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“Optical lattice emulators” as quantum simulators

§ Ask experimentalists to use cold atomic gases in an optical 
lattice to “solve” the Hamiltonian that we cannot solve.
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How do we detect these quantum gases ?

faster atoms fly farther
the image reflects the momentum distribution

release the atoms
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§ At close to zero temperatures, a macroscopic fraction of all atoms in 
a Bose gas occupy the same quantum state

§ A diverging occupation of the zero momentum state
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Bose-Einstein condensation in cold atomic gases
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Momentum distribution function
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Ultracold atoms in optical lattices

§ Take a dilute gas of fermions at nK temperatures
§ Add a standing wave optical lattice
§ Obtain a controlled, clean and tunable Hubbard model
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Does it work for bosonic models that we can solve?

§ We model all important details of the experiment
§ The experiment should better reproduce what we get!
§ and it does: Trotzky, Pollet et al, Nature Phys. 6, 998 (2010).
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Thirteen years ago, when researchers sequenced just a few snippets 
of mitochondrial DNA from a Neandertal, the breakthrough made 
headlines worldwide. This year, researchers published a draft of the 
Neandertal nuclear genome—and their fi rst analysis of what these 
3 billion bases of DNA reveal about the evolution of these extinct 
humans and us.

Using new methods to sequence degraded fragments of ancient 
DNA (see “Insights of the Decade,” p. 1616), researchers spliced 
together a composite sequence from three female Neandertals who 
lived in Croatia 38,000 to 44,000 years ago, to reconstruct about 
two-thirds of the entire Neandertal genome. For the fi rst time, sci-
entists could compare in detail the genomes of Neandertals and of 
modern humans.

Reading this sequence, the researchers concluded that modern 
Europeans and Asians—but not Africans—have inherited between 
1% and 4% of their genes from Neandertals. Apparently, Neandertals 
interbred with modern humans after they left Africa at least 80,000 
years ago but before they spread into Europe and Asia. If correct, 
this stunning discovery challenges a model that says that as modern 
humans swept out of Africa, they completely replaced archaic humans 
such as Neandertals without interbreeding.

The Neandertal genome also gives researchers a powerful new 
tool to fi sh for genes that have evolved recently in humans, since they 
split from Neandertals. The catalog includes 78 differences in genes 
that encode proteins that are important for wound healing, the beat-
ing of sperm fl agella, and gene transcription. Several encode proteins 
expressed in the skin, sweat glands, and inner sheaths of hair roots, 
as well as skin pigmentation—all differences that refl ect adaptations 
to new climates and environments as modern humans spread around 
the globe.

The researchers have also identifi ed 15 regions of interest that differ 
between humans and Neandertals, including genes that are important 
in cognitive and skeletal development. When mutated in humans, some 
of these genes contribute to diseases such as schizophrenia, Down syn-
drome, and autism, or to skeletal abnormalities such as misshapen 
clavicles and a bell-shaped rib cage.

As researchers close in on the few genes that separate us from 
Neandertals, they are also trying to decipher how differences in genetic 
code alter proteins produced in the lab. This year, scientists inserted 11 
pairs of single peptides into eukaryote cells to test for differences in 
gene expression. With luck, they may pinpoint some of the genes that 
equipped us to survive while Neandertals went extinct.

In the DNA. Some living humans 

may have Neandertal ancestors.

Reading the 
Neandertal Genome

A technical tour de force grabbed headlines around the world for 
synthetic biology this year. In what was hailed as a defi ning moment 
for biology and for biotechnology, researchers at the J. Craig Venter 
Institute (JCVI) in Rockville, Maryland, and San Diego, California, 
built a synthetic genome and inserted it into a bacterium in place of 
the organism’s original DNA. The new genome caused the bacte-
rium to produce a new set of proteins.

The synthetic genome was an almost identical copy of a natural 
genome, but ultimately, researchers envision synthetic genomes cus-
tom-designed to produce biofuels, pharmaceuticals, or other useful 
chemicals. Also this year, researchers at Harvard University improved 
their high-throughput method of modifying existing genomes for 
such purposes, and other synthetic biologists showed that RNA-
based “switches” can get cells to behave differently in response to 
certain signals.

J. Craig Venter and 
his team built its $40 
million genome from 
smaller pieces of store-
bought DNA. First they 
stitched the synthetic 
DNA together in stages 
in yeast; then they trans-
planted it into a bacte-
rium, where it replaced 
the native genome.

Although not truly 
“artifi cial life,” as some 
media declared, this 
success prompted a con-
gressional hearing and a 
review by a presidential 
commission on the eth-
ics of synthetic biology.

It’s far from the 
only synthetic biology 
game in town, however. 
In 2009, Harvard’s George Church introduced a technique called 
multiplex genome engineering, which adds multiple strands of 
DNA to bacteria every couple of hours, rapidly generating geneti-
cally engineered organisms with extensively revamped genomes. 
This year, his team came up with a cheaper way to produce the 
DNA strands used to modify the genome, in hopes of making this 
approach cost-effective for industrial use.

