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U (τ ) = exp(−τ (Ĥ − E 0 ))

Projection onto the Ground State�

U (τ ) ψT τ→+∞
# →### Ψ0

Static properties: E0, �
g(r), S(q), …�

Imaginary time correlation functions�

Ψ0 ÂU (τ ) B̂ Ψ0 Dynamical properties: �
ω(q), S(q,ω) , χ(q), …�

T=0 QUANTUM�
MONTE CARLO�



In Auxiliary Fields Quantum Monte �
Carlo methods �

U (τ ) = exp(−τ (Ĥ − E 0 ))

is dealt with in the abstract Hilbert �
Space of the physical system, relying�
on the single-particle formalism  �



The starting point is an interacting �
hamiltonian: �

written in second quantization �
formalism, relying on a finite one �
particle basis: �

H = Tiai
+

i
∑ ai + Vijlk

i ,j ,k ,l
∑ ai

+aj
+akal

i{ }i=1,...,M



AUXILIARY FIELDS�
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H = H 0 + A
α
2

α

∑ H 0 ,Aα
One particle �
operators�

U (τ ) = U (δτ )( )
n , τ = n δτ

U (δτ ) ≅ exp(− 1
2 δτH 0 ) exp(−δτA

α
2 )

α

∏ exp(− 1
2 δτH 0 )

Equivalent expression: �

Trotter decomposition: �

Primitive approximation: �

TWO-BODY PROPAGATOR �
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U (δτ ) = dη g (η)G (∫ η)

g (η) =
exp −

1
2 | η |2

"

#
$

%

&
'

(2π )M2

2M2 dimensional standard normal�
probability density�

HUBBARD- �
STRATONOVICH �
TRANSFORMATION �

G (η) = exp(− 1
2 δτH 0 ) exp(i δτ η

α
A

α
)

α

∏ exp(− 1
2 δτH 0 )

ONE BODY PROPAGATOR �
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N fermions, Slater determinants�

Φ =
1
N ! (−1)σ

σ∈S (N )
∑ ϕ

σ (1) ⊗…⊗ ϕ
σ (N )

One particle �
wave functions�

Manifold of Slater determinants�

Φ

Φij = i ϕ j{ }ij M x N  complex matrix�

PARTICLE LABEL �BASIS LABEL �
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Manifold of Slater determinants�

Φ

Φij{ }ij
M x N  complex matrix�

Φ 'G (η)

Φ ''
U (δτ )

In	  general	  NOT	  a	  	  
Slater	  determinant	  

Φ 'ij{ }ij Φ ' = Ω(η)Φ
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Φ

Φij{ }ij

Φ 'G (η)

Φ 'ij{ }ij Φ ' = Ω(η)Φ

G (η) = exp(− 1
2 δτH 0 ) exp(i δτ η

α
A

α
)

α

∏ exp(− 1
2 δτH 0 )

A
α
= (A

α
)ij ai

+aj
ij
∑

H 0 = (H 0 )i ai
+ai

i
∑

(Ω(η))ij = exp(− 1
2 δτ (H 0 )i ) exp( i δτ η

α
A

α
α

∑ )
$

%
&

'

(
)
ij

exp(− 1
2 δτ (H 0 )j )

EXPONENTIALS	  OF	  COMPLEX	  MATRICES	  
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ΨT

Φ
δτ

G (η1 )

L big enough�

G (η2 )
Φ2δτ

... ηi realizations of standard�
independent �
Normal random variable�

Ψ0 ≅ dη1...dηL g (η1...ηL ) G (ηi )
i=1

L
∏∫ ΨT =

= ΦLδτ auxiliary
fields
η1 ...ηL

Starting point: for example, �
Hartree-Fock solution �
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ΨT

Φ
δτ

G (η1 )
G (η2 )

Φ2δτ

... ηi realizations of standard�
independent �
Normal random variable�

Ψ0 ≅ ΦLδτ auxiliary
fields
η1 ...ηL

≈
1

NW
Φw

Lδτ
w =1

NW

∑

NW independent samplings of the auxiliary�
fields configurations �

RANDOM WALK ON THE SLATER �
DETERMINANTS MANIFOLD �
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Quantum Monte Carlo method using phase-free random walks
with Slater determinants

Shiwei Zhang and Henry Krakauer
Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795

(Dated: February 1, 2008)

We develop a quantum Monte Carlo method for many fermions that allows the use of any one-
particle basis. It projects out the ground state by random walks in the space of Slater determinants.
An approximate approach is formulated to control the phase problem with a trial wave function
|ΨT 〉. Using plane-wave basis and non-local pseudopotentials, we apply the method to Si atom,
dimer, and 2, 16, 54 atom (216 electrons) bulk supercells. Single Slater determinant wave functions
from density functional theory calculations were used as |ΨT 〉 with no additional optimization. The
calculated binding energy of Si2 and cohesive energy of bulk Si are in excellent agreement with
experiments and are comparable to the best existing theoretical results.

PACS numbers: 02.70.Ss, 71.15.-m, 31.25.-v

Quantum Monte Carlo (QMC) methods based on aux-
iliary fields (AF) are used in areas spanning condensed
matter physics, nuclear physics, and quantum chemistry.
These methods [1, 2] allow essentially exact calculations
of ground-state and finite-temperature equilibrium prop-
erties of interacting many fermion systems. The required
CPU time scales in principle as a power law with system
size, and the methods have been applied to study a va-
riety of problems including the Hubbard model, nuclear
shell models, and molecular electronic structure. The
central idea of these methods is to write the imaginary-
time propagator of a many-body system with two-body
interactions in terms of propagators for independent par-
ticles interacting with external auxiliary fields. The in-
dependent particle problems are solved for configurations
of the AF and averaging over different AF configurations
is then performed by Monte Carlo (MC) techniques.

QMC methods with auxiliary fields have several ap-
pealing features. For example, they allow one to choose
any one-particle basis suitable for the problem, and to
fully take advantage of well-established techniques to
treat independent particles. Given the remarkable de-
velopment and success of the latter [3], it is clearly very
desirable to have a QMC method that can use exactly
the same machinery and systematically include correla-
tion effects by simply building stochastic ensembles of the
independent particle solutions. Vigorous attempts have
been made from several fields to explore this possibility
[4, 5, 6, 7].

A significant hurdle exists, however: except for special
cases (e.g., Hubbard), the two-body interactions will re-
quire auxiliary fields that are complex . As a result, the
single-particle orbitals become complex, and the MC av-
eraging over AF configurations becomes an integration
over complex variables in many dimensions. A phase
problem thus occurs which ultimately defeats the alge-
braic scaling of MC and makes the method scale expo-
nentially. This is analogous to but more severe than the
fermion sign problem with real AF [8, 9] or in real-space

methods [10]. No satisfactory, general approach exists
to control the phase problem. As a result, only small
systems or special forms of interactions can be treated.

