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*** Many-[composite]-body physics: nuclear matter
phase diagram vs (temperature T, density <> ug)



Water changes its state when heated or compressed

H:O High Pressure

What happens to quarks and gluons when heated or compressed?




The phase diagram of QCD according to Wikipedia

Current conjecture
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A vast world to explore and map out!
A “race” between experiment (heavy-ion collisions) & theory (lattice QCD)J




Heavy-ion collisions

Knobs to turn:
QGP - atomic number of ions
- collision energy /s

7 witical point

—

So far, no sign of QCD critical point
] (esp. RHIC beam energy scan)

confined




Lattice QCD

Degrees of freedom at each Euclidean time:

positions of N particles (x1,x2,..,xy) —  field ¢(x)



Lattice QCD

space + imag. time — 4d hypercubic grid:

Z= DUDI;Dwe—SE[{Uﬂ/;M}]

e Discretized action Sg:

. >va — P(x) U, (x)0(x + fi) + h.c.,

° EWN@ — B ReTrUp, Up plaquette matrix

Dirac operator

PP

Yang-Mills action
1
3 FuFuw

e Monte Carlo: with Grassmann variables (x)1(y)=—v¥(y)¥(x) ??
Integrate out analytically (Gaussian) — determinant non-local

Prob(config{U}) o det® P({U}) et/ 2rReTtUr real non-negative when p = 0



Lattice QCD Monte Carlo: sources of errors
e Systematic errors:
L — oo, thermodynamic limit
a— 0, continuum limit

Mg ¢ Mphys

Extrapolations guided by analytic ansdtze (asymptotic freedom, xPT)

e Statistical (Monte Carlo) errors: o 1/4/#configs.

30 years of steady progress since Mike Creutz, 1980:

Both errors have been shrinking thanks to hardware + algorithmic progress

— Universal tool for static, equilibrium properties of QFT J




Non-zero chemical potential ;41 => complex determinant
e 1 > 0 favors quarks over anti-quarks, ie. breaks charge-conjugation symmetry
e Charge conjugation ~ complex conjugation — det # det™ when > 0
e Formally: ys-hermiticity — det D (i) = det™ D (—u*)

determinant real only if =0 (or iu;), otherwise complex

i # 0: no probabilistic interpretation of det ) € C, ie. “sign problem”
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Sampling oscillatory integrands

e Example: Z()\) = [dxexp(—x? +i\x) = [dxexp(—x?) cos(Ax)

lambda= 0 ——
lambda=20 ——

integrand
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e Z()\)/Z(0) = exp(—A?/4): exponential cancellations
—  truncating deep in the tail at x ~ \ gives O(100%) error

“Every x is important” <« How to sample?




Reweighting and optimal sampling of oscillatory integrand

e To study: Zr = [dx f(x), f(x) € R, with f(x) sometimes negative

Sample w.r.t. auxiliary partition function Z; = [dx g(x), g(x) >0 Vx

<W>f =

Jdx WOF() _ 2 Jax W) I g(x)
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g is “reweighting factor”



Reweighting and optimal sampling of oscillatory integrand

e To study: Zr = [dx f(x), f(x) € R, with f(x) sometimes negative
Sample w.r.t. auxiliary partition function Z; = [dx g(x), g(x) >0 Vx

L fdx W(x)H) g(x
(W) = fdffdiv(fﬁf)(x) oz Ja W)y 8(x)

(Wi, “reweighting”
2 Jax g | (B g is “reweighting factor”

e Optimal g? Minimize relative fluctuations of denom. —|g(x)=|f(x) ,ézsign(f)
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Reweighting and optimal sampling of oscillatory integrand

e To study: Zr = [dx f(x), f(x) € R, with f(x) sometimes negative
Sample w.r.t. auxiliary partition function Z; = [dx g(x), g(x) >0 Vx

Jdx W()F(x) fdx w(x) 2 (x) o, “reweighting”

= — = foou . . "
Jdx f(x) £ Jax T g(x (e z s reweighting factor

<W>f =

e Optimal g? Minimize relative fluctuations of denom. —|g(x)=|f(x)||,
_ (Wsign(f))f
(Wir = TS

£ =sign(f)

“put sign in observable’

: dx sign(f(x))|f(x .
o (sign(f))s = % = Z = exp(—¥ Af(p?, T)), exponentially small

diff. free energy dens.