Teams led by Caltech’s Niles Pierce, Stanford University’s 
Christina Smolke, and Boston University’s James Collins have 
come up with ways to change a cell’s behavior by modifying its reg-
ulatory pathways. In some cases, they add specially designed RNA 
molecules that can sense molecules in the cell associated with, say, 
cancer or infl ammation. Once that happens, they cause the cell to 
produce a protein that may sensitize the cell to drugs or cause it to 
undergo programmed cell death. Another team made a riboswitch 
that caused bacteria to seek out and destroy the herbicide atrazine. 
Such devices are much closer than synthetic and modifi ed genomes 
to having practical applications.

Build Your Own Genome

THE RUNNERS-UP >>  

Life recreated. Scanning electron microscope 

image of bacteria with synthetic genomes.

Published by AAAS
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Thirteen years ago, when researchers sequenced just a few snippets 
of mitochondrial DNA from a Neandertal, the breakthrough made 
headlines worldwide. This year, researchers published a draft of the 
Neandertal nuclear genome—and their fi rst analysis of what these 
3 billion bases of DNA reveal about the evolution of these extinct 
humans and us.

Using new methods to sequence degraded fragments of ancient 
DNA (see “Insights of the Decade,” p. 1616), researchers spliced 
together a composite sequence from three female Neandertals who 
lived in Croatia 38,000 to 44,000 years ago, to reconstruct about 
two-thirds of the entire Neandertal genome. For the fi rst time, sci-
entists could compare in detail the genomes of Neandertals and of 
modern humans.

Reading this sequence, the researchers concluded that modern 
Europeans and Asians—but not Africans—have inherited between 
1% and 4% of their genes from Neandertals. Apparently, Neandertals 
interbred with modern humans after they left Africa at least 80,000 
years ago but before they spread into Europe and Asia. If correct, 
this stunning discovery challenges a model that says that as modern 
humans swept out of Africa, they completely replaced archaic humans 
such as Neandertals without interbreeding.

The Neandertal genome also gives researchers a powerful new 
tool to fi sh for genes that have evolved recently in humans, since they 
split from Neandertals. The catalog includes 78 differences in genes 
that encode proteins that are important for wound healing, the beat-
ing of sperm fl agella, and gene transcription. Several encode proteins 
expressed in the skin, sweat glands, and inner sheaths of hair roots, 
as well as skin pigmentation—all differences that refl ect adaptations 
to new climates and environments as modern humans spread around 
the globe.

The researchers have also identifi ed 15 regions of interest that differ 
between humans and Neandertals, including genes that are important 
in cognitive and skeletal development. When mutated in humans, some 
of these genes contribute to diseases such as schizophrenia, Down syn-
drome, and autism, or to skeletal abnormalities such as misshapen 
clavicles and a bell-shaped rib cage.

As researchers close in on the few genes that separate us from 
Neandertals, they are also trying to decipher how differences in genetic 
code alter proteins produced in the lab. This year, scientists inserted 11 
pairs of single peptides into eukaryote cells to test for differences in 
gene expression. With luck, they may pinpoint some of the genes that 
equipped us to survive while Neandertals went extinct.

In the DNA. Some living humans 

may have Neandertal ancestors.

Reading the 
Neandertal Genome

A technical tour de force grabbed headlines around the world for 
synthetic biology this year. In what was hailed as a defi ning moment 
for biology and for biotechnology, researchers at the J. Craig Venter 
Institute (JCVI) in Rockville, Maryland, and San Diego, California, 
built a synthetic genome and inserted it into a bacterium in place of 
the organism’s original DNA. The new genome caused the bacte-
rium to produce a new set of proteins.

The synthetic genome was an almost identical copy of a natural 
genome, but ultimately, researchers envision synthetic genomes cus-
tom-designed to produce biofuels, pharmaceuticals, or other useful 
chemicals. Also this year, researchers at Harvard University improved 
their high-throughput method of modifying existing genomes for 
such purposes, and other synthetic biologists showed that RNA-
based “switches” can get cells to behave differently in response to 
certain signals.

J. Craig Venter and 
his team built its $40 
million genome from 
smaller pieces of store-
bought DNA. First they 
stitched the synthetic 
DNA together in stages 
in yeast; then they trans-
planted it into a bacte-
rium, where it replaced 
the native genome.

Although not truly 
“artifi cial life,” as some 
media declared, this 
success prompted a con-
gressional hearing and a 
review by a presidential 
commission on the eth-
ics of synthetic biology.