In this paper we address this problem. We develop
a method for many-fermions that allows the use of any
one-particle basis. It projects out the ground state by
random walks in the space of Slater determinants. The
phase problem is eliminated with an approximation that
relies on a trial wave function |ΨT 〉. We demonstrate
the method by applying it to electronic systems using a
plane-wave basis and non-local pseudopotentials, which
can be implemented straightforwardly in this method.
We calculate the binding energy of Si2 and the cohesive
energy of bulk Si using fcc supercells consisting of up to
54 atoms (216 electrons). These calculations represent
the first application of AF-based QMC to solids. The re-
sults are in excellent agreement with experiments and are
comparable to the best existing theoretical results. Par-
ticularly worth noting is that our results were obtained
with a trial wave function which is a single Slater deter-
minant formed by orbitals from density functional theory
(DFT) calculations (with the local density approximation
(LDA)), with no additional parameters or optimization.

The Hamiltonian for any many-fermion system with
two-body interactions can be written in any one-particle
basis in the general form

Ĥ = Ĥ1 + Ĥ2 =
N
∑

i,j

Tijc
†
i cj +

1

2

N
∑

i,j,k,l

Vijklc
†
i c

†
jckcl, (1)

where N is the size of the chosen one-particle basis, and
c†i and ci are the corresponding creation and annihilation
operators. Both the one-body (Tij) and two-body matrix
elements (Vijkl) are known.

To obtain the ground state |ΨG〉 of Ĥ , QMC methods

use the imaginary time propagator e−τĤ acting on a trial
wave function |ΨT 〉: limn→∞(e−τĤ)n |ΨT 〉 ∝ |ΨG〉. |ΨT 〉
must not be orthogonal to |ΨG〉, and we will assume that
it is of the form of a single Slater determinant or a linear

We follow the algorithm invented�
by Shiwei Zhang ….. �

AUXILIARY FIELDS�
QUANTUM�
MONTE CARLO�
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ΨT

Φ
δτ

G (η1 )
G (η2 )

Φ2δτ

... GUIDING THE �
RANDOM WALK …�
IMPORTANCE �
SAMPLING �

Φiδτ Φ(i+1)δτ

G (η − ξ (Φiδτ )) SHIFT PARAMETER �

ξ
α
= −i δτ

ΨT A
α
Φiδτ

ΨT Φiδτ

The precise expression�
(chosen to minimize some�
fluctuations) is ….�
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ΨT

Φ
δτ

G (η1 )
G (η2 )

Φ2δτ

... GUIDING THE �
RANDOM WALK …�
IMPORTANCE �
SAMPLING �

Φiδτ Φ(i+1)δτ

A weight is attached to each �
determinant: �

w (i+1)δτ = f exp(−δτE local (Φiδτ ))w iδτ
REAL LOCAL ENERGY�
APPROXIMATION �

E local = ℜ
ΨT H Φiδτ

ΨT | Φiδτ

PHASE CONTROL �
f = max(0, cos(Δθ ))

Flip of the phase of the determinant�



PHASELESS�
AUXILIARY FIELDS�
QMC�

ΨT

Φ
δτ

Φ2δτ

...

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑



SIGN PROBLEM�
AND �
IMPORTANCE�
SAMPLING �

ZEROS IN THE �
COMPLEX PLANE�
ARE AVOIDED �

ΨT Φw

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑



MIXED ESTIMATES�

ΨT A Ψ0

ΨT Ψ0

≈

wLδτ
w

w =1

NW

∑
ΨT A Φw

Lδτ

ΨT Φw
Lδτ

wLδτ
w

w =1

NW

∑
A ,H!
"

#
$ = 0

To compute these matrix elements�
we perform linear algebra operations �
on the matrices of ΨT, Φ and A �

Such estimations�
provide Ground�
State expectations if �



ΨT U (Sδτ )A Ψ0

ΨT U (Sδτ ) Ψ0

≈

w (L+s )δτ
w

w =1

NW

∑
ΦSδτ
w A Φw

Lδτ
ΦSδτ
w Φw

Lδτ

w (L+S )δτ
w

w =1

NW

∑

PURE ESTIMATES�

A ,H!
"

#
$ ≠ 0ΦSδτ ≅ G (ηL+S )...G (ηL+1 )( )

+

ΨT

ΨT ΦLδτ

L steps S steps
Φ(L+S )δτ

S back steps

ΦSδτ

BACK PROPAGATION �
TECHNIQUE�



For the evaluation of imaginary time correlation �
functions, we start from the following work … �

Efficient calculation of imaginary-time-displaced correlation functions in the projector
auxiliary-field quantum Monte Carlo algorithm

M. Feldbacher and F. F. Assaad
Institut für Theoretische Physik III, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

!Received 28 September 2000; published 29 January 2001"

The calculation of imaginary-time-displaced correlation functions with the auxiliary-field projector quantum
Monte Carlo algorithm provides valuable insight !such as spin and charge gaps" into the model under consid-
eration. One of the authors and M. Imada proposed a numerically stable method to compute those quantities #J.
Phys. Soc. Jpn. 65, 189 !1996"$. Although precise, this method is expensive in CPU time. Here we present an
alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement.
The method is based on the observation that for a given auxiliary field the equal-time Green-function matrix G
is a projector: G2!G .

DOI: 10.1103/PhysRevB.63.073105 PACS number!s": 71.27."a, 71.10.#w, 71.10.Fd

For a given Hamiltonian H!%x ,ycx
†Tx ,ycy"HI and its

ground state !&0', our aim is to calculate

Gx ,y
$ !("!

)&0!cy
†!("cx!&0'

)&0!&0'
, (*0. !1"

Here cx
† creates an electron with quantum numbers x, cx(()

!e((H#+N)cxe#((H#+N), and the chemical potential +
!E0

N"1#E0
N . HI corresponds to the interaction. Within the

projector quantum Monte Carlo !PQMC" algorithm, this
quantity is obtained by propagating a trial wave !&T' func-
tion along the imaginary time axis:2–4

)&0!cy
†!("cx!&0'

)&0!&0'
! lim

,→-

)&T!e#,Hcy
†!("cxe#,H!&T'

)&T!e#2,H!&T'

. lim
,→-

G$!, ,,"(". !2"

The above is valid provided that )&0!&T'/0.
To fix the notation, we will briefly summarize the essen-

tial steps required for a calculation of the right hand side of
the above equation at fixed values of the projection param-
eter , . A detailed review may be found in Ref. 5. The
formalism—without numerical stabilization—to compute
time-displaced correlation functions follows Ref. 6. The first
step is to carry out a Trotter decomposition of the imaginary-
time propagation:

e#2,H!!e#0(Ht/2e#0(HIe#0(Ht/2"m"O#!0("2$ . !3"

Here Ht (HI) denotes the kinetic !interaction" term of the
model, and m0(!2, . Having isolated the interaction term
HI , one may carry out a Hubbard-Stratonovitch !HS" trans-
formation to obtain

e#0(HI!%
s!
exp" %

x ,y
cx
†Dx ,y!s! "cy # , !4"

where s! denotes a vector of HS fields. For a Hubbard inter-
action, one can, for example, use various forms of Hirsch’s

discrete HS decomposition.7,8 For interactions taking the
form of a perfect square, decompositions presented in Ref. 9
are useful.
The imaginary-time propagation may now be written as

e#2,H!%
s!
Us!!2, ,0""O#!0("2$ , !5"

where

Us!!2, ,0"! 1
n!1

m

e#0(Ht/2e%x ,y cx
†Dx ,y(s!n)cye#0(Ht/2.

