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Entanglement Applications

* Topological phase transitions

Methods based on SRDMS

Overview Entanglement research

Black Hole Physics
Critical Scaling
Quantum Information

DMRG (1993)
DMET (2012)

Calculating Entanglement

e Extended systems (2003)

* Single determinant (2004)

 Relationship to Widom (2006)
Widom Conjecture (1978)

* Fluctuation methods (2006)

* Entanglement Spectrum (2000s)

Quantum Monte Carlo of

Entanglement

e Swap Operator (2010)
Replica Trick



Basic Idea of Spatial Entanglement
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Basic Idea of Spatial Entanglement
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Non-bonding Bonding Antlbondlng

o)eﬂ

) = 3" sulan)[bn)

n

How many of these are important?
(States come from spatial rdm)



Introduction to Entanglement Entropy

Everything comes from spatial reduced density matrix pa =Trp (,OAB)

1-Particle Section ~(x}.x1) / /\If X1,Xg XN )U(X1,Xg -+ XN )Xo - - - dXN

2-Particle Section 7(x1,x1,X2, X2) / /\Il(xl Xo - XN)W(X1,X2 - - XN)dX3 - - - XN




Introduction to Entanglement Entropy

Everything comes from spatial reduced density matrix

pa=Trp(pas)
1-Particle Section ~(x3,x1) :/ /\Il(x'l_,x2---xN)\Il(xl,x2---xN)dx2---de

2-Particle Section v(x1, X1, X2, X2) / /\Il(xl Xg - XN)VU(X1,X2 - - - XN )dX3 - - - dXN

Three terms to distinguish between
1) Entanglement Spectrum

2) Entanglement Entropy

3) Renyi Entropies

Entanglement Properties of Renyi entropies
Entropy 51(A) = -Tr(paln(pa))

1) Lower Bound
S, <S8, forl>m>n

Renyi Sn(A) = ; i . In[Tr((pa)™)] 2) Same universal behavior as
Entropy " Von Neumann Entropy




Three methods to calculate
entanglement

e Correlation Method : Exact for single det

* Fluctuation Method : Exact for single det

e Swap Operator : Exact for any wavefunction
Renyi entropy only*



Wavefunction from Correlation
Method

The output from the correlation method generates N triplets of
(Orbital A, Orbital B, eigenvalue)

Define Fermi operators (q, for the orbitals
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Wavefunction from Correlation
Method

The output from the correlation method generates N triplets of
(Orbital A, Orbital B, eigenvalue)

Define Fermi operators (q, for the orbitals
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How to calculate Entanglement:
Swap

Through the replica trick, one can sample the trace of the spatial
reduced density matrix.

5 (U \DT\su'ap 1}\117 ) W) .
Tr((pa)°) = ) Hastings PRL 2010
7((pa)”) <\1: 2 Ur|Ur @ Ur) 8

(Ur @ Ur|swapa |V @ V1) = /XmdXQ"'dXQ}\,"‘I’:‘]‘(_R(Ql.}31))‘1”:]‘(1?(0'2,,’3‘2))\1}’1‘(1?(0'2,.131))\117‘(]?(01,,."32))

_ . o 5 . B o Ur(R(az, 51))Vr(R(a1, £2))
_./dxld’”'"dx‘z‘“"q’”’?(a“‘}l”’ (B ) g e, ) Ur (Rian, Ba))

The QMC estimator can be determined by the application of the swap

L r(R(es, 1) Ur(R(or. )
Olar- a2 b1 B2) = g Riay 1) U (Rlas, Ba))

The estimator becomes the product of four wavefunction evaluations

32
2



How to calculate Entanglement:
Swap

Ur(R(az, B1))¥r(R(a1, B2))
Ur(R(a1,81))¥r(R(az, B2))

O(ay, az, B1,P2) =

In Variational Monte Carlo, we
generally sample a wavefunction
with a ‘walker’ in 3N dimensions

We perform the swap after we
have done all wave function

optimizations

To calculate the swap,
start by sampling the extended
Hilbert space of 6N dimensions




How to calculate Entanglement:
Swap

Ur(R(az, B1))¥r(R(a1, B2))

O(QI,QQ, ,31,182) - \IJT(R(Ql,ﬂl))\IjT(R(QQ”BQ))

Create two new walkers,
keep all the coordinates the same
In region B




How to calculate Entanglement:
Swap

_ Ur(R(az, 51))¥r(R(a1, B2))
Olen, 2. 1. 52) = gm0 U (R(an, Ba))