It’s far from the 
only synthetic biology 
game in town, however. 
In 2009, Harvard’s George Church introduced a technique called 
multiplex genome engineering, which adds multiple strands of 
DNA to bacteria every couple of hours, rapidly generating geneti-
cally engineered organisms with extensively revamped genomes. 
This year, his team came up with a cheaper way to produce the 
DNA strands used to modify the genome, in hopes of making this 
approach cost-effective for industrial use.

Teams led by Caltech’s Niles Pierce, Stanford University’s 
Christina Smolke, and Boston University’s James Collins have 
come up with ways to change a cell’s behavior by modifying its reg-
ulatory pathways. In some cases, they add specially designed RNA 
molecules that can sense molecules in the cell associated with, say, 
cancer or infl ammation. Once that happens, they cause the cell to 
produce a protein that may sensitize the cell to drugs or cause it to 
undergo programmed cell death. Another team made a riboswitch 
that caused bacteria to seek out and destroy the herbicide atrazine. 
Such devices are much closer than synthetic and modifi ed genomes 
to having practical applications.

Build Your Own Genome

THE RUNNERS-UP >>  

Life recreated. Scanning electron microscope 

image of bacteria with synthetic genomes.
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Thirteen years ago, when researchers sequenced just a few snippets 
of mitochondrial DNA from a Neandertal, the breakthrough made 
headlines worldwide. This year, researchers published a draft of the 
Neandertal nuclear genome—and their fi rst analysis of what these 
3 billion bases of DNA reveal about the evolution of these extinct 
humans and us.

Using new methods to sequence degraded fragments of ancient 
DNA (see “Insights of the Decade,” p. 1616), researchers spliced 
together a composite sequence from three female Neandertals who 
lived in Croatia 38,000 to 44,000 years ago, to reconstruct about 
two-thirds of the entire Neandertal genome. For the fi rst time, sci-
entists could compare in detail the genomes of Neandertals and of 
modern humans.

Reading this sequence, the researchers concluded that modern 
Europeans and Asians—but not Africans—have inherited between 
1% and 4% of their genes from Neandertals. Apparently, Neandertals 
interbred with modern humans after they left Africa at least 80,000 
years ago but before they spread into Europe and Asia. If correct, 
this stunning discovery challenges a model that says that as modern 
humans swept out of Africa, they completely replaced archaic humans 
such as Neandertals without interbreeding.

The Neandertal genome also gives researchers a powerful new 
tool to fi sh for genes that have evolved recently in humans, since they 
split from Neandertals. The catalog includes 78 differences in genes 
that encode proteins that are important for wound healing, the beat-
ing of sperm fl agella, and gene transcription. Several encode proteins 
expressed in the skin, sweat glands, and inner sheaths of hair roots, 
as well as skin pigmentation—all differences that refl ect adaptations 
to new climates and environments as modern humans spread around 
the globe.

The researchers have also identifi ed 15 regions of interest that differ 
between humans and Neandertals, including genes that are important 
in cognitive and skeletal development. When mutated in humans, some 
of these genes contribute to diseases such as schizophrenia, Down syn-
drome, and autism, or to skeletal abnormalities such as misshapen 
clavicles and a bell-shaped rib cage.

As researchers close in on the few genes that separate us from 
Neandertals, they are also trying to decipher how differences in genetic 
code alter proteins produced in the lab. This year, scientists inserted 11 
pairs of single peptides into eukaryote cells to test for differences in 
gene expression. With luck, they may pinpoint some of the genes that 
equipped us to survive while Neandertals went extinct.

In the DNA. Some living humans 

may have Neandertal ancestors.

Reading the 
Neandertal Genome

A technical tour de force grabbed headlines around the world for 
synthetic biology this year. In what was hailed as a defi ning moment 
for biology and for biotechnology, researchers at the J. Craig Venter 
Institute (JCVI) in Rockville, Maryland, and San Diego, California, 
built a synthetic genome and inserted it into a bacterium in place of 
the organism’s original DNA. The new genome caused the bacte-
rium to produce a new set of proteins.

The synthetic genome was an almost identical copy of a natural 
genome, but ultimately, researchers envision synthetic genomes cus-
tom-designed to produce biofuels, pharmaceuticals, or other useful 
chemicals. Also this year, researchers at Harvard University improved 
their high-throughput method of modifying existing genomes for 
such purposes, and other synthetic biologists showed that RNA-
based “switches” can get cells to behave differently in response to 
certain signals.

J. Craig Venter and 
his team built its $40 
million genome from 
smaller pieces of store-
bought DNA. First they 
stitched the synthetic 
DNA together in stages 
in yeast; then they trans-
planted it into a bacte-
rium, where it replaced 
the native genome.

Although not truly 
“artifi cial life,” as some 
media declared, this 
success prompted a con-
gressional hearing and a 
review by a presidential 
commission on the eth-
ics of synthetic biology.