The HS field has acquired an additional imaginary-time in-
dex, since we need independent fields for each time incre-
ment.
The trial wave function is required to be a Slater determi-

nant:

!&T'! 1
n!1

Np " %
x
cx
†Px ,n# !0' . !6"

Here Np denotes the number of particles, and P is an Ns
%Np rectangular matrix where Ns is the number of single-
particle states. Since Us!(2, ,0) describes the propagation of
noninteracting electrons in an external HS field, one may
integrate out the fermionic degrees of freedom to obtain

G$!, ,,"("!%
s!
Ws!Gs!

$
!, ,,"Bs!!, ,,"(", !7"

where we have omitted the (0()2 systematic error produced
by the Trotter decomposition. In the above equation,

Bs!!,2 ,,1"!$ 1
n!n1"1

n2

e#0(T/2eD(s!n)e#0(T/2 if ,2&,1

Bs!
#1

!,1 ,,2" if ,1&,2 ,

PHYSICAL REVIEW B, VOLUME 63, 073105

0163-1829/2001/63!7"/073105!4"/$15.00 ©2001 The American Physical Society63 073105-1



f A (τ ) =
Ψ0 AU (τ )A + Ψ0

Ψ0 | Ψ0

DYNAMICAL �
CORRELATIONS�

A ,G (η)!
"

#
$ ≠ 0

Dynamical Green �
function … �

G (η) remain “trapped”  �

A = Aijai
+aj

i ,j
∑
A = ai

Density-Density�
Response �
function … �

some   �

G (ηn )...G (η1 )ai
+aj =

Ω(ηn )...Ω(η1 )"
#

$
%ki

−1

kl
∑ ak

+al Ω(ηn )...Ω(η1 )"
#

$
%jl
G (ηn )...G (η1 )

 in general�

(Ω(η))ij = exp(− 1
2 δτ (H 0 )i ) exp(i δτ η

α
A

α
)( )

ij
exp(− 1

2 δτ (H 0 )j )

G (η) = exp(− 1
2 δτH 0 ) exp(i δτ η

α
A

α
)

α

∏ exp(− 1
2 δτH 0 )



ΨT ΦLδτ

S steps
Φ(L+S )δτ

S back steps

ΦSδτ
1( )... ( )L L nη η − +Ω Ω

DYNAMICAL �
CORRELATIONS�

f A(nδτ ) ≈
ΨT U (Sδτ )AU (nδτ )A

+U ((L− n)δτ ) Ψ0

ΨT |U ((S + L− n)δτ ) |ΨT

≈

w(L+S )δτ
w

w=1

NW

∑
ΦSδτ
w Aak

+al Φ
w
Lδτ

ΦSδτ
w Φw

Lδτ

Ω(ηL )...Ω(ηL−n+1)'( )*
−1
A+ Ω(ηL )...Ω(ηL−n+1)

'
(+

)
*,klkl=1

M

∑

w(L+S−n)δτ
w

w=1

NW

∑

L − n steps n steps



A test case …. The 2D Jellium model�

N ½-spin fermions interacting �
via an 1/r pair potential: �
Electrons in a uniform 
background of positive 
charges, moving inside a 2D �
box of surface V, �
in periodic boundary �
conditions �

�

The algorithm at work …�



H =
| k |2

2
akσ
+ akσ

kσ
∑ +

N
2
ξ +

1
2V

δp−k ,k '−p ' φk−p akσ
+ ak 'σ '

+ ap 'σ 'apσ
kk ' pp 'σσ '
∑

0

0 0
1 ( | | / ) ( | |) 2 2

2 0 | | | |
| |

q
n

q
erfc n erfc n

q L n n
q

π α α α π
φ ξπ

απ≠

=⎧
⎡ ⎤⎪

= = + − −⎨ ⎢ ⎥≠ ⎣ ⎦⎪⎩

∑

Coulomb potential     Ewald constant�
2D JELLIUM�

Energy in Hartree, lenght in Bohr radius units.�



µk =
1
2V

φk−p
p
∑

A1,q =
φq
4V

ρq + ρ−q( )

A2,q =
φq
4V

iρq − iρ−q( )

q p q p
k
a aσ σ

σ

ρ +
−=∑

density�
fluctuation �

�
2D JELLIUM�

H =
k

∈BK

∑
σ =↑,↓
∑ | k


|2

2 + µ
k


%

&
'
'

(

)
*
*ak

,σ

+ a
k

,σ +

N
2 ξ +

1
2 A 1,q

2 + A2,q
2( )

q

∈BQ

∑

Cutoff in Kinetic energy�
�

Transferred wave vectors �
�

q




F (q,τ ) = e−τωS(q,ω)
0

∞

∫

2D JELLIUM: �
DENSITY-DENSITY�
CORRELATION �
FUNCTION �

F q , τ( ) = Ψ0 ρq U (τ ) ρ−q Ψ0

q p q p
k
a aσ σ

σ

ρ +
−=∑

Dynamic structure factor�

ω(q ) Excitation spectrum of the system �

dτ
0

∞

∫ F (q,τ )∝ χ (q)

Density response function �



The algorithm at work …�

Simple situations: comparison �
between AFQMC and exact �
solutions  �

N = 2 electrons, “small” numbers of�
plane waves  �



Ψ0 = α

+δ

++β

+γ

α ≈ 0.994 β ≈ −0.052 γ ≈ −0.016 δ ≈ −0.005



N=2 electrons, rs=1 �
Spins �
�
13 plane waves as one �
particle basis�

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑

↑,↓

i 1 ↑, i 2 ↓ Ψ0
COMPONENTS OF THE�
GROUND STATE ON �
THE 2-BODY BASIS�noise �



Ψ (q

)

