

CT-QMC solvers for quantum impurity problems and the equation of state of the 3D Hubbard model

Matthias Troyer (ETH Zurich)

E. Gull et al., Rev. Mod. Phys. 83, 349 (2011)

"Optical lattice emulators" as quantum simulators

Ask experimentalists to use cold atomic gases in an optical lattice to "solve" the Hamiltonian that we cannot solve.

How do we detect these quantum gases ? release the atoms faster atoms fly farther the image reflects the momentum distribution

Bose-Einstein condensation in cold atomic gases

- At close to zero temperatures, a macroscopic fraction of all atoms in a Bose gas occupy the same quantum state
- A diverging occupation of the zero momentum state

Ultracold atoms in optical lattices

- Take a dilute gas of fermions at nK temperatures
- Add a standing wave optical lattice
- Obtain a controlled, clean and tunable Hubbard model

$$t, U << \hbar \omega$$
 $t = U$

fermionic momentum distribution function (Esslinger group)

Does it work for bosonic models that we can solve?

- We model all important details of the experiment
- The experiment should better reproduce what we get!
- and it does: Trotzky, Pollet et al, Nature Phys. 6, 998 (2010).

SCIENCE VOL 330 17 DECEMBER 2010 BREAKTHROUGH OF THE YEAR THE RUNNERS-UP

Quantum Simulators Pass First Key Test

Simulating fermions

- There is no "black box" solution for all fermion problems
 - Fermionic sign problem prevents large-scale simulations
 - We need to think hard and find good (approximate) methods
- We can still simulate fermions in some regimes:
 - High-temperature expansions: valid down to T ≈1.4 t
 - Dynamical mean field theory (DMFT) approximation and cluster extensions to lower temperatures
 - Diagrammatic QMC methods for intermediate interactions
- We might not be able to reach the ground state, but we can simulate the relevant regime for cold atoms
- I will discuss CT-QMC solvers for cluster versions of DMFT

CT-QMC for the Hubbard model

Diagrammatic expansion in interaction

but easy to sum all of them into a determinant

Matthias Troyer

Diagrammatic expansion in interaction

A.N. Rubtsov & A.I. Lichtenstein, Pis'ma v JETP 80, 67 (2004)

A.N. Rubtsov, V.V. Savkin, A.I. Lichtenstein, Phys. Rev. B 72, 035122 (2005)

$$Z = \sum_{\xi} D_n(\xi) = \sum_p \int ... \int (\vec{dr} d\tau)^p (-U)^p \det^2 G_{\uparrow}(\vec{x}_i, \vec{x}_j)$$

Sign-problem free for attractive interactions U<0 and balanced population of up and down spins

Repulsive interactions

- Repulsive interactions: U>0
- (-U)ⁿ can be negative: sign problem
- Perform particle-hole transformation on one spin-species
 U changes sign

$$Un_{i,\uparrow}n_{i,\downarrow} \to Un_{i,\uparrow}(1-n_{i,\downarrow}) = Un_{i,\uparrow} - Un_{i,\uparrow}n_{i,\downarrow}$$

Equal population condition changes to a half-band filling condition

$$n_{i,\downarrow} = n_{i,\downarrow} \to n_{i,\downarrow} = 1 - n_{i,\downarrow} \Rightarrow n_{i,\downarrow} + n_{i,\downarrow} = 1$$

We can simulate repulsive fermions (only) at half filling

How can we do updates in continuous time?

Simplified example:

$$Z = \sum_{k=0}^{\infty} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \cdots \int_0^\beta d\tau_k \frac{w(k)}{k!},$$

 CT-QMC updates consist of insertion and removal of interaction vertices.