It’s far from the 
only synthetic biology 
game in town, however. 
In 2009, Harvard’s George Church introduced a technique called 
multiplex genome engineering, which adds multiple strands of 
DNA to bacteria every couple of hours, rapidly generating geneti-
cally engineered organisms with extensively revamped genomes. 
This year, his team came up with a cheaper way to produce the 
DNA strands used to modify the genome, in hopes of making this 
approach cost-effective for industrial use.

Teams led by Caltech’s Niles Pierce, Stanford University’s 
Christina Smolke, and Boston University’s James Collins have 
come up with ways to change a cell’s behavior by modifying its reg-
ulatory pathways. In some cases, they add specially designed RNA 
molecules that can sense molecules in the cell associated with, say, 
cancer or infl ammation. Once that happens, they cause the cell to 
produce a protein that may sensitize the cell to drugs or cause it to 
undergo programmed cell death. Another team made a riboswitch 
that caused bacteria to seek out and destroy the herbicide atrazine. 
Such devices are much closer than synthetic and modifi ed genomes 
to having practical applications.

Build Your Own Genome

THE RUNNERS-UP >>  

Life recreated. Scanning electron microscope 

image of bacteria with synthetic genomes.
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Scientists who study rare genetic disorders 
hit on a powerful strategy for fi nding the cul-
prit DNA this year. Using cheap sequencing 
techniques and a shortcut—sequencing just 
the 1% of the genome that tells cells how to 
build proteins—they cracked several dis-
eases that had eluded researchers until now.

The old way to track down the cause of 
Mendelian disorders, or diseases caused by 
a mutation in a single gene, was to study 
DNA inheritance patterns in families. That 
approach doesn’t work when few relatives 
with the disease can be found or when a 

mutation isn’t inherited but instead crops up 
spontaneously.

In late 2009, geneticists began sequenc-
ing just the exons, or protein-coding DNA, 
of patients with Mendelian disorders. (A 
few teams sequenced the patients’ entire 
genome.) This “exome” sequencing yielded 
a long list of mutations that the scientists then 
winnowed, for example, by ignoring those 
that don’t change protein structure or that 
many people carry. The end result: the faulty 
DNA underlying at least a dozen mystery 
diseases—including genes that lead to severe 
brain malformations, very low cholesterol 
levels, and facial deformities that look like a 
made-up Japanese Kabuki performer.

Finding the gene behind a rare disease 
can lead to better diagnosis and treatments 
and to new insights into human biology. 
Scientists hope to use exome sequencing 
to tick off the causes of more than half of 
some 7000 known or suspected Mende-
lian diseases that still don’t have a genetic 
explanation.

Genomics researchers savored the fruits 
of massively parallel sequencing in 2010. 
Cheaper, faster “next generation” machines 
have taken hold over the past 5 years; this 
year they yielded important results from 
several large projects.

One ambitious effort, the 1000 Genomes 
Project, seeks to f ind all single-base 
differences—or single-nucleotide polymor-
phisms (SNPs)—present in at least 1% of 
humans. It completed three pilot studies this 
year, which together identifi ed 15 million 
SNPs—including 8.5 million novel ones. 
The information will help scientists track 
down mutations that cause diseases.

Researchers also fi nished cataloging all 
the functional elements in the genomes of 
the fruit fl y Drosophila melanogaster and 
the nematode Caenorhabditis elegans; the 
results are expected to be published by year’s 
end. In human DNA, the complete genome 
sequences of two Africans from hunter-
gatherer tribes, the oldest known lineages 
of modern humans, confirmed the exten-
sive genetic diversity within those groups. 
Researchers also produced a draft of the 
Neandertal genome (see p. 1605) and deci-
phered the genome from 4000-year-old hair 
preserved in Greenland’s permafrost.

The cornucopia of results also included 
surveys of all the transcribed DNA—the 
so-called transcriptome—and of protein-
DNA interactions, as well as assessments 
of gene expression and the identifi cation of 
rare disease genes.

Next-Generation 

Genomics

Homing In on 

Errant Genes

Changing a cell’s fate by adding extra cop-
ies of a few genes has become routine in 
labs around the world. The technique, 
known as cellular reprogramming, allows 
scientists to turn back a cell’s develop-
mental clock, making adult cells behave 
like embryonic stem cells (see “Insights 
of the Decade,” p. 1612). The resulting 
induced pluripotent stem cells (iPSCs) 
are helping scientists to study a variety of 
diseases and may someday help to treat 
patients by supplying them with genetically 
matched replacement cells. 

This year, scientists found a way to make 
reprogramming even easier using syn-

thetic RNA molecules. The synthetic RNAs 
are designed to elude the cell’s antiviral 
defenses, which usually attack foreign RNA. 
The technique is twice as fast and 100 times 
as efficient as standard techniques. And 
because the RNA quickly breaks down, the 
reprogrammed cells are genetically identical 
to the source cells, making them potentially 
safer for use in therapies.