0 = α

+δ

++β

+γ

α ≈ 0.999 β ≈ −0.018 γ ≈ −0.018 δ ≈ −0.015



N=2 electrons, rs=1 �
Spins �
�
13 plane waves as one �
particle basis�

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑

↑,↑

i 1 ↑, i 2 ↑ Ψ0
COMPONENTS OF THE�
GROUND STATE ON �
THE 2-BODY BASIS�



N=2 electrons, rs=1 �
Spins �
�
13 plane waves as one �
particle basis�

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑

↑,↓

ΨT H Ψ0

ΨT Ψ0
MIXED ESTIMATION �
OF THE TOTAL ENERGY�

equilibration �



N=2 electrons, rs=1 �
Spins �
�
13 plane waves as one �
particle basis�

Ψ0 ≈
1

NW
wLδτ

w Φw
Lδτ

ΨT Φw
Lδτw =1

NW

∑

↑,↓

Ψ0 T Ψ0

Ψ0 Ψ0
BACK-PROPAGATED ESTIMATION �
OF THE TOTAL ENERGY�



N=2 electrons, rs=1 �
Spins �
�
13 plane waves as one �
particle basis�

↑,↓

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 2.507



N=2 electrons, rs=1 �
Spins �
�
21 plane waves as one �
particle basis�

↑,↓

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 2.507



N=2 electrons, rs=1 �
Spins �
�
49 plane waves as one �
particle basis�

↑,↓

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 2.507



N=2 electrons, rs=1 �
Spins �
�
49 plane waves as one �
particle basis�

↑,↓

F (q , τ )DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 2.507

AFQMC vs PIGS�



N=2 electrons, rs=2 �
Spins �
�
49 plane waves as one �
particle basis�

↑,↓

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 1.2533



N=2 electrons, rs=3 �
Spins �
�
21 plane waves as one �
particle basis�

↑,↓

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 0.8355



N=2 electrons, rs=1 �
Spins �
�
49 plane waves as one �
particle basis�

↑,↑

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 2.507



N=2 electrons, rs=2 �
Spins �
�
49 plane waves as one �
particle basis�

↑,↑

F (q , τ )
DYNAMICAL CORRELATION �
FUNCTIONS�

qa0 = 1.2533



A test case …. The 2D Jellium model�

N = 26 electrons, rs = 1 �
�

The algorithm at work …�



N=26 electrons, rs=1 �
paramagnetic �
�
213 plane waves as one �
particle basis�

ω(q )
EXCITATION SPECTRUM�



N=26 electrons, rs=1 �
paramagnetic �
�
213 plane waves as one �
particle basis�

S (q )
STATIC STRUCTURE �
FACTOR �

B.	  Tanatar	  and	  D.	  M.	  Ceperley	  
PRB	  39,	  5005	  (1989).	  



N=26 electrons, rs=1 �
paramagnetic �
�
213 plane waves as one �
particle basis�

n(k)
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initial population: we construct a random collection �
of N>>1 models s(ω)�
generation: we replace the population with a new �
one in order to reach high fitness values.�
We use biological like processes: �
     selection: couples of individuals are �

      "  selected for reproduction with a �
             probability proportional to the fitness. �
crossover: a fixed amount of spectral weight, �
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             between two selected s(ω)�
 mutation: shift of a fraction �
"          of spectral weight between two intervals�

ω �

s(
ω
)�

ω �

ω �

ω �

s(
ω
)�

ω �

GENETIC�
DYNAMICS�

GENETIC �
INVERSION �
via FALSIFICATION �
of THEORIES �

For each “realization” f* …..�
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We have extracted information about real time dynamics of 4He systems from noisy imaginary-time corre-
lation functions f!!" computed via quantum Monte Carlo !QMC": production and falsification of model spec-
tral functions s!"" are obtained via a survival-to-compatibility with f!!" evolutionary process, based on genetic
algorithms. Statistical uncertainty in f!!" is promoted to be an asset via a sampling of equivalent f!!" within the
noise, which give rise to independent evolutionary processes. In the case of pure superfluid 4He we have
recovered from exact QMC simulations sharp quasiparticle excitations with spectral functions displaying also
the multiphonon branch. As further applications, we have studied the impuriton branch of one 3He atom in
liquid 4He and the vacancy-wave excitations in hcp solid 4He finding an unexpected rotonlike feature.

DOI: 10.1103/PhysRevB.82.174510 PACS number!s": 67.25.dt, 02.30.Zz, 67.60.G#, 67.80.dj

I. INTRODUCTION

The development of ab initio theoretical descriptions of
the low-energy dynamical behavior of quantum interacting
models is naturally a very important issue in a huge variety
of physical studies, ranging from statistical physics to quan-
tum field theory. In the realm of condensed-matter physics,
this requires to start from the Hamiltonian operator Ĥ of a
many-body system and to investigate dynamical properties
via the study of spectral functions,

s!"" = #
−$

+$ dt

2%
ei"t$eiĤtÂe−iĤtB̂% , !1"

Â and B̂ being given operators acting on the Hilbert space of
the system, and the brackets indicating expectation value on
the ground state or thermal average. In this work we will
address this topic in the case of bulk 4He, which, during last
decades, has gained extreme interest since it provides the
simplest scenario in which quantum fluctuations and the sta-
tistics obeyed by the involved degrees of freedom govern the
physics of a macroscopic sample, giving rise to a big deal of
fascinating phenomena.1 The simple Hamiltonian of the sys-
tem displays all the complexities related to strong correla-
tions among particles and has been a very important test
ground both for many body theories and for numerical simu-
lations. In particular, the absence of the additional difficulties
connected with Fermi statistics has allowed quantum Monte
Carlo !QMC" methods to provide exact descriptions of equi-
librium phases of 4He, opening the possibility of putting
light into the intriguing physical mechanisms underlying su-
perfluidity and Bose Einstein condensation on a quantitative
basis.2

The natural idea of extending such approaches to dynami-
cal properties !excitation spectra, transport coefficients, etc."
is highly not trivial: a direct QMC computation of Eq. !1"
faces the problem of obtaining exact real time evolution, and
general solutions are not known. Nevertheless, we can try to
partially fill this lack of knowledge using QMC techniques
themselves. The stochastic processes related to imaginary-
time Schrödinger equation underlying QMC simulations al-
low to perform observations on the system, resembling ac-

tual measurements on an experimental sample; in particular,
in a QMC simulation it is straightforward to collect a set of
observations

F & 'f0, f1, . . . , f l( , !2"

which are estimations of imaginary-time correlation func-
tions

f!!" = $eĤ!Âe−Ĥ!B̂% !3"

in correspondence with a !unavoidably" finite number of
imaginary-time values '0,&! ,2&! , . . . , l&!(, &! being the
time step of the QMC algorithm employed. In general F is
obtained as an average of several QMC calculations of f!!",
each affected by statistical noise and which are used to esti-
mate the statistical uncertainties '' f0

,' f1
, . . . ,' f l

( associated
with F.

Such observations can provide information to infer an es-
timation of s!"", through the exact relation

f!!" = #
−$

+$

d"K!!,""s!"" , !4"

where for example, at zero temperature, K!! ,""=(!""e−!",
(!"" being the Heaviside distribution. We have thus to face
the inverse problem3 of deducing the spectral function s!"",
inverting Eq. !4" starting from limited and noisy data. At a
first glance, one immediately convinces himself that such an
inverse procedure in most realistic situations is unavoidably
ill posed since any set of observations is limited and noisy
and the situation is even worse since the kernel K!! ,"" is a
smoothing operator: the possibility of finding out one and
only one s!"" solving our problem is excluded.