Each meas. of é gives value +1 = statistical error ~ L

\/# meas.

Constant relative accuracy = | need statistics o exp(+2%Af)

Large V, low T inaccessible: signal/noise ratio degrades exponentially

Af measures severity of sign pb. ‘




The CPU effort grows exponentially with L3/ T

CPU effort to study matter at nuclear density in a box of given size
Give or take a few powers of 10...

1e+30 T T T T
/ =T,
| 100 MgV
50 MeV

le+25 | 1 Exaflop x year 7

1le+20

Ops

le+15 |

le+10

0 1 2 3 4 5
Box size in fm

Crudely based on: e 10 sec on 1GF laptop for 2% lattice, a = 0.1 fm

o effort oc exp(2¥ pruat. (Mg — 3/2m;))

Af



Sampling for QCD at finite

e QCD: sample with [Re(det(u)"7)| optimal, but not equiv. to Gaussian integral
Can choose instead: |det()|"r, i.e. “phase quenched”
N, N,
|det(/¢)\’\f = det(+/) 7 det(—p) 7, ie. isospin chemical potential /1, = —/ig
couples to ud charged pions = Bose condensation of m when || > picrie( T)
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Sampling for QCD at finite

e QCD: sample with [Re(det(u)"7)| optimal, but not equiv. to Gaussian integral
Can choose instead: |det()|"r, i.e. “phase quenched”
N, N,
|det(u)\’\f = det(+/) 7 det(—p) 7, ie. isospin chemical potential /1, = —/ig
couples to ud charged pions = Bose condensation of m when || > picrie( T)

e av. sign = %‘(63) :Te*¥[f(llu:JrlL,ltFwLH)*f(#u:JrH-,#d:*#)] (for Ne = 2)

Af(u?, T) large in the Bose phase
— “severe” sign pb.

severe

sign problem

o m {2 EWE mu
o — Zoeo(p) _ g det(p) — (el T ;
e av. sign = Z220 = <\det(u)|>Z\QCD| = (e'"") evaluated in isospin-y1 ensemble

Zqcp <+ Zjgep| by changing fermion b.c. = ratio UV-finite
For T, 1 < m,, analytic results via RMT/xPT Splittorff, Verbaarschot et al.

e Can improve by incorporating baryons via HRG — Prediction:  1005.0539

(sign) 2 0.1 < O(10) baryons max. at T < T, (less as T N\, hardly more as V 7)
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Reweighting strategies

e Sample phase-quenched |det(s)| + reweight with e’ — only 0711.0023, 1111.6363

e Sample i = 0 ensemble? worse, because reweighting factor fluctuates also in
magnitude — increased statistical errors

e Further danger: “overlap pb.” between sampled and reweighted ensembles
— WRONG estimates in reweighted ensemble for finite statistics

X—X0)2

e Example: sample exp(—X;), reweight to exp(—(T) —(x)=xp ?
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x Very non-Gaussian distribu-

e Estimated (x) saturates
at largest sampled x-value Insufficient overlap (xo=5) tion of reweighting factor
Log-normal  Kaplan et al.

e Error estimate too small



Reweighting from p = 0: multi-parameter

e Fodor & Katz: sample (u=0, = [.) and reweight with (d:te(t,gi)o) xe—AﬁSww)
along pseudo-critical line T(u)
- fluctuations in reweighting factor compensate between det and Syy
- improved (ensured?) overlap: both phases sampled
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e Fodor & Katz: sample (u=0, 3=/3.) and reweight with (d:te(‘;gi)o) xe‘AﬁSYM)

along pseudo-critical line T(u)
- fluctuations in reweighting factor compensate between det and Syy

- improved (ensured?) overlap: both phases sampled
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e Abrupt qualitative change near ug:
abrupt change of physics or breakdown of reweighting ?  (see later) J

e Revival (fast det Wilson fermions): Ukawa et al., Nakamura et al.



Change of strategy

Reweighting gives exact answer in small volumes (work ~ exp(V/)) in principle

In practice: may fail without letting you know!

