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Outline

1. Intro to Variational and Projector Quantum Monte Carlo (PQMC)
methods (zero temperature)

2. Intro to Sign Problem in Projector Quantum Monte Carlo (PQMC)
3. Semistochastic Quantum Monte Carlo

with Frank Petruzielo, Hitesh Changlani, Adam Holmes and Peter
Nightingale, PRL (2012)

4. Quantum Zigzag Phase Transition in Quantum Wires
with Abhijit Mehta, Julia Meyer, Harold Baranger, PRL(2013)

SQMC work motivated by:
1) FCIQMC: Alavi and group (Booth, Thom, Cleland, Spencer, Shepherd, ...)
2) PMC: Ohtsuka and Nagase

Valuable discussions with Bryan Clark, George Booth, Shiwei Zhang, Garnet
Chan, Ali Alavi, Abhijit Mehta.
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The problem

We wish to find the lowest energy eigenstate(s) of a (Hamiltonian) matrix.

If the number of basis states is sufficiently small that one can store a vector
(say < 1010), then one can use a deterministic iterative method, such as the
power method or the Lanczos method.

Quantum Monte Carlo: If the space is larger than this, even infinite, one can
use a stochastic implementation of the power method. At any instant in
time only a random sample of the vector is stored in computer memory, and
the solution is given by the time-average.
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Definitions
Given a complete basis: {|φi 〉}, either discrete or continuous

Exact |Ψ0〉 =
∑

i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial |ΨT 〉 =
∑

i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

Guiding |ΨG 〉 =
∑

i

gi |φi 〉, where, gi = 〈φi |ΨG 〉

ΨT used to calculate variational and mixed estimators of operators Â, i.e.,
〈ΨT|Â|ΨT〉/〈ΨT|ΨT〉, 〈ΨT|Â|Ψ0〉/〈ΨT|Ψ0〉

ΨG used to alter the probability density sampled, i.e., Ψ2
G
in VMC, ΨGΨ0 in

PMC. Affects only the statistical error of VMC, mixed, and, growth
estimators.

ΨG must be such that gi 6= 0 if ei 6= 0. If ΨT also satisfies this condition
then ΨG can be chosen to be ΨT. To simplify expressions, we use ΨG = ΨT

or ΨG = 1 in what follows.
Cyrus J. Umrigar



Variational MC

EV =
〈ΨT|Ĥ|ΨT〉

〈ΨT|ΨT〉
=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉
∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj
∑Nst

k t2k

=

Nst
∑

i

t2i
∑Nst

k t2k

∑Nst

j Hij tj

ti

=

Nst
∑

i

t2i
∑Nst

k t2k

EL(i) =

∑NMC

i EL(i)

NMC

→ΨG 6=ΨT

∑NMC

i

(

ti
gi

)2
EL(i)

∑NMC

i

(

ti
gi

)2

Sample probability density function
g2
i∑Nst

k
g2
k

using Metropolis-Hastings.

Value depends only on ΨT. Statistical error depend on ΨT and ΨG.
Energy bias and statistical error vanish as ΨT → Ψ0.
For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉

〈Ψ0|Ψ0〉
=

〈Ψ0|Ĥ|ΨT〉

〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉

〈Ψ0|ΨT〉
=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉
∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj
∑Nst

k ektk
=

Nst
∑

i

ei ti
∑Nst

k ektk

∑Nst

j Hij tj

ti

=

Nst
∑

i

ei ti
∑Nst

k ektk
EL(i) =

∑NMC

i EL(i)

NMC

→ΨG 6=ΨT

∑NMC

i

(

ti
gi

)

EL(i)

∑NMC

i

(

ti
gi

)

Value depends on nodes of ΨT (exact for Bosons). Statistical error on ΨT and ΨG.

Energy bias and statistical error vanish as ΨT → Ψ0.