Early evidence suggests that the RNA 
approach reprograms the cell more thor-
oughly than other methods do, yielding a 
closer match to embryonic stem cells. The 
method can also prompt cells to become 
nonembryonic cell types. By inserting syn-
thetic RNA into a cell that codes for a key 
gene in muscle tissue, for example, the 
researchers could turn both fi broblasts and 
iPSCs into muscle cells. 

Souped-Up Cellular 

Reprogramming

Like a student who sneaks a calculator into 
a test, physicists have found a quick way to 
solve tough mathematical problems. This 
year, they showed that quantum simulators—
typically, simulated crystals in which spots of 
laser light play the role of the crystal’s ions and 
atoms trapped in the spots of light play the role 
of electrons—can quickly solve problems in 
condensed-matter physics.

Physicists usually invent theoretical mod-

els to explain experi-
ments. They might 
approximate a mag-
netic crystal as a 
three-dimensional 
array of points with 
electrons on the 
points interacting through their magnetic 
fi elds. Theorists can jot down a mathematical 
function called a Hamiltonian encoding such 
an idealization. But “solving” a Hamiltonian 
to reveal how a system behaves—for example, 
under what conditions the electrons align to 
magnetize the crystal—can be daunting.

Quantum Simulators 

Pass First Key Test
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Simulating fermions
§ There is no “black box” solution for all fermion problems

§ Fermionic sign problem prevents large-scale simulations
§ We need to think hard and find good (approximate) methods

§ We can still simulate fermions in some regimes:
§ High-temperature expansions: valid down to T ≈1.4  t
§ Dynamical mean field theory (DMFT) approximation and cluster 

extensions to lower temperatures
§ Diagrammatic QMC methods for intermediate interactions

§ We might not be able to reach the ground state, but we can 
simulate the relevant regime for cold atoms

§ I will discuss CT-QMC solvers for cluster versions of DMFT
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CT-QMC for the Hubbard model
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Diagrammatic expansion in interaction

too many to draw all p!2

possible topologies …

but easy to sum all of them into a determinant
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Diagrammatic expansion in interaction
A.N. Rubtsov & A.I. Lichtenstein, Pis'ma v JETP 80, 67 (2004)
A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005)

1

2

3

9

The sum of all p!2 diagrams for a given
vertex configuration
is a determinant squared

Sign-problem free for attractive interactions U<0 
and balanced population of up and down spins
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Repulsive interactions
§ Repulsive interactions: U>0
§  (-U)n can be negative: sign problem
§ Perform particle-hole transformation on one spin-species

§ U changes sign

§ Equal population condition changes to a half-band filling condition

§ We can simulate repulsive fermions (only) at half filling 

Uni,↑ni,↓ → Uni,↑(1 − ni,↓) = Uni,↑ − Uni,↑ni,↓

ni,↓ = ni,↓ → ni,↓ = 1 − ni,↓ ⇒ ni,↓ + ni,↓ = 1

11
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How can we do updates in continuous time?

§ Simplified example: 

§ CT-QMC updates consist of insertion and removal of 
interaction vertices. 

§ Acceptance probabilities are not infinitesimal if done right

12

 
Z = d

0

β

∫
k=0

∞

∑ τ1 d
0

β

∫ τ 2 d
0

β

∫ τ k
w(k)
k!
,

0 β
τ1 τ2

0 β
τ1 τ3 τ2

rem
ove

insert
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Advantages of continuous time

§ No need to extrapolate in time step
§ a single simulation is sufficient
§ no additional errors from extrapolation

§ Less memory and CPU time required
§ Instead of a time step Δτ << t we only have to store changes in the 

configuration happening at mean distances ≈ t

§ Conceptual advantage
§ we directly sample a diagrammatic perturbation expansion

13
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Dynamical mean field theory

14

tk
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Mean-field theory for Ising Model
Introduction

Mean field theory for Ising model

• Lattice model (nearest neighbor coupling J , coordination number z)

Hlatt = −J
∑

i,j SiSj

J

• Single site model (mi = 〈Si〉, heff = J
∑

0,i mi = zJm)

H0 = −heffS0

effh

• Self-consistency condition

m = 〈m0〉H0
( = tanh(βheff) = tanh(βzJm) )

Stuttgart, May 07 – p.3

15
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Dynamical mean field theory 
Lattice model

t

Hlatt = U
�

i ni�ni⇥ � t
�

⇤i,j⌅,� c†i�cj�

Quantum impurity model

Himp = Un�n⇥ �
�

k,�(tkc†�abath
k,� + h.c.) + Hbath

tk

Metzner & Vollhardt, PRL (1989)

Georges & Kotliar, PRB (1992)

16
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Dynamical mean field theory 
Self-consistency loop

Computationally expensive step: solution of the impurity model

Metzner & Vollhardt, PRL (1989)