Try instead: approximate answer in large volume 7 )

And — perhaps — full confidence in results

Consider expansion parameter & < 1:
e Truncated Taylor expansion about ¢t =0

e Imaginary 1 + polynomial fit + analytic continuation



P(T,p)

Taylor expansion of pressure

indep. calc.

=P(T,u=0)+AP(T,p),
—_——

F.Karschetal.

AP(T7u

=2 k=1 (T )(%)%

Cok = (Tr(degree 2k polynomial in /=1, 22.)), o — vanilla HMC J

e From {cx}, obtain all thermodynamic info: EOS and T.(u) and crit. pt. and ...

e As

c —
2 SB limit

— o—o—4

SB (N=4)

T,

08 10 12 14 16 18 20

% increases, need higher-order c's to control truncation error
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C. Schmidt, hep-lat/0610116
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Taylor expansion: nitty-gritty

80 In det M _, 0% _40M _,0%Mm
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Now estimate all Traces by sandwiching between noise vectors:

TtO = (n'On),, where (nln,) = b, — GPU farm



Complexity of Taylor expansion approach?

Effects of increasing Taylor order k:
e ¢, = (Tr( degree 2k polynomial in ) 1, %»H:g — nb. terms ~ 62
e Cancellations: ¢y, finite as V — o0, but sum of terms, each possibly ~ \/2k

ie. the sign problem fights back! J

® (y, obtained as average over less and less Gaussian dist. — stat. error?

® ¢y ~ 2k-point function — need larger volumes

Current best: N;=6, (c2, ca, 5, Cg) Gavai & Gupta, 0806.2233

Need much higher order

i E—_—C to estimate convergence radius — critical point
\ Karsch, Schaefer et al, 1009.5211




Imaginary p: similar but simpler — probably cheaper

e Simulate at several values of y = iy;: no sign pb.

o Fit (O)(1u) = oy dh (4)"
- For pressure, take eg. O=ng= é?TPB and integrate fitted polynomial
- Analytic continuation trivial: iy — p
- Stat. error analysis simple: data at different p;'s uncorrelated
- Systematic error: order of truncation, fitting range
No free lunch: fit insensitive to dx because (ﬂ)k <1

T

Advantage over Taylor expansion: milder V-dependence?

o |5 < §, Roberge-Weiss singularity
Conformal mapping to unit disk Morita et al., 1008.4549



Other approaches

e Canonical ensemble: Zg = fd(f%)e"LTIQZ(,u =iuy)
now with fast and accurate Fourier transform
Alford, Wilczek et al., PdF & Kratochvila, K.F. Liuetal., Nakamura, Wenger,..

e Density of states a.k.a. histogram method:

Z(p) = [ dx / DU §(W(U) — x) det(p)e= S

p(Wix)
2d variant p(P, |Gadsl|)  Ejiri et WHOT-QCD
Considerable technical progress but no breakthrough so far J

e Complex Langevin? progress: now converges to the right or wrong answer

Aarts, Seiler, Stamatescu



All methods agree for /T < O(1) on small lattices

Valuable crosschecks

Here, Tc(p) vs u/ T
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More recent crosschecks (Wilson fermions):
- Reweighting <+ Taylor expansion
- Reweighting <> canonical

1.0

0.95

4 0.90

0.85

0.80

0.75

0.70

TIT,

Nf = 4 staggered,
amg = 0.05, Ny = 4
PdF & Kratochvila
LATO05

Nagata & Nakamura

Takeda, Kuramashi & Ukawa



State of the art

® Curvature of crossover T.() in continuum limit (4 deriv. of P)
Fodor, Katz et al.
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e T (p) flatter than experimental heavy-ion freeze-out curve (different things)

o Different definitions of T,(1) do not meet: no signal of critical point for 52 <O(1)
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e X is old (reweighting) critical point of Fodor & Katz: not really consistent



® Curvature

State of the art

of crossover T¢(u) in continuum limit (4 deriv. of P)
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e T (p) flatter than experimental heavy-ion freeze-out curve (different things)
o Different definitions of T,(1) do not meet: no signal of critical point for 52 <O(1)
e X is old (reweighting) critical point of Fodor & Katz: not really consistent

® Next order (8deriv. of P)on coarse lattice: weakening of transition PdF & Philipsen



Possible phase diagrams of QCD
Where is the QCD critical point?
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Possible phase diagrams of QCD
Where is the QCD critical point?