For fixed ΨT , ΨG = ΨT does not minimize statistical fluctuations!
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Variational and Projector MC

EV =

Nst∑

i

t
2
i∑Nst

k
t2k

EL(i) =

∑NMC

i
EL(i)

NMC

(Value and error depend on ΨT)

E0 =

Nst∑

i

ei ti∑Nst

k
ektk

EL(i) =

∑NMC

i
EL(i)

NMC

(Value exact for Bosons. Error depends on ΨT

EL(i) =

∑Nst

j
Hij tj

ti

In both VMC and PMC we average the configuration value of Ĥ or local
energy, EL(i), but from points sampled from different distributions.

This is practical for systems that are large enough to be interesting if

1. ti = 〈φi |ΨT〉 can be evaluated in polynomial time, say N3

2. the sum in EL(i) can be done quickly, i.e., Ĥ is sparse (discrete) or
semi-diagonal (continuous).
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Projector Monte Carlo Methods

The amplitudes of Ψ0 in the chosen basis are obtained by using a
“Projector”, P̂ , that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its
dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st-quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized
basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) 1
1̂−τ(ET 1̂−Ĥ)

r 1st

LRDMC (Sorella, Casula) 1̂+ τ(ET 1̂− Ĥ) ri 1st

FCIQMC/SQMC 1 + τ(ET 1̂− Ĥ) φorthogi 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthogi 2nd
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ)

Walk is done in the space of the 3N coordinates of the N electrons.

〈R|P̂(τ)|R ′〉 ≈ e

−(R−R ′)2

2τ +

(

ET−
V(R)+V(R ′)

2

)

τ

(2πτ)3N/2 is nonnegative.

Problem: However, since the Bosonic energy is always lower than the
Fermionic energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.
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Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

init2(x,0,1)
init2(x,-1,0)
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers
Minus walkers

Fermionic state
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Sign Problem in 2nd quantization
Walk is done in the space of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of
having a stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign.
Further, Ψ and −Ψ are equally good.

The projector in the chosen basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign.
or equivalently:
It is possible to find a set of sign changes of the basis functions such that all
elements of the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC
generations.
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Sign Problem in orbital space and 2nd Quantization

FCIQMC (Booth, Thom, Alavi, JCP (2009)
When walk is done is space of determinants of HF orbitals, it is practical to
have a population that is sufficiently large that cancellations can result in a
finite signal to noise ratio. Once a critical population size is reached the
probability of sign flips of the population rapidly become very small.

Initiator approximation (Cleland, Booth, Alavi, JCP (2010)
The required population size can be greatly reduced by allowing only
determinants occupied by more than a certain number of walkers to spawn
progeny on unoccupied determinants.

Becomes exact in the limit of infinite population size.

In subsequent papers they published FCIQMC calculations on various
molecules, the homogeneous electron gas, and, real solids. Largest system
has as many as 10108 states. (Note, however, that what matters is not the
number of states, but, the number of states that have significant
occupation.)
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Sign Problem in FCIQMC/SQMC

Spencer, Blunt, Foulkes, J. Chem. Phys. (2012)

Kolodrubetz, Spencer, Clark, Foulkes, J. Chem. Phys. (2013)

1. The instability gap is given by the difference in the dominant
eigenvalues of the projector, and, those of the projector with all
off-diagonal elements replaced by their absolute values.

2. More than 1 Hartree product in a given initial determinant may connect
via P (or H) to a given Hartree product in a final determinant. The
instability gap is smaller in 2nd quantization than in 1st quantization if
there are internal cancellations within these contributions, otherwise it is
the same as in 1st quantization.
For example, it is the same in lattice real-space Coulomb systems, real-
and momentum-space Hubbard models, but, is different for
orbital-space Coulomb systems.
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Sign Problem in FCIQMC/SQMC

These papers did not point out that even when the instability gap is the
same, there are two important advantages of 2nd quantization:

1. Since the Hilbert space is N! times smaller in 2nd quantization,
cancellation are much more effective.

2. In first quantization, one of the two Bosonic populations will dominate
and the signal to noise will go to zero even in the limit of an infinite
population, unless additional steps are taken to prevent that.