Often sum rules provide useful help, either imposing ex-
act constraints on s!"" or allowing to perform additional
QMC measurements

C & '. . . ,c0,c1, . . . ,cn, . . .( , !5"

which provide estimations for some moments of s!""
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cludes the broadening arising from instrumental resolution
and the effect of the finite temperature; on the contrary, as
explained in the following, the width of the reconstructed
GIFT peak from a T=0 imaginary-time correlation function
is mainly a measure of the uncertainty in reconstructing its
position. In Fig. 2 we show one SGIFT!q ,!" in the roton
region together with the excitation energies "!q", i.e., the
position of the main peak as function of q. The uncertainties
of "!q" correspond to the widths of the peaks #": we have
checked the consistency of such identification by performing
independent QMC estimations of F!q ,$" and comparing the
positions of the peaks obtained in SGIFT!q ,!"; the distribu-
tion of the peaks displays a variance comparable to #"

2.
In principle also a MEM-like algorithm could fit into the

GIFT approach: it is enough to modify the fitness function by
adding to %D! in Eq. !12" an entropic term −&S, with

S =# d!$s̄!!"ln% s̄!!"
m!!"& − s̄!!" + m!!"' , !13"

S being the entropy as in Ref. 6 and &'0 a free parameter;
m!!" is the default model which in previous
implementations6,7 has been chosen to be simply a constant
in absence of any prior knowledge. This is not a faithful
implementation of MEM because the entropic term is used in
the context of GIFT and not within the framework of Bayes’
theorem. Anyway, it provides results for the dynamical struc-
ture factor of superfluid 4He very similar to those appeared
in literature:6,7 by using a constant as default model, m!!",
for all wave vectors q! we observed for the main peak of
S!q ,!" a broadening !see Fig. 2" strongly dependent on the
choice of the parameter &. This makes us loose a great deal
of information and makes the extracted excitation energies

critically dependent on the value of &, thus introducing am-
biguities in the interpretation of the results. Recently, a fully
Bayesian approach has been proposed,14 which avoids ad
hoc assumptions on the relative intensity of the entropic term
and which is able to reconstruct spectral functions with more
pronounced features. It will be interesting in the future to see
how this new method or other recent Bayesian methods per-
form on superfluid 4He. Given their ability in reconstructing
some fine details of the spectral functions, observed in study-
ing different quantum systems, it is possible that such meth-
ods will give equivalent or even better results than GIFT
when applied to the same inverse problem. In our original
approach, i.e., without &S!s̄", we have checked that none of
the parameters !such as M, (!, ), *n, …" affects the class
of features that we may trust to carry reliable physical infor-
mation.

In Fig. 3 !see the upper panel" we compare the spectral
function shown in the upper panels of Fig. 2 with a spectral
function extracted with GIFT from a more noisy correlation
function !see lower panel in Fig. 3" computed with a less
accurate imaginary-time propagator for instants $l= l+$, l
=0, . . , lmax=17, spaced by +$=1 /40 K−1. In this new GIFT
reconstruction the statistical uncertainties (# f0

,# f1
, . . . ,# f l

)
are about four times bigger, i.e., about 4,10−3 instead of
about 10−3, but even if we have less accurate observations on
about four times fewer imaginary-time points, GIFT is able
to reconstruct a spectral function displaying an elementary
excitation peak and a multiphonon contribution in agreement
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FIG. 1. !Line" SGIFT!q ,!" for q=0.783 Å−1 and -
=0.0218 Å−3; !open circles" observed !Ref. 24" dynamic structure
factor S!q ,!" in liquid 4He for q=0.7 Å−1 at saturated vapor pres-
sure !SVP" and T=1.3 K. Notice the logarithmic scale. Notice also
the difference between the wave vector of SGIFT!q ,!" and the one
of the experimental available !Ref. 24" dynamic structure factor; the
experimental single particle peak position is known to increase by
about 0.8 K in moving from q=0.7 Å−1 to q=0.783 Å−1.
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FIG. 2. !a" and !b" SGIFT!q ,!" at q=1.755 Å−1 and -
=0.0218 Å−3; !a" single quasiparticle !qp" peak; !b" multiphonon
!mp" contribution !notice change in scale". Lines corresponding to a
SGIFT!q ,!" obtained with a nonzero entropic prior !&!0" are also
shown. !c" "!q" extracted at -=0.0218 Å−3 from the position of the
qp !circles" peaks and the positions of the maxima of the mp con-
tribution !triangles" are shown. The error bars represent the 1/2–
height widths. !d" "!q" and mp contribution extracted at -
=0.0262 Å−3. Lines in !c" and !d": experimental data !Refs. 25 and
26"; in the mp region in !c" the lower curve !dotted" represents the
position of the maximum while the upper one !dashed" represents
the 1/2–height width.
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cludes the broadening arising from instrumental resolution
and the effect of the finite temperature; on the contrary, as
explained in the following, the width of the reconstructed
GIFT peak from a T=0 imaginary-time correlation function
is mainly a measure of the uncertainty in reconstructing its
position. In Fig. 2 we show one SGIFT!q ,!" in the roton
region together with the excitation energies "!q", i.e., the
position of the main peak as function of q. The uncertainties
of "!q" correspond to the widths of the peaks #": we have
checked the consistency of such identification by performing
independent QMC estimations of F!q ,$" and comparing the
positions of the peaks obtained in SGIFT!q ,!"; the distribu-
tion of the peaks displays a variance comparable to #"

2.
In principle also a MEM-like algorithm could fit into the

GIFT approach: it is enough to modify the fitness function by
adding to %D! in Eq. !12" an entropic term −&S, with

S =# d!$s̄!!"ln% s̄!!"
m!!"& − s̄!!" + m!!"' , !13"

S being the entropy as in Ref. 6 and &'0 a free parameter;
m!!" is the default model which in previous
implementations6,7 has been chosen to be simply a constant
in absence of any prior knowledge. This is not a faithful
implementation of MEM because the entropic term is used in
the context of GIFT and not within the framework of Bayes’
theorem. Anyway, it provides results for the dynamical struc-
ture factor of superfluid 4He very similar to those appeared
in literature:6,7 by using a constant as default model, m!!",
for all wave vectors q! we observed for the main peak of
S!q ,!" a broadening !see Fig. 2" strongly dependent on the
choice of the parameter &. This makes us loose a great deal
of information and makes the extracted excitation energies

critically dependent on the value of &, thus introducing am-
biguities in the interpretation of the results. Recently, a fully
Bayesian approach has been proposed,14 which avoids ad
hoc assumptions on the relative intensity of the entropic term
and which is able to reconstruct spectral functions with more
pronounced features. It will be interesting in the future to see
how this new method or other recent Bayesian methods per-
form on superfluid 4He. Given their ability in reconstructing
some fine details of the spectral functions, observed in study-
ing different quantum systems, it is possible that such meth-
ods will give equivalent or even better results than GIFT
when applied to the same inverse problem. In our original
approach, i.e., without &S!s̄", we have checked that none of
the parameters !such as M, (!, ), *n, …" affects the class
of features that we may trust to carry reliable physical infor-
mation.