Georges & Kotliar, PRB (1992)

tkt

lattice model impurity model

impurity solver

�latt

�
dk 1

i⇤n+µ��k��latt

Glatt Himp

Gimp, �imp

�latt � �imp

Glatt � Gimp

self-consistency
condition

DMFT
approximation

17
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§ Uses M discrete time steps ∆τ = β/M
§ Decouples quartic interaction using Hubbard-Stratonovich 

transformation and auxiliary fields s

§ Integration over fermionic Gaussian integrals gives determinants

§ Monte Carlo sampling of auxiliary fields si

§ Was the standard QMC solver for two decades
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Hirsch-Fye QMC solver
J.E. Hirsch & R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

Previous work

Hirsch-Fye solver Hirsch & Fye (1986)

• Hubbard model: Z = TrTτe−S with action S = S0 + SU

S0 = −
∑

σ

∫ β
0 dτdτ ′cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) − µ

∫ β
0 dτ(n↑ + n↓)

SU = U
∫ β
0 dτn↑n↓

• Discretize imaginary time into N equal slices ∆τ

• Decouple Un↑n↓ using discrete Hubbard-Stratonovich transformation

e−∆τU(n↑n↓+1/2(n↑+n↓)) = 1
2

∑

s=±1 eλ(U,∆τ)s(n↑+n↓), Hirsch (1983)

• Perform Gaussian integral

Z =
∑

si
detG−1

0,↑(s1, ..., sN)G−1
0,↓(s1, ..., sN)

• MC sampling of auxiliary Ising spins

• Initial drop of Green function ∼ e−Uτ/2

→ Matrix size: N ∼ 5βU

→ Low temperatures not accessible

τ~exp(−U  /2)

Stuttgart, May 07 – p.6

Previous work

Hirsch-Fye solver Hirsch & Fye (1986)

• Hubbard model: Z = TrTτe−S with action S = S0 + SU

S0 = −
∑

σ

∫ β
0 dτdτ ′cσ(τ)Fσ(τ − τ ′)c†σ(τ ′) − µ

∫ β
0 dτ(n↑ + n↓)

SU = U
∫ β
0 dτn↑n↓

• Discretize imaginary time into N equal slices ∆τ

• Decouple Un↑n↓ using discrete Hubbard-Stratonovich transformation

e−∆τU(n↑n↓+1/2(n↑+n↓)) = 1
2

∑

s=±1 eλ(U,∆τ)s(n↑+n↓), Hirsch (1983)

• Perform Gaussian integral

Z =
∑

si
detG−1

0,↑(s1, ..., sN)G−1
0,↓(s1, ..., sN)

• MC sampling of auxiliary Ising spins

• Initial drop of Green function ∼ e−Uτ/2

→ Matrix size: N ∼ 5βU

→ Low temperatures not accessible

τ~exp(−U  /2)

Stuttgart, May 07 – p.6
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CT-QMC:
Continuous time diagrammatic QMC solvers

19
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§ General recipe:
1. Split Hamiltonian into two parts:

2. Use interaction representation in which

3. Write partition function as time-ordered exponential and expand in 
powers of H2  
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H = H1 + H2

O(�) = e�H1Oe��H1

Z = Tr
⇤
e��H1Te�

R �
0 d⇥H2(⇥)

⌅

=
�

k

⇥ �

0
d�1 . . .

⇥ �

0
d�k

(�1)k

k!
Tr

⇤
e��H1TH2(�1) . . .H2(�k)

⌅

Diagrammatic (continuous time) QMC 

20
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§ For a review see Gull et al, Rev. Mod. Phys. 83, 349 (2011)

§ Interaction expansion CT-INT
§ Rubtsov et al. (2005)
§ Expand in interactions, treat quadratic terms exactly

§ Auxiliary  field method CT-AUX
§ Rombouts et al., (1999), Gull et al. (2008)
§ Decouple interactions using auxiliary fields

§ Hybridization expansion CT-HYB
§ Werner et al., (2006), Werner & Millis (2006), Haule (2007)
§ Expand in hybridizations, treat local terms exactly
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CT-QMC algorithms differ by choice of H1 and H2

21
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§ Impurity model given by

§ Expand partition function into powers of the interaction term 

§ Decouple the interaction terms using

§ then integrate over fermionic Gaussian integrals
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H = H0 + HU

H0 = K/� � (µ� U/2)(n� + n⇥) + Hhyb + Hbath

HU = U(n�n⇥ � (n� + n⇥)/2)�K/�

�HU =
K

2�

�

s=±1

e�s(n��n⇥), cosh(⇥) = 1 +
�U

2K

Z =
�

k

(�1)k

k!

⇥
d�1 . . .