Using a large population and cancellations, it is possible to
get a finite signal to noise ratio in 2nd quantization but not
in 1st quantization (unless some further constraints are
imposed).

Original attempts at using cancellation to control sign problem (in
continuum problems): Mal Kalos and coworkers (David Arnow, Shiwei
Zhang, Francesco Pederiva, ...)
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Comparison of DMC with FCIQMC/SQMC

DMC (walk in electron coordinate space) FCIQMC/SQMC (walk in determinant space)

Severe Fermion sign problem due to growth Less severe Fermion sign problem due to
of Bosonic component relative to Fermionic. opposite sign walkers being spawned on

the same determinant

Fixed-node approximation needed for Walker cancellation plus initiator
stable algorithm. approximation needed for stable algorithm.
Exact if ΨT nodes exact. Exact in ∞-population limit.

Infinite basis. Finite basis. (Same basis set dependence
as in other quantum chemistry methods.

Computational cost is low-order polynomial Computational cost is exponential in N but
in N with much smaller exponent than full CI

Need to use pseudopotentials for large Z . Can easily do frozen-core
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Semistochastic Quantum Monte Carlo (SQMC)

Frank Petruzielo, Adam Holmes, Hitesh Changlani, Peter Nightingale, CJU, PRL 2012

SQMC is hybrid of Exact Diagonalization and QMC

Exact diagonalization has no statistical error or sign problem but is limited to a

small number of states (∼ 1010 on a single core).

QMC has statistical errors and a sign problem but can employ a much larger number

of states.

SQMC combines to some extent the advantages of the above by doing a

deterministic projection in a small set of important states and stochastic projection

in the rest of the space. It has a much smaller statistical error than stochastic

projection and can employ a large number of states.

More generally Semistochastic Projection is an efficient way to find the dominant

eigenvalue and corresponding expectation values of any large sparse matrix that has

much of its spectral weight on a manageable number of states.
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Semistochastic Projection

The part of the projection with both indices in the deterministic part is done
deterministically. The part of the projection with either index in the
stochastic part is done stochastically.

P = PD + PS

PD
ij =

{

Pij , i , j ∈ D

0, otherwise
PS = P − PD
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Diagonal elements in P
S

The contribution to the total walker weight on |φj〉, with j ∈ S, is

Pjjwj(t) = [1 + τ(ET − Hjj)]wj(t)

Off-diagonal elements in P
S

Weight wi is divided amongst ni = max(⌊wi⌉, 1) walkers of wt. wi/ni .
For each walker on |φi 〉, a move to |φj〉 6= |φi 〉 is proposed with probability
Tji > 0, (

∑

j Tji = 1), where T is the proposal matrix.

The magnitude of the contribution to the walker weight on |φj〉 from a single
walker on |φi 〉 is

{

0, i , j ∈ D
Pji

Tji

wi (t)
ni (t)

= −τ
Hji

Tji

wi (t)
ni (t)

otherwise
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Elements in P
D

The contribution to the weight on |φj〉, with j ∈ D, is

∑

i∈D

PD
ji wi (t).

PD is stored and applied as a sparse matrix
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Semistochastic Projection

Walkers have a label (bit string of orbital occupation numbers) and signed
real weights.

Project Do deterministic and stochastic projection

Sort Walker labels are sorted.

Merge Walkers on the same determinant are merged

Initiator The initiator criterion is used to discard some walkers.

Join Because we use real weights, there are many walkers with small weights.
Join stochastic space walkers on different determinants using unbiased
algorithm.

Update Energy Used stored EL components to update energy estimator. So
EL never needs to be computed during body of run.

The only additional steps are the deterministic projection and the “join” step.
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SQMC
Precompute:
Before MC part of the calculation do following:

1. Choose the deterministic space D and precompute matrix elements of
projector, P , between all pairs of deterministic determinants.

2. Choose the trial wave function, ΨT, and precompute the local energy
components of all determinants connected to those in ΨT.