In Fig. 3 !see the upper panel" we compare the spectral
function shown in the upper panels of Fig. 2 with a spectral
function extracted with GIFT from a more noisy correlation
function !see lower panel in Fig. 3" computed with a less
accurate imaginary-time propagator for instants $l= l+$, l
=0, . . , lmax=17, spaced by +$=1 /40 K−1. In this new GIFT
reconstruction the statistical uncertainties (# f0

,# f1
, . . . ,# f l

)
are about four times bigger, i.e., about 4,10−3 instead of
about 10−3, but even if we have less accurate observations on
about four times fewer imaginary-time points, GIFT is able
to reconstruct a spectral function displaying an elementary
excitation peak and a multiphonon contribution in agreement
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FIG. 2. !a" and !b" SGIFT!q ,!" at q=1.755 Å−1 and -
=0.0218 Å−3; !a" single quasiparticle !qp" peak; !b" multiphonon
!mp" contribution !notice change in scale". Lines corresponding to a
SGIFT!q ,!" obtained with a nonzero entropic prior !&!0" are also
shown. !c" "!q" extracted at -=0.0218 Å−3 from the position of the
qp !circles" peaks and the positions of the maxima of the mp con-
tribution !triangles" are shown. The error bars represent the 1/2–
height widths. !d" "!q" and mp contribution extracted at -
=0.0262 Å−3. Lines in !c" and !d": experimental data !Refs. 25 and
26"; in the mp region in !c" the lower curve !dotted" represents the
position of the maximum while the upper one !dashed" represents
the 1/2–height width.
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with the result of the more accurate simulation. This shows
the robustness of GIFT against less accurate QMC data. Fur-
ther studies on the robustness of GIFT against inaccurate
QMC data are shown in Appendix B, where tests on known
spectral models are presented !see Fig. 14".

As an example of the stochastic evolution of a GIFT com-
putation, in Fig. 4 we show the deviation !10" as a function

of the number of generations in the evolutionary process for
the reconstruction plotted in Figs. 2!a" and 2!b" for !=0
averaged on the sampled sets D!. One can see that the maxi-
mum number of generations, NG, we have used in this recon-
struction is optimal in reaching the “compatibility” condi-
tion, "!s̄"##= 1

l+1$ j=0
l $ f j

2 , without overfitting !this point is
expanded in Appendix A".

By integrating SGIFT!q ,%" with respect to % in the range
of the sharp peak and in the remaining frequency range we
have access to the strength of the single quasiparticle peak,
Z!q", and to the contribution to the static structure factor,
S!q", coming from multiphonon excitations. Remarkably,
Z!q" turns out to be in close agreement with experimental
data !see upper Fig. 5", thus strongly suggesting that the
shallow maximum in SGIFT!q ,%" at large energy carries in-
deed reliable physical information on the multiphonon
branch of the spectrum. The position of such multiphonon
maximum %see Fig. 2!c"& is in qualitative agreement with
experiments:25 as we show in Appendix B, within the present
implementation of GIFT there is no possibility to recover the
detailed shape of the spectral function like the multiphonon
substructures given by high-resolution measurements27 of
S!q ,%". In the lower panel of Fig. 5 we show the static
density response function &!q" obtained evaluating the '%−1(
from SGIFT!q ,%"; the agreement with experiments is impres-
sive, also near freezing.28

The calculation of the excitation spectrum '!q" in super-
fluid 4He via QMC was addressed, for instance, in Ref. 29
and in Ref. 30 but here we are clearly much more ambitious
because we aim to reconstruct the full spectral function. In
our reconstructed spectral functions the elementary excita-
tion peaks are so accurately resolved that it is possible to
reveal the effects of even fine details of the interatomic in-
teraction. For example, the computed spectrum '!q" in the
phonon region is about 0.7 K above the experimental value.
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Excitation spectrum in two-dimensional superfluid
4He

F. Arrigoni, E. Vitali, D. E. Galli, and L. Reatto

Dipartimento di Fisica, Università degli Studi di Milano,

via Celoria 16, 20133 Milano, Italy

(Dated: May 20, 2013)

In this work we perform an ab-initio study of an ideal two-dimensional sample of
4He atoms, a model for 4He films adsorbed on several kinds of substrates. Starting
from a realistic hamiltonian we face the microscopic study of the excitation phonon-

roton spectrum of the system at zero temperature. Our approach relies on Path
Integral Ground State Monte Carlo projection methods, allowing to evaluate ex-
actly the dynamical density correlation functions in imaginary time, and this gives

access to the dynamical structure factor of the system S(q,ω), containing information
about the excitation spectrum E(q), resulting in sharp peaks in S(q,ω). The actual

evaluation of S(q,ω) requires the inversion of the Laplace transform in ill-posed
conditions, which we face via the Genetic Inversion via Falsification of Theories
technique. We explore the full density range from the region of spinodal decompo-

sition to the freezing density, i.e. 0.0321 Å−2 – 0.0658 Å−2. In particular we follow
the density dependence of the excitation spectrum, focusing on the low wave–vector
behavior of E(q), the roton dispersion, the strength of single quasi–particle peak,

Z(q), and the static density response function, χ(q). As the density increases, the
dispersion E(q) at low wave–vector changes from a super–linear (anomalous disper-

sion) trend to a sub–linear (normal dispersion) one, anticipating the crystallization
of the system; at the same time the maxon-roton structure, which is barely visible
at low density, becomes well developed at high densities and the roton wave vector

has a strong density dependence. Connection is made with recent inelastic neutron
scattering results from highly ordered silica nanopores partially filled with 4He.

PACS numbers: 67.25.bh, 67.25.dt

Keywords: superfluidity, two dimensional quantum fluids, elementary excitations, roton

I. INTRODUCTION

Helium exists in two stable isotopes, 4He and 3He, which differ for their
nuclear spin: 4He atoms are bosons with nuclear spin I = 0, while 3He
atoms are fermions with nuclear spin I = 1/2. The effective interaction
among helium atoms is well described by a hard core potential plus an
attraction arising from zero–point fluctuations in the charge distribution.
The interaction results in a simple Lennard-Jones-like two-body spheri-
cally symmetric potential v(r), for which accurate analytical expressions
are known [1]. The hamiltonian of the bulk system reads:

Ĥ = −
!2

2m

N
∑

i=1

∇2
i +

N
∑

i<j=1

v
(

|!̂ri − !̂rj|
)

. (1)

where m is the mass of 4He atoms. Despite its very simple structure,
helium exhibits numerous exotic phenomena in condensed form, whose
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Figure 4: (left panel) An example of QMC evaluation of an imaginary time

correlation function F (q, τ), defined in (10). We have plotted the τ -dependence
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show the asymptotic single exponential behavior governed by the elementary
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to the fact that a maxon can decay into two rotons because its energy is
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FIG. 2. (Color online) From left to right the coherent dynamic structure factor, obtained as an average of several independently extracted
S1(q,ω), for increasing wave vectors at ρ = 0.047 Å−2. Orange shading represents statistical uncertainties and filled (blue) circles are the
available experimental data from Refs. 3 and 4. The wave vectors shown are those accessible from our simulation; the experimental wave
vectors are q = 0.55 Å−1 (b), q = 1.15 Å−1 (d), q = 1.25 Å−1 (e), and q = 1.65 Å−1 (f). We have used different scales in the panels to make
the comparison with experimental data more easily visible. The dashed (green) line shows the dynamic structure factor of a fictitious system
of bosons of mass m3. The bosonic peaks in the roton region are five to nine times higher than the fermionic ones.