Y2
e © |




How to calculate Entanglement:

_ ‘I/T(R(OQ. 1 ))\I’T(R(Cl‘l . ;’3-2))
Ur(R(ay, 1))V (R(asz, [2))
1

O(G‘l , (o, )'31 R 32 )

' 9 <\IJT R U |S'lU(l])‘,\ Ur & \IIT> . “
T * L = = . S 44
r((pa)”) (U @ Ur|Ur @ Ur) n(4)

In[Tr((pa)™)]

- 1—n

An estimator value close to zero implies large entanglement
An estimator value close to one implies no entanglement

In VMC, all walkers are independent, so it is unnecessary
to have two populations of walkers.
This come with one caveat: Do not swap a walker with itself



Entanglement
of
Molecules



Why study molecules

* The study of bonding is essentially a study of

how electrons interact between two (or more)
regions of space

* Entanglement gives properties of how wave
functions partition between two (or more)
regions of space



Bond order definitions?

GOLD BOOK

IUPAC > Gold Book > alphabetical index > B > bond order

PREVIOUS NEXT
bond orbital bond order p,. .
bond order

The electron population in the region between atoms A and B of a molecular entity at the expense of electron density in the immediate vicinity of the individual
atomic centers. Different schemes of partitioning electron density give rise to different definitions of bond orders. In the framework of the Mulliken population
analysis, bond order is associated with the total overlap population

A B
Qup =2 ;Zpuv S

where P, and S, are respectively the elements of the density matrix and overlap matrix (see overlap integral).

Standard Results
(So one obtains the values 1,0, 3,and 1 for H,, He,, N, and F,, respectively.)

On Bond Orders and Valences in the Ab Initio
Quantum Chemical Theory*

Reaching the Maximum Multiplicity of the Covalent Chemical Bond
Bjorn O. Roos,* Antonio C. Borin, and Laura Gagliardi 2007

st ot
......

1986 I MAYER

Central Research Institute for Chemistry of the Hungarian Academy of Sci H-1525 Budap
P.O. Box 17, Hungary

A Simple Definition of lonic Bond Order
An approach based on Roby’s atomic projection operators
2008 D. B. Chesnut*

Department of Chemistry, Duke University, Durham, North Carolina 27708 Mark D. Gould - Christopher Taylor - 2008

Stephen K. Wolff « Graham S. Chandler -
Received August 9, 2008 Dylan Jayatilaka

A definition for the covalent and ionic bond index in a molecule




Entanglement and bonding?

It is possible to determine entanglement just from the fluctuations of the system.
This is exact for non-interacting wavefunctions.

K+1 ,u.ll = / | (21 --~;17N)|2NA(l;1?1 coodr N
Su=Jim 3 cn(K)fnr) R

[49 —/|\I1 | Nidzy---dry
Song PRB 2011

Lower Bound Sy > Sy,

Klitch PRA 2006




Entanglement and bonding?

It is possible to determine entanglement just from the fluctuations of the system.
This is exact for non-interacting wavefunctions.

K+1 ,u.ll = / | (21 --~;17N)|2NA(l;1?1 coodr N
Su=Jim 3 cn(K)fnr) R

[49 —/|\I1 | Nidzy---dry
Song PRB 2011

Lower Bound Sy > Sy,

Klitch PRA 2006

Ab-Inito bond order is related to the fluctuations of particles
between regions A and B.

Bap = —2<(NA — (NA)) (NB — (NB))>




Entanglement bonding properties

The bipartite density matrix of the ground state particle in a box wave function
Has two eigenvalues (1/2,1/2) which yields a value of In(2) for the Renyi Entropy

S
(In(2))

‘\I’> = Z Sn ‘a”>|b” > l\TbOnd — 9

mn

1) Comes from an N-body density matrix,
spectrum contains all information
2) Rigorous definition of zero bonding

Y =1PAYB

3) Non-standard bonding situations

4) Correlations and fluctuations cause
entanglement

5) Any space partitioning can be used

6) Gives close to integer values for simple
bonding situations



Entanglement bonding properties

The bipartite density matrix of the ground state particle in a box wave function
Has two eigenvalues (1/2,1/2) which yields a value of In(2) for the Renyi Entropy

s, S,
(In(2)) ~ 2(in(2))
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Molecular Results

All calculations are performed
at equilibrium positions

Different quality wave
functions tested for carbon:
-1) Hartree-Fock

-2) CASSCF (100-1000) dets
-3) Jastrow+CASSCF

-4) Jastrow+CASSCF+coeff opt
(QMCPACK)

Swap method is unbiased QMC.

