links is bad idea

Usual: • integrate over quarks analytically → det({U})
• Monte Carlo over gluon fields {U}

Reverse order: • integrate over gluons {U} analytically
• Monte Carlo over quark color singlets (hadrons)

• Caveat: so far, turn off 4-link coupling in β
∑

P ReTrUP by setting β=0

β = 0: strong-coupling limit ←→ continuum limit (β →∞)



Strong coupling limit at finite density
Chandrasekharan, Wenger, PdF, Ohnishi, ...

• Integrate over U’s, then over quarks: exact rewriting of Z (β = 0)

New, discrete degrees of freedom: meson & baryon worldlines

• Constraint at every site (Grassmann):
3 meson symbols (• ψ̄ψ, meson hop)
or a baryon loop

Point-like, hard-core baryons in pion bath
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• Baryon: (point-like core + pion cloud)
• Nuclear potential: (hard-core + Yukawa)



Conclusions

• Finite density LQCD suffers from sign problem: S/N ∼ exp(−#d.o.f.)

→ only small V , small µ/T

• Simulations still at an early, “experimental” stage

• No reliable indication of QCD critical point [yet]

• Progress: - analytic understanding of severity of sign problem
- new direction: reverse order of integration (quarks ↔ gluons)

Finite density QCD is important enough to keep trying

Hardware improvement alone will not suffice−→

A true challenge (= opportunity) for computational physicists!



Backup: complex Langevin 80’s revival Aarts, Seiler, Stamatescu, Berges,..

• Real action S : Langevin evolution in Monte-Carlo time τ Parisi-Wu
∂φ
∂τ = − δS[φ]

δφ + η, ie. drift force + noise

Can prove: 〈W [φ]〉τ = 1
Z

∫
Dφ exp(−S [φ])W [φ]

• Complex action S ? Parisi, Klauder, Karsch, Ambjorn,..

Drift force complex→ complexify field (φR + iφI ) and simulate as before
With luck: 〈W

[
φR + iφI

]
〉τ = 1

Z

∫
Dφ exp(−S [φ])W [φ]

• Only change since 1980’s: adaptive stepsize → runaway sols disappear

• Gaussian example:

Z (λ) =
∫

dx exp(−x2 + iλx)

Complexify:
d
dτ (x + iy) = −2(x + iy) + iλ+ η

For any observable W ,
〈W (x + iy)〉τ = 〈W (x)〉Z

Oscillatory weight(x)
Positive weight(x,y)

• saddle pt: x = 0, y = λ
2

• Classical stationary points
unstable directions going to ∞? (SU(N)→SL(N,C)): stabilized by stochastic noise

• Towards solving F-P eq.: eff. pot., loop (noise) expansion Guralnik & Pehlevan

• Cf. PT -symmetric quantum mechanics, complexified class. mech. C. Bender



A precursor of the sign problem Lepage 1989

Signal-to-noise ratio of N-baryon correlator ∝ exp(−N(mB − 3
2 mπ)t)

CB(t) = ∼ e−mBt

|CB(t)|2 = X ∼ ∼ e−3mπt

• Mitigated with variational baryon ops. → meff plateau for 3 or 4 baryons ?
Savage et al., 1004.2935

• At least 2 baryons → nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Binding energy of 3He, He Kuramashi, Ukawa et al., 0912.1383

Here, we want a finite baryon density → N ∝ V , ie. chem. pot. µ 6= 0
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