In Fig. 2 we show the comparison between our estimation
of the dynamic structure factor of the 3He film and the
experimental data.3,4 The dynamic structure factor has been
obtained as an average over several GIFT reconstructions
of S1(q,ω) from independent estimates of F1(q,τ ); this has
made possible an estimation of the statistical uncertainties
which we show in Fig. 2 by the (yellow) shading. We note
that the available experimental wave vectors do not exactly
match the reciprocal space grid defined by the simulation
box. For q = 0.534 Å−1 and q = 1.603 Å−1, where the
mismatch is minimal, a direct comparison is possible and
the agreement is impressive. Inspection of the wave-vector
dependence of the spectra shows that the discrepancies seen at
q = 1.069 and q = 1.336 are mostly due to the differences in q
values between theory and experiment. A major feature of the
measured S(q,ω), captured also by the dynamical many-body

theory in Ref. 4, is the appearence of a low-energy peak for both
small and large wave vectors, interpreted in Refs. 3 and 4 as
a well-defined collective mode, broadened in the intermediate
q range because of mixing with the particle-hole continuum.
In further agreement with the measurements, we find a similar
behavior. Indeed the simulation can provide information even
at small wave vectors, not accessible to the experimental
probe: at q = 0.267 the collective excitation (ZSM) is most
pronounced, and the spectral weight of the particle-hole is
negligible. It is remarkable that both the position and the shape
of the calculated spectra have a physical meaning and are
not artifacts of the reconstruction procedure. Further support
for this conclusion is offered from a comparison with the
dynamic structure factor of the fictitious 3He-mass bosonic
system. The bosonic spectrum has a completely different
behavior, featuring an extremely sharp peak with the usual

FIG. 3. (Color online) Color map of normalized S2(q,ω) for many wave vectors q. For better visibility, each S2(q,ω) for different q has
been normalized in order to have their maximum value equal to 1. The vertical scale has been shifted by a quantity EB

0 − EF
0 , so that the

excitation energies are measured with respect to the fermionic ground state.
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Recent neutron scattering experiments on 3He films have observed a zero-sound mode, its dispersion relation,
and its merging with—and possibly emerging from—the particle-hole continuum [H. Godfrin et al., Nature
483, 576 (2012)]. Here we address the study of excitations in the system via quantum Monte Carlo methods: we
suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems.
Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing
description of the experimental findings.
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I. INTRODUCTION

The two isotopes of helium, 3He and 4He, provide the
opportunity to explore the quantum behavior of many-body
systems on a fundamental basis; at low temperature and
pressures, they are the only neutral quantum liquids existing in
Nature and an impressive complexity of physical phenomena
is generated by mere pair interactions between particles and
the effects of quantum statistics. In the investigation of the
fascinating behavior of strongly correlated quantum systems
a key role is naturally played by the low-energy dynamics
(see, for example, Ref. 1). In addition, due to the very simple
Hamiltonian, 3He and 4He many-body systems represent
also extremely important reference models and test cases for
general theoretical approaches.2

Recently inelastic neutron scattering experiments have been
performed on a monolayer of liquid 3He adsorbed on suitably
preplated graphite: a collective zero-sound mode (ZSM)
has been detected as a well-defined excitation crossing and
possibly re-emerging from the particle-hole continuum typical
of a Fermi fluid.3,4 From the theoretical side, a quantitative
description of such experimental findings has been achieved
by a dynamical many-body theory, without any adjustable
parameters.4 The aim of this work is to undertake an ab initio
study of the ZSM in a strictly two-dimensional (2D) 3He
sample relying on quantum Monte Carlo (QMC) methods.
It has been shown that this ideal, strictly 2D model offers a
realistic representation of the adsorbed liquid layer, as far as
the liquid phase properties are concerned.5–7

The key quantity to be computed to compare with the ZSM
observed in neutron scattering experiments on 3He systems
is the coherent dynamic structure factor,8 which, apart from
kinematical factors, is related to the differential cross section:

S(q,ω) = 1
2πN

∫ +∞

−∞
dteiωt 〈ei t

h̄
Ĥ ρ̂$qe

−i t
h̄
Ĥ ρ̂−$q〉. (1)

The brackets indicate a ground state or thermal average, Ĥ is
the Hamiltonian operator, and ρ̂$q =

∑N
i=1 e−i $q·$̂ri is the local

density in Fourier space. The ZSM of the system manifests
itself in the shape of S(q,ω), appearing either as sharp peaks,
if it is long-lived, or as broad structures, if strong damping is
present.1

QMC methods give access to the coherent dynamic struc-
ture factor, S(q,ω), because they allow us to evaluate the
intermediate scattering function F (q,τ ) = 〈eτ Ĥ ρ̂$qe

−τ Ĥ ρ̂−$q〉
by simulating the imaginary time dynamics driven by the
Hamiltonian.9,10 For a collection of 3He atoms, a very accurate
microscopic description is afforded by the simple Hamiltonian

Ĥ = − h̄2

2m3

N∑

i=1

∇2
i +

N∑

i<j=1

v(|$̂ri − $̂rj |), (2)

where m3 is the mass of 3He atoms and v(r) is an effective
pair potential among 3He atoms.11

The correlation function F (q,τ ) is the Laplace transform
of S(q,ω). Despite the well-known difficulties related to the
inversion of the Laplace transform under ill-posed conditions,
the evaluation of S(q,ω) starting from the QMC estimation of
F (q,τ ), (3), has been proven to be fruitful for several bosonic
systems.10,12–16

For a Fermi liquid, the difficulty is further enhanced by the
famous sign problem;17 thereby the computational effort grows
exponentially with the imaginary time and with the number
of particles. While accurate approximations exist to circum-
vent this problem in the calculation of static ground-state
properties,18 we are aware of no applications of approximate
schemes such as the restricted path19 or constrained path20

methods to the calculation of imaginary-time correlation
functions.

Focusing on T = 0 K, QMC calculations of the ground-
state average replaces the unknown exact ground state ψ0 by
the imaginary time projection of a trial function ψT ,10,21,22

ψ0 ≡ e−λĤ ψT . The intermediate scattering function then reads

F (q,τ ) = 〈ψT |e−λĤ ρ$q e−τ Ĥ ρ̂−$qe
−λĤ |ψT 〉

〈ψT |e−(2λ+τ )Ĥ |ψT 〉
. (3)

Unfortunately, the projection time λ required to filter out the
exact ground state from the trial function is usually larger
than the range of τ needed to extract spectral information, so
that the total imaginary time 2λ + τ in Eq. (3) is too large
for practical purposes. In this paper we propose two related
approximations which avoid the extra time 2λ, whereby the
calculation becomes feasible for a few tens of 3He atoms. The
agreement with the measured dynamic structure factor is more
than satisfactory.