QGP

confined

n
Boring but plausible!

Determining the QCD phase diagram remains just as important
cf. Georges Charpak



How to make the sign problem milder?

e Severity of sign pb. is representation dependent:
Z = Tre " = Tr [ #H (T |0)(w]) e 7" (T 10) (1) - |
Any complete set {|1))} will do
If {|))} form an eigenbasis of H, then (v|e= 7|1} =e~7E§y > 0 — no sign pb

e Strategy: ’choose {J1)} “close” to physical eigenstates of H ‘

QCD physical states are colorsinglets — Monte Carlo on colored gluon links is bad idea

Usual: e integrate over quarks analytically — det({U})
e Monte Carlo over gluon fields {U}

Reverse order: e integrate over gluons {U} analytically
e Monte Carlo over quark color singlets (hadrons)

e Caveat: so far, turn off 4-link coupling in 8 pReTrUp by setting 5=0

B = 0: strong-coupling limit +— continuum limit (8 — oo)



Strong coupling limit at finite density
Chandrasekharan, Wenger, PdF, Ohnishi, ...

e Integrate over U's, then over quarks: exact rewriting of Z(3 = 0)

‘ New, discrete degrees of freedom: meson & baryon worldlines‘

3 meson symbols (e 1), meson hop)

e Constraint at every site (Grassmann):
or a baryon loop

Point-like, hard-core baryons in pion bath J
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Strong coupling limit at finite density
Chandrasekharan, Wenger, PdF, Ohnishi, ...

e Integrate over U's, then over quarks: exact rewriting of Z(3 = 0)

‘ New, discrete degrees of freedom: meson & baryon worldlines‘

3 meson symbols (e 1), meson hop)

e Constraint at every site (Grassmann):
H or a baryon loop

Point-like, hard-core baryons in pion bath J

 Sign pb.: | Af reduced by O(10%) |

— full phase diagram

T T
L4 FTTTe

‘ - . e

e Baryon: (point-like core + pion cloud) | e
e Nuclear potential: (hard-core + Yukawa) :

tricritical point +----
1storder ——

. . .
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8
au



Conclusions

e Finite density LQCD suffers from sign problem: S/N ~ exp(—+#d.o.f.)

— only small V, small ,u/TI

e Simulations still at an early, “experimental” stage

e No reliable indication of QCD critical point [yet]

e Progress: - analytic understanding of severity of sign problem
- new direction: reverse order of integration (quarks <> gluons)

Finite density QCD is important enough to keep trying

Hardware improvement alone will not suffice

l

A true challenge (= opportunity) for computational physicists!




Backup: com plex Langevin 80"5 revival Aarts, Seiler, Stamatescu, Berges, ..

e Real action S: Langevin evolution in Monte-Carlo time 7 Parisi-Wu
% = 55[¢] + 1, ie. drift force + noise

Can prove: (W [g]), = 3 [ Dopexp(=S[¢])W [¢]
e Complex action S 7 Parisi, Klauder, Karsch, Ambjorn, ..
Drift force complex — complexify field (¢ + i¢') and simulate as before
With luck: (W [¢F +i¢]), = fD¢eXP =S[ehW [¢]

e Only change since 1980's: adaptive stepsize — runaway sols disappear

e Gaussian example:

Oscillatory Weihg?t(xg
. Positive weight(x,y) ——
A) = [ dxexp(—x? +iXx)

saddle pt: x =0,y = %

Complexify:
a(x+iy) = =2(x+iy) +id+n

For any observable W,
(W(x+iy))r = (W(x))z




A precursor of the sign problem  Lepage 1989

Signal-to-noise ratio of N-baryon correlator o exp(—N(mg — 2m;)t) J

CB(t) = ~ e mst
)
——
|Ca(t)[? = x ~ e~
——

e Mitigated with variational baryon ops. — me¢ plateau for 3 or 4 baryons ?
Savage et al., 1004.2935
e At least 2 baryons — nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

e Binding energy of 3He, He Kuramashi, Ukawa et al., 0912.1383

Here, we want a finite baryon density — N o« V, ie. chem. pot. 1 # 0 ‘
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