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In Auxiliary Fields Quantum Monte
Carlo methods
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IS dealt with in the abstract Hilbert
Space of the physical system, relying
on the single-particle formalism



The starting point is an interacting
hamiltonian:
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written in second quantization
formalism, relying on a finite one
particle basis:
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Equivalent expression:
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N fermions, Slater determinants One particle

wave functions
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Manifold of Slater determinants
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realizations of standard
independent
Normal random variable

AUXILIARY FIELDS

Starting point: for example,
Hartree-Fock solution
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Quantum Monte Carlo method using phase-free random walks
with Slater determinants

Shiwei Zhang and Henry Krakauer
Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795
(Dated: February 1, 2008)

We develop a quantum Monte Carlo method for many fermions that allows the use of any one-
particle basis. It projects out the ground state by random walks in the space of Slater determinants.
An approximate approach is formulated to control the phase problem with a trial wave function
|Ur). Using plane-wave basis and non-local pseudopotentials, we apply the method to Si atom,

dimer, and 2, 16, 54 atom (216 electrons) bulk supercells. Single Slater determinant wave f
from density functional theory calculations were used as |¥r) with no additional optimizat A U XI LIARY FIE LD S
calculated binding energy of Siz and cohesive energy of bulk Si are in excellent agreem QU ANTU M

experiments and are comparable to the best existing theoretical results.
MONTE CARLO

PACS numbers: 02.70.Ss, 71.15.-m, 31.25.-v

We follow the algorithm invented
by Shiwei Zhang .....




GUIDING THE
RANDOM WALK ...
IMPORTANCE
SAMPLING

AUXILIARY FIELDS

‘(I)f5‘5> —>‘(D(i+1)ar>
Gy - SHIFT PARAMETER

The precise expression
(chosen to minimize some é"

fluctuations) is ... ¢ <‘P
r




GUIDING THE
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Such estimations
provide Ground
State expectations if

AH|=0

MIXED ESTIMATES

To compute these matrix elements
we perform linear algebra operations
on the matrices of W;, ® and A
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For the evaluation of imaginary time correlation
functions, we start from the following work ...

PHYSICAL REVIEW B, VOLUME 63, 073105

Efficient calculation of imaginary-time-displaced correlation functions in the projector
auxiliary-field quantum Monte Carlo algorithm

M. Feldbacher and F. F. Assaad
Institut fur Theoretische Physik Ill, Universitat Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
(Received 28 September 2000; published 29 January 2001)

The calculation of imaginary-time-displaced correlation functions with the auxiliary-field projector quantum
Monte Carlo algorithm provides valuable insight (such as spin and charge gaps) into the model under consid-
eration. One of the authors and M. Imada proposed a numerically stable method to compute those quantities [J.
Phys. Soc. Jpn. 65, 189 (1996)]. Although precise, this method is expensive in CPU time. Here we present an
alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement.
The method is based on the observation that for a given auxiliary field the equal-time Green-function matrix G
is a projector: G*=G.

DOI: 10.1103/PhysRevB.63.073105 PACS number(s): 71.27.+a, 71.10.—w, 71.10.Fd
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The algorithm at work ...

A test case .... The 2D Jellium model

N ’-spin fermions interacting
via an 1/r pair potential:
Electrons in a uniform

background of positive
charges, moving inside a 2D
box of surface V,

Y

.
~4
-, v

in periodic boundary
conditions
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The algorithm at work ...

Simple situations: comparison
between AFQMC and exact
solutions

N = 2 electrons, “small” numbers of
plane waves
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N=2 electrons, rs=1
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The algorithm at work ...

A test case .... The 2D Jellium model

N = 26 electrons, rs =1
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F(2) = [ do exp(-10) s(w)

Limited and noisy data for f:

How much information can we
extract about s?
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HOW GOOD IS A
MODEL?

the “fitness” of one particular s(w) should be GENETIC
based on he noisy ‘measured’ set {f;.
Any set {f’}

compatible with {f} provides equivalent
information to build a “fitness” function:
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adjustable parameters to make the two contributions of the same order of magnitude
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For each "realization” f* ..... GENETIC

initial population: we construct a random collection
of N>>1 models s(w) DYNAMICS
generation: we replace the population with a new

one in order to reach high fitness values.

We use biological like processes:

selection: couples of individuals are
selected for reproduction with a GENETIC

probability proportional to the fitness. INVERSION

crossover: a fixed amount of spectral weight,
left in the original intervals, is exchanged

between two selected s(w)

mutation: shift of a fraction
of spectral weight between two intervals

1oah.a

w w

s(w)
s(w)

.. at the end we average over the “realizations” f*



PHYSICAL REVIEW B 82, 174510 (2010)

Ab initio low-energy dynamics of superfluid and solid “He

E. Vitali, M. Rossi, L. Reatto, and D. E. Galli
Dipartimento di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
(Received 3 March 2010; revised manuscript received 28 September 2010; published 15 November 2010)

We have extracted information about real time dynamics of “He systems from noisy imaginary-time corre-
lation functions f(7) computed via quantum Monte Carlo (QMC): production and falsification of model spec-
tral functions s(w) are obtained via a survival-to-compatibility with f(7) evolutionary process, based on genetic
algorithms. Statistical uncertainty in f(7) is promoted to be an asset via a sampling of equivalent f(7) within the
noise, which give rise to independent evolutionary processes. In the case of pure superfluid “He we have
recovered from exact QMC simulations sharp quasiparticle excitations with spectral functions displaying also
the multiphonon branch. As further applications, we have studied the impuriton branch of one He atom in
liquid *He and the vacancy-wave excitations in hcp solid *He finding an unexpected rotonlike feature.