144506-11098-0121/2013/87(14)/144506(5) ©2013 American Physical Society



DYNAMIC STRUCTURE FACTOR FOR 3He IN TWO . . . PHYSICAL REVIEW B 87, 144506 (2013)

0

0.02

0.04

0.06

0.08

0.1

S
(q

,ω
)

( K
-1
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.01

0.02

0.03

0.04

0 5 10 15 20

ω (K) ω (K) ω (K)

0

0.01

0.02

0.03

0.04

0.05

S
(q

,ω
)

( K
-1
)

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

q= 1.603 A
o-1

q= 0.267 A
o-1 q= 0.534 A

o-1 q= 0.801 A
o-1

q= 1.069 A
o-1 q= 1.336 A

o-1

(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) From left to right the coherent dynamic structure factor, obtained as an average of several independently extracted
S1(q,ω), for increasing wave vectors at ρ = 0.047 Å−2. Orange shading represents statistical uncertainties and filled (blue) circles are the
available experimental data from Refs. 3 and 4. The wave vectors shown are those accessible from our simulation; the experimental wave
vectors are q = 0.55 Å−1 (b), q = 1.15 Å−1 (d), q = 1.25 Å−1 (e), and q = 1.65 Å−1 (f). We have used different scales in the panels to make
the comparison with experimental data more easily visible. The dashed (green) line shows the dynamic structure factor of a fictitious system
of bosons of mass m3. The bosonic peaks in the roton region are five to nine times higher than the fermionic ones.

In Fig. 2 we show the comparison between our estimation
of the dynamic structure factor of the 3He film and the
experimental data.3,4 The dynamic structure factor has been
obtained as an average over several GIFT reconstructions
of S1(q,ω) from independent estimates of F1(q,τ ); this has
made possible an estimation of the statistical uncertainties
which we show in Fig. 2 by the (yellow) shading. We note
that the available experimental wave vectors do not exactly
match the reciprocal space grid defined by the simulation
box. For q = 0.534 Å−1 and q = 1.603 Å−1, where the
mismatch is minimal, a direct comparison is possible and
the agreement is impressive. Inspection of the wave-vector
dependence of the spectra shows that the discrepancies seen at
q = 1.069 and q = 1.336 are mostly due to the differences in q
values between theory and experiment. A major feature of the
measured S(q,ω), captured also by the dynamical many-body

theory in Ref. 4, is the appearence of a low-energy peak for both
small and large wave vectors, interpreted in Refs. 3 and 4 as
a well-defined collective mode, broadened in the intermediate
q range because of mixing with the particle-hole continuum.
In further agreement with the measurements, we find a similar
behavior. Indeed the simulation can provide information even
at small wave vectors, not accessible to the experimental
probe: at q = 0.267 the collective excitation (ZSM) is most
pronounced, and the spectral weight of the particle-hole is
negligible. It is remarkable that both the position and the shape
of the calculated spectra have a physical meaning and are
not artifacts of the reconstruction procedure. Further support
for this conclusion is offered from a comparison with the
dynamic structure factor of the fictitious 3He-mass bosonic
system. The bosonic spectrum has a completely different
behavior, featuring an extremely sharp peak with the usual
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been normalized in order to have their maximum value equal to 1. The vertical scale has been shifted by a quantity EB
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I. INTRODUCTION

The two isotopes of helium, 3He and 4He, provide the
opportunity to explore the quantum behavior of many-body
systems on a fundamental basis; at low temperature and
pressures, they are the only neutral quantum liquids existing in
Nature and an impressive complexity of physical phenomena
is generated by mere pair interactions between particles and
the effects of quantum statistics. In the investigation of the
fascinating behavior of strongly correlated quantum systems
a key role is naturally played by the low-energy dynamics
(see, for example, Ref. 1). In addition, due to the very simple
Hamiltonian, 3He and 4He many-body systems represent
also extremely important reference models and test cases for
general theoretical approaches.2

Recently inelastic neutron scattering experiments have been
performed on a monolayer of liquid 3He adsorbed on suitably
preplated graphite: a collective zero-sound mode (ZSM)
has been detected as a well-defined excitation crossing and
possibly re-emerging from the particle-hole continuum typical
of a Fermi fluid.3,4 From the theoretical side, a quantitative
description of such experimental findings has been achieved
by a dynamical many-body theory, without any adjustable
parameters.4 The aim of this work is to undertake an ab initio
study of the ZSM in a strictly two-dimensional (2D) 3He
sample relying on quantum Monte Carlo (QMC) methods.
It has been shown that this ideal, strictly 2D model offers a
realistic representation of the adsorbed liquid layer, as far as
the liquid phase properties are concerned.5–7

The key quantity to be computed to compare with the ZSM
observed in neutron scattering experiments on 3He systems
is the coherent dynamic structure factor,8 which, apart from
kinematical factors, is related to the differential cross section:

S(q,ω) = 1
2πN

∫ +∞

−∞
dteiωt 〈ei t

h̄
Ĥ ρ̂$qe

−i t
h̄
Ĥ ρ̂−$q〉. (1)

The brackets indicate a ground state or thermal average, Ĥ is
the Hamiltonian operator, and ρ̂$q =

∑N
i=1 e−i $q·$̂ri is the local

density in Fourier space. The ZSM of the system manifests
itself in the shape of S(q,ω), appearing either as sharp peaks,
if it is long-lived, or as broad structures, if strong damping is
present.1

QMC methods give access to the coherent dynamic struc-
ture factor, S(q,ω), because they allow us to evaluate the
intermediate scattering function F (q,τ ) = 〈eτ Ĥ ρ̂$qe

−τ Ĥ ρ̂−$q〉
by simulating the imaginary time dynamics driven by the
Hamiltonian.9,10 For a collection of 3He atoms, a very accurate
microscopic description is afforded by the simple Hamiltonian

Ĥ = − h̄2

2m3

N∑

i=1

∇2
i +

N∑

i<j=1

v(|$̂ri − $̂rj |), (2)

where m3 is the mass of 3He atoms and v(r) is an effective
pair potential among 3He atoms.11

The correlation function F (q,τ ) is the Laplace transform
of S(q,ω). Despite the well-known difficulties related to the
inversion of the Laplace transform under ill-posed conditions,
the evaluation of S(q,ω) starting from the QMC estimation of
F (q,τ ), (3), has been proven to be fruitful for several bosonic
systems.10,12–16

For a Fermi liquid, the difficulty is further enhanced by the
famous sign problem;17 thereby the computational effort grows
exponentially with the imaginary time and with the number
of particles. While accurate approximations exist to circum-
vent this problem in the calculation of static ground-state
properties,18 we are aware of no applications of approximate
schemes such as the restricted path19 or constrained path20

methods to the calculation of imaginary-time correlation
functions.

Focusing on T = 0 K, QMC calculations of the ground-
state average replaces the unknown exact ground state ψ0 by
the imaginary time projection of a trial function ψT ,10,21,22

ψ0 ≡ e−λĤ ψT . The intermediate scattering function then reads

F (q,τ ) = 〈ψT |e−λĤ ρ$q e−τ Ĥ ρ̂−$qe
−λĤ |ψT 〉

〈ψT |e−(2λ+τ )Ĥ |ψT 〉
. (3)

Unfortunately, the projection time λ required to filter out the
exact ground state from the trial function is usually larger
than the range of τ needed to extract spectral information, so
that the total imaginary time 2λ + τ in Eq. (3) is too large
for practical purposes. In this paper we propose two related
approximations which avoid the extra time 2λ, whereby the
calculation becomes feasible for a few tens of 3He atoms. The
agreement with the measured dynamic structure factor is more
than satisfactory.
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