Correlation and Fluctuations
are approximate.

S, Renyi Entropy
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CASSCF wave functions
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Bonding in C,

Hartree-Fock Entanglement Hamiltonian

30 = Core electrons
- - Partially Entangled
201}|—— Maximally Entangled

Eigenvalues
o

0.5 1.0 1.5 20 2.5

Distance (A)

-There are 12 eigenvalues total at a given distance

-The eigenvalue line at zero is 4 times degenerate

-The other eigenvalues are doubly degenerate

-A zero eigenvalue represents a completely shared mode
-The further away from zero an eigenvalue line the less
entanglement it contributes



Bonding in C,
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Quadruple bonding in C, and analogous
eight-valence electron species

Sason Shaik'*, David Danovich', Wei Wu?, Peifeng Su?, Henry S. Rzepa® and Philippe C. Hiberty*

Triple bonding is idered to be the limit for multiply bonded main group elements, despite higher
metal-metal bond orders being frequently observed for transition metals and lanthanides/actinides. Here, using high-level
theoretical methods, we show that C, and its isoelectronic molecules CN*, BN and CB™ (each having eight valence
electrons) are bound by a quadruple bond. The bonding comprises not only one o - and two 7-bonds, but also one weak
‘inverted’ bond, which can be characterized by the interaction of electrons in two outwardly pointing sp hybrid orbitals. A
simple way of assessing the energy of the fourth bond is proposed and is found to be ~12-17 kcal mol™" for the
isoelectronic species studied, and thus stronger than a hydrogen bond. In contrast, the analogues of C, that contain
higher-row elements, such as Si, and Ge,, exhibit only double bonding.

Nature Chemistry 2012

Hartree Fock Entanglement Hamlltonlan
30 ([ a

Core electrons
Partially Entangled
Maximally Entangled Cm

1.0 1.5 2.0 2.5

Distance (A)

0.5

-Core electrons non-factor
-All valence electrons important
-Interacting spectrum would be useful



Entanglement
of
Fermi Liquids



Entanglement in condensed matter
systems

In condensed matter systems, the entanglement scaling laws have been
studied extensively.

area law Sy = afl + sub Gapped systems
topological Sy = al — ~ + sub

critical Sy =al —cy + sub i
Fermi surface Sy = clin(f) + sub

*Entanglement has been used to study different phases and
identify quantum critical points
*Subleading terms are thought also describe important physics



Widom Conjecture and other
Fermi Liquid predictions

. . . d—1
The Widom conjecture has been used to describe gL loglL I f I, - mplds.ds,

. . 9) ) X g J
the entanglement of gapless systems with free fermions e % Jai

Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture

. . ok s 2.0
Dimitri Gioev'™ and Israel Klich

'Courant Institute, New York University, New York, New York 10012, USA and Department of Mathematics, University of Rochester,
Rochester, New York 14627, USA

*Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
(Received 10 May 2005; published 14 March 2006)

K1

Entanglement Entropy and the Fermi Surface
Brian Swingle™

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 11 March 2010: published 30 July 2010)

Entanglement Entropy of Fermi Liquids via Multidimensional Bosonization

Wenxin Ding,' Alexander Seidel,” and Kun Yang'

'National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
“Department of Physics and Center for Materials Innovation, Washington University, St. Louis, Missouri 63136, USA
(Received 6 November 2011; published 20 March 2012)

The looarithmic vinlations of the area law ie  an “‘area law’’ with looarithmic cormection of the form

At =0 A=2.4=0

Li PRB 2006
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Properties of Entanglement

We considered two Hamiltonians for the 2D electron gas
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Wave function: Slater-Jastrow
But we also tested Slater-Jastrow-Backflow

80

- paramagnetic fluid
T ferromagnetic fluid

1™ Wigner crystal



Region B -

Region A

P

Finite size effects tested with 50, 137, 261

electrons

Largest entangled region 36 electrons out of

261

Data is plotted such that all non-interacting

data falls on the same line

L — L/(\/Ers)

Leading terms do not follow the
Widom conjecture at low densities

Sub-leading terms oscillate and decay

)

Results
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Conclusions

We report one of the first calculations to calculate
entanglement entropy for ab initio systems with coulomb
interactions.

Spatial density matrix contains information about composite
systems. Natural way to calculate bonding properties?

Renormalization of the scaling laws occur when interactions
are introduced in a Fermi-liquid

Many possibilities to expand analysis to other bonding
situations, extended systems, and new methods



The End