⇥
d�kTr

⇤
Te��H0HU (�1) . . .HU (�k)

⌅

CT-AUX Rombouts et al., PRL (1999)

Gull et al., EPL (2008)

22
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CT-auxiliary field QMC (CT-AUX)
§ Configuration space: all possible time-ordered spin configurations

§ Weight: 

§ Monte Carlo updates: random insertion/removal of a spin 
§ Formally similar to discrete-time Hirsch-Fye method

Rombouts et al., PRL (1999)

Gull et al., EPL (2008)

w(⇥1, s1; . . . ; ⇥k, sk) =
�Kd⇥

2�

⇥k ⇤

⇥

det N�1
⇥ ({⇥i, si})

N�1
⇥ = e�� �G0⇥

�
e�� � 1

⇥

e�� = diag(e�⇥s1 , . . . , e�⇥sk)

23

Tuesday, July 9, 13



Matthias Troyer

DPHYS
Department of Physics

Institute for Theoretical Physics

Interaction expansion CT-INT 

§ Impurity model given by

§ Expand partition function into powers of the interaction term 

§ Wick’s theorem yields weight of vertex configurations

§  alpha-terms necessary to avoid sign problem

H = H0 + HU

H0 = �µ(n� + n⇥) + ��n⇥ + �⇥n� + Hhyb + Hbath

HU = U(n� � ��)(n⇥ � �⇥)

Z =
�

k

(�1)k

k!

⇥
d�1 . . .

⇥
d�kTr

⇤
Te��H0HU (�1) . . .HU (�k)

⌅

Rubtsov et al., PRB (2005)

24
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Interaction expansion CT-INT 
Configuration space: all possible time-ordered vertex configurations

Weight: 

Monte Carlo updates: random insertion/removal of a vertex

w(�1, . . . , �k) = (�Ud�)k
�

⇥

det G
(��,�⇥)
0⇥ ({�i})

25

Rubtsov et al., PRB (2005)
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§ Impurity model given by

§ Expand partition function into powers of the hybridization term 

§ Trace over bath degrees of freedom yields determinant of 
hybridization functions F
Trbath[. . .] =

�

�

det M�1
� , M�1

� (i, j) = F�(� (c)
i � � (c†)

j )

Z =
�

k

1
2k!

⇥
d�1 . . .

⇥
d�2kTr

⇤
Te��(Hloc+Hbath)Hhyb(�1) . . .Hhyb(�2k)

⌅

F�(�i⇥n) =
�

p

|t�p |2

i⇥n � �p

H = Hloc + Hbath + Hhyb

Hloc = Un�n⇥ � µ(n� + n⇥)

Hhyb =
�

p,�

t�pc†�ap,� + h.c.

Hybridization expansion (CT-HYB)
Werner et al., PRL (2006)

Werner & Millis, PRB (2006)

Haule, PRB (2007)
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Hybridization expansion
Monte Carlo configurations consist of segments for spin up and down

Monte Carlo updates: random insertion/removal of (anti-)segments

Weight of a segment configuration: 

Determinant of a k x k matrix resums k! diagrams

Eliminates sign problem 

Werner et al., PRL (2006)

Werner & Millis, PRB (2006)

Haule, PRB (2007)

det

�
F�(� (c)

1 � � (c†)
1 ) F�(� (c)

1 � � (c†)
2 )

F�(� (c)
2 � � (c†)

1 ) F�(� (c)
2 � � (c†)

2 )

⇥

w
�
�⇥(c)
1 , �⇥(c†)

1 ; . . . ; �⇥(c)
k�

, �⇥(c†)
k�

⇥
= e�Uloverlap+µ(l�+l⇥)

⌃ ⇧⌅ ⌥
Trimp[...]

⇤

⇥

det M�1
⇥⌃ ⇧⌅ ⌥

Trbath[...]

d�2k�
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Solver Comparison - Matrix Sizes
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βt

0

50

100
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M
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Weak Coupling Algorithm
Hybridization Expansion
Hirsch Fye

U/t=4

28

CT-INT
CT-HYB
Hirsch-Fye
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Matrix Sizes - coupling dependence

βt=30
0 1 2 3 4 5 6 7

U/t
0

50

100

M
at

rix
 S

iz
e

Weak Coupling Algorithm
Hybridization Expansion

Typical region of interest:
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Equation of state of the 3D Hubbard model

30

Tuesday, July 9, 13



Matthias Troyer

DPHYS
Department of Physics

Institute for Theoretical Physics

What do  we want to know about the  Hubbard model? 

§ Quantities of interest
§ equation of state: density, energy, entropy, free energy

§ double occupancy, density and spin correlations

§ momentum distribution function

§ Experimentally relevant questions
§ How much does one need to cool to see antiferromagnetic ordering at the 

Néel temperature?

§ Reference data for thermometry and validation of experiments

§ Finally, use experiments to check simulations and approximations

§ Note: these are isolated systems at (ideally) constant entropy 
and not constant temperature

31
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Cluster Dynamical Mean Field Theory
Maier et al., Rev. Mod. Phys. 77, 1027 

Basis functions

Approximation: 
Systematic truncation by 
cluster sites Nc

‘Machinery’ for obtaining approximated self 
energy: Cluster DMFT. 