Some differences between SQMC and FCIQMC or PMC:

1. Deterministic projection in part of space
2. Real (rather than integer) weights, |ψ(t)〉 =

∑N
i=1 wi (t)|φi 〉

3. Graduated initiator, threshold = i dp, where d is the number of moves
since last visit to deterministic space (Usually choose, i , p = 1)

4. Multideterminantal ΨT, particularly important for strongly correlated
states
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Test Cases
Test the ideas on:

1. 2-D Fermion Hubbard model on 8× 8 lattice
2. small molecules

Why Hubbard?

1. Generally accepted as an interesting many-body system that exhibits a
variety of phenomena and is extremely hard to solve.

2. Matrix elements can be computed quickly
3. Can go from very weakly correlated to very strongly correlated by

turning a single knob, U. Large U model much more challenging than
small molecules.

4. Can study effect of changing number of electrons, N, easily.
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Efficiency Gains in 8× 8 Hubbard Model, N = 10
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Energy versus average number of occupied
determinants, 8× 8 Hubbard, N = 50, U = 1
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Energy versus average number of occupied
determinants, 8× 8 Hubbard, N = 10, U = 4
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Efficiency gain for C2 (3− ζ basis)

from semistochastic projection and ΨT
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Ongoing/Future Work on SQMC

Semistochastic projection plus multideterminantal ΨT results in about 3
orders of magnitude gain in efficiency.
In addition the initiator bias is often reduced.
Even with these improvements the method is very expensive.
However, there are still many improvements that can be made, including:

1. choice of basis, including using ΨT as a basis state

2. better trial wave functions, ΨT and deterministic space

3. use F12 methods to improve basis convergence (with Takeshi Yanai,
Garnet Chan, George Booth, Miguel Morales)

4. embedding (Garnet Chan, George Booth)

5. excited states: 1) projecting out lower states (Ohtsuka and Nagase,
2) dividing Hilbert space into a small and a large piece and calculating
an effective Hamiltonian in the small space, Ten-no,
3) using modified projector, 1 + τ(ET − Ĥ)2, to target desired state,
Booth and Chan.
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Quantum Zigzag Phase Transition in Quantum Wires
Abhijit Mehta, CJU, Julia Meyer, Harold Baranger

Consider a 2-d wire, along the x direction with a finite width along the y direction.

H = −
1

2

N
∑

i=1

∇2
i +

1

2

N
∑

i=1

ωy2
i +

∑

i<j≤N

e2

ǫ|ri − rj |
(1)

At low densities electrons form linear Wigner crystal. Two length scales:
rs = 1/(2n), and,
r0: confinement and Coulomb energies are equal (1/2)mω2r20 = e2/(ǫr0).
As density n is raised, expect a transition to a zigzag phase when rs ≈ r0 before
transition to liquid phase.

(a) Linear (b) Zigzag

rs
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Pair densities at ω = 0.1
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Pair densities at ω = 0.6
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Zigzag Correlation Function

CZZ (|i − j |) =
〈

(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)
〉

Order electrons along the length of the wire.

Zigzag order is tied to the ordering of the electrons, not their position along
the wire.
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Zigzag Correlation Function ω = 0.1, 0.6
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Zigzag Order Parameter

CZZ (|i − j |) =
〈

(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)
〉

Zigzag order parameter, MZZ . M
2
ZZ , is average of zigzag correlation

function, CZZ (|i − j |), for electrons far from the fixed reference electron.

M2
ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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Zigzag Order Parameter
M2

ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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Collaborators
SQMC

Idea born in discussion with:
M. Peter Nightingale, Physics, University of Rhode Island

Most of the implementation done by graduate students:
Frank Petruzielo, Physics, Cornell
Hitesh Changlani, Physics, Cornell
Adam Holmes, Physics, Cornell

Zig-zag phase transition in quantum wires
Abhijit Mehta, Duke
Harold Barander, Duke
Julia Meyers, France

Valuable discussions with Bryan Clark, George Booth, Ali Alavi, Garnet
Chan, Shiwei Zhang.
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