DOI: 10.1103/PhysRevB.82.174510 PACS number(s): 67.25.dt, 02.30.Z:

I. INTRODUCTION

1e development of ab initio theoretical descriptions of
ow-energy dynamical behavior of quantum interacting
:Is is naturally a very important issue in a huge variety
ysical studies, ranging from statistical physics to quan-
feld theory. In the realm of condensed-matter physics,

equires to start from the Hamiltonian operator H of a
-body system and to investigate dynamical properties
1e study of spectral functions,
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FIG. 1. (Line) Sgrr(g.®) for ¢=0.783 A™' and p
=0.0218 A~3; (open circles) observed (Ref. 24) dynamic structure
factor S(g, w) in liquid “He for ¢=0.7 A~! at saturated vapor pres-
sure (SVP) and T=1.3 K. Notice the logarithmic scale. Notice also
the difference between the wave vector of Sgpr(¢,®) and the one
of the experimental available (Ref. 24) dynamic structure factor; the

experimental single particle peak position is known to increase by
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density
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Excitation spectrum in two-dimensional superfluid

‘He

F. Arrigoni, E. Vitali, D. E. Galli, and L. Reatto

Dipartimento di Fisica, Universita degli Studi di Milano,
via Celoria 16, 20133 Milano, Italy
(Dated: May 20, 2013)

In this work we perform an ab-initio study of an ideal two-dimensional sample of
4He atoms, a model for *He films adsorbed on several kinds of substrates. Starting
from a realistic hamiltonian we face the microscopic study of the excitation phonon-

roton spectrum of the system at zero temperature. Our approach relies on Path
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Dynamic structure factor for *He in two dimensions

M. Nava,! D. E. Galli,”" S. Moroni,? and E. Vitali!
1Diparl‘imemo di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy
2JOM-CNR DEMOCRITOS National Simulation Center and SISSA, via Bonomea 265, 34136 Trieste, Italy
(Received 7 February 2013; revised manuscript received 11 March 2013; published 12 April 2013)

Recent neutron scattering experiments on *He films have observed a zero-sound mode, its dispersion relation,
and its merging with—and possibly emerging from—the particle-hole continuum [H. Godfrin et al., Nature
483, 576 (2012)]. Here we address the study of excitations in the system via quantum Monte Carlo methods: we
suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems.
Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing
description of the experimental findings.

DOI: 10.1103/PhysRevB.87.144506 PACS number(s): 67.30.ej, 67.30.em, 02.70.Ss
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FIG. 2. (Color online) From left to right the coherent dynamic structure factor, obtained as an average of several independently extracted
S1(g,w), for increasing wave vectors at p = 0.047 A2, Orange shading represents statistical uncertainties and filled (blue) circles are the
available experimental data from Refs. 3 and 4. The wave vectors shown are those accessible from our simulation; the experimental wave
vectors are ¢ = 0.55 A= (b), g = 1.15 A~1 (d), ¢ = 1.25 A~' (e), and ¢ = 1.65 A~ (f). We have used different scales in the panels to make
the comparison with experimental data more easily visible. The dashed (green) line shows the dynamic structure factor of a fictitious system
of bosons of mass m3. The bosonic peaks in the roton region are five to nine times higher than the fermionic ones.
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Dynamic structure factor for *He in two dimensions O THE R
M. Nava,' D. E. Galli,"* S. Moroni,? and E. Vitali' App L I C ATI O N S .
1Diparl‘imemo di Fisica, Universita degli Studi di Milano, via Celoria 16, 20133 Milano, Italy C
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Recent neutron scattering experiments on *He films have observed a zero-sound mode, its dispersion relation,

and its merging with—and possibly emerging from—the particle-hole continuum [H. Godfrin et al., Nature E X C I TED
483, 576 (2012)]. Here we address the study of excitations in the system via quantum Monte Carlo methods: we
suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems.
Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing ST b TE S
description of the experimental findings.
DOI: 10.1103/PhysRevB.87.144506 PACS number(s): 67.30.ej, 67.30.em, 02.70.Ss
30 T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
p=0.038 A p=0.047 A p=0.060 A’ l
25 + + .
0.8
20 - -+ - .
| - | 06
<45 | i |
w
- 4 0.4
T T | I \ | Tl l '
o T 1] e
f
0 1 1 1 | 1 1 | 1 | 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 | | 1 L 0

0 02 04 06 08 1 1.2 14 1.6 0 02 04 06 08 1 12 14 16 180 02 04 06 08 1 12 14 16 18 2 22

q (A" q (A q (A"
FIG. 3. (Color online) Color map of normalized S,(g,w) for many wave vectors g. For better visibility, each S,(g,®) for different g has
been normalized in order to have their maximum value equal to 1. The vertical scale has been shifted by a quantity E§ — E[, so that the
excitation energies are measured with respect to the fermionic ground state.