Cluster DMFT is a controlled approximation.

⌃(k, !) =
X

n

⌃n(!)�n(k) ⇡
NcX

n

⌃n(!)�n(k)

�n(k)
⌃n(!) Energy dependent, k-

independent self-energy

Variants of cluster DMFT: Dynamical Cluster Approximation (used here) and 
Cellular Dynamical Mean Field Theory: Differ in types of basis functions �n(k)
Within DCA:            chosen to be constant on patches in momentum space. �n(k)

18 36 48 56 64 84 100
32
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Going to larger impurity systems

33

§ CT-AUX and CT-INT
§ effort is polynomial (cubic) in impurity cluster size
§ sign problem returns when impurity is bigger than one site
§ restricted to Hubbard-like models
§ used for up to 100 orbitals

§ CT-HYB
§ effort is exponential in impurity cluster size since we need to 

diagonalize the local Hamiltonian
§ can do arbitrary interactions, e.g. full Coulomb
§ used for up to 5-7 orbitals in LDA+DMFT simulations
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Extrapolation of DCA results
§ Extrapolation of DCA results to infinite cluster size is crucial

§ Large clusters are needed since there is structure in momentum space!

34

S. Fuchs et al,. PRL (2011) E. Gull et al,. PRB (2011)
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Perfect agreement with 
lattice QMC calculations at 
half filling at all 
temperatures

10-th order high-T series 
works down to T/t ≈ 1.4
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Comparison of DCA to high-T series and lattice QMC
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Cluster size dependence

36

S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. 
Kozik, T. Pruschke, M. Troyer, PRB (2011)

Non-local (momentum dependent) physics beyond DMFT is important 
for many quantities! 
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High temperature T/t = 1: 
Exact convergence of the self 
energy as a function of cluster size.

Intermediate temperature T/t = 0.5: 
Convergence visible, extrapolation 
needed.

Low temperature T/t = 0.35: 
Convergence not obvious, critical 
regime with diverging correlation 
length not well captured.

Non-trivial momentum 
dependence!
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DCA results

§ Full thermodynamic data available for U/t ≤ 12, T ≥TN, all fillings
§ energy
§ entropy
§ density
§ free energy
§ double occupancy
§ nearest neighbor spin correlation

§ Can be used for validation and thermometry of fermionic 
experiments down to lower temperature

37
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Spin correlation thermometry

§ The nearest neighbor spin correlation is very sensitive to 
temperature close to TN and an ideal thermometer

38

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 0.5 1 1.5 2 2.5 3 3.5 4

〈S
z i
S

z j
〉 〈

i,
j〉

T/t

-0.06

-0.04

-0.02

0

0 0.2 0.4 0.6 0.8 1

〈S
z i
S

z j
〉 〈

i,
j〉

filling
U = 4 t
U = 6 t
U = 8 t

U = 10 t
U = 12 t

T = 0.3 t
T = 0.5 t
T = 0.8 t
T = 1.6 t

Tuesday, July 9, 13



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

s

|!r|

T = 0.4 t

T = 0.5 t

T = 0.6 t

T = 1 t

T = 2 t

T = 4 t

Matthias Troyer

DPHYS
Department of Physics

Institute for Theoretical Physics

Entropy in a trap (using a local density approximation)

§ Current experiments: s ≈ 1.2
§ Homogeneous system: sN ≈ 0.41(3)
§ Trap captures entropy in metallic shell:  sN ≈ 0.65(6) is sufficient!
§ It will be a bit easier to reach the Néel state in a trap!

Tuesday, July 9, 13



§ Measurements of nearest neighbor spin correlations on anisotropic 
cubic lattices

§ Stronger correlations in anisotropic lattice: closer to Néel order?

b

Anisotropic cubic lattice

t

t

ts ts

x
y

z
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Recent experiments by the Esslinger group
D. Greif et al, Science (in press), arXiv 1212.2634
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Comparison against QMC simulations

41

§ Good agreement at higher temperatures
§ Smaller than expected spin correlations at lower temperature

§ heating during loading?
§ insufficient time to equilibrate?
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We are not closer to the Néel temperature

§ Temperature is slightly lower in the anisotropic case but the 
Néel temperature is even lower

§ QMC simulations show very short range magnetic correlations

42
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Summary

§ CT-QMC algorithms for quantum impurity problems have 
become the new state of the art
§ faster
§ higher accuracy
§ more flexible

§ The Hubbard model can be solved accurately down to T≈0.3t,
§ much lower than accessible in cold atom experiments
§ provides quantitative validation and interpretation to experiments

§ Extensions of existing solvers are of importance in materials 
simulations
§ frequency-dependent interactions
§ phonons, ...
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