Acceptance probabilities are not infinitesimal if done right

Advantages of continuous time

No need to extrapolate in time step

- a single simulation is sufficient
- no additional errors from extrapolation
- Less memory and CPU time required
 - Instead of a time step Δ_T << t we only have to store changes in the configuration happening at mean distances ≈ t
- Conceptual advantage

we directly sample a diagrammatic perturbation expansion

Dynamical mean field theory

Tuesday, July 9, 13

Mean-field theory for Ising Model

• Lattice model (nearest neighbor coupling J, coordination number z)

$$H_{\text{latt}} = -J \sum_{i,j} S_i S_j$$

• Single site model ($m_i = \langle S_i \rangle$, $h_{\text{eff}} = J \sum_{0,i} m_i = zJm$)

 $H_0 = -\frac{h_{\text{eff}}S_0}{N_0}$

h_{eff}↓↑

- Self-consistency condition
 - $m = \langle m_0 \rangle_{H_0}$ (= tanh(βh_{eff}) = tanh($\beta z J m$))

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamical mean field theory

• Lattice model

$$H_{latt} = U \sum_{i} n_{i\uparrow} n_{i\downarrow} - t \sum_{\langle i,j\rangle,\sigma} c^{\dagger}_{i\sigma} c_{j\sigma}$$

Metzner & Vollhardt, PRL (1989) Georges & Kotliar, PRB (1992)

Quantum impurity model

$$H_{imp} = Un_{\uparrow}n_{\downarrow} - \sum_{k,\sigma} (t_k c_{\sigma}^{\dagger} a_{k,\sigma}^{bath} + h.c.) + H_{bath}$$

t

Tuesday, July 9, 13

Metzner & Vollhardt, PRL (1989)

impurity model

Georges & Kotliar, PRB (1992)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Dynamical mean field theory

Self-consistency loop

lattice model

Computationally expensive step: solution of the impurity model

Hirsch-Fye QMC solver

J.E. Hirsch & R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

- Uses M discrete time steps $\Delta \tau = \beta/M$
- Decouples quartic interaction using Hubbard-Stratonovich transformation and auxiliary fields s

$$e^{-\Delta\tau U(n_{\uparrow}n_{\downarrow}+1/2(n_{\uparrow}+n_{\downarrow}))} = \frac{1}{2}\sum_{s=\pm 1}e^{\lambda(U,\Delta\tau)s(n_{\uparrow}+n_{\downarrow})}$$

Integration over fermionic Gaussian integrals gives determinants

$$Z = \sum_{s_i} \det G_{0,\uparrow}^{-1}(s_1, ..., s_N) G_{0,\downarrow}^{-1}(s_1, ..., s_N)$$

- Monte Carlo sampling of auxiliary fields s_i
- Was the standard QMC solver for two decades

CT-QMC: Continuous time diagrammatic QMC solvers

Diagrammatic (continuous time) QMC

- General recipe:
 - 1. Split Hamiltonian into two parts:
 - 2. Use interaction representation in which $O(\tau) = e^{\tau H_1} O e^{-\tau H_1}$
 - 3. Write partition function as time-ordered exponential and expand in powers of H_2

$$Z = Tr \left[e^{-\beta H_1} T e^{-\int_0^\beta d\tau H_2(\tau)} \right]$$

= $\sum_k \int_0^\beta d\tau_1 \dots \int_0^\beta d\tau_k \frac{(-1)^k}{k!} Tr \left[e^{-\beta H_1} T H_2(\tau_1) \dots H_2(\tau_k) \right]$

 $H = H_1 + H_2$

CT-QMC algorithms differ by choice of *H*₁ and *H*₂

- For a review see Gull et al, Rev. Mod. Phys. 83, 349 (2011)
- Interaction expansion CT-INT
 - Rubtsov et al. (2005)
 - Expand in interactions, treat quadratic terms exactly
- Auxiliary field method CT-AUX
 - Rombouts et al., (1999), Gull et al. (2008)
 - Decouple interactions using auxiliary fields
- Hybridization expansion CT-HYB
 - Werner et al., (2006), Werner & Millis (2006), Haule (2007)
 - Expand in hybridizations, treat local terms exactly

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CT-AUX

Impurity model given by

$$H = H_0 + H_U$$

$$H_0 = K/\beta - (\mu - U/2)(n_{\uparrow} + n_{\downarrow}) + H_{hyb} + H_{bath}$$

$$H_U = U(n_{\uparrow}n_{\downarrow} - (n_{\uparrow} + n_{\downarrow})/2) - K/\beta$$

Expand partition function into powers of the interaction term

$$Z = \sum_{k} \frac{(-1)^{k}}{k!} \int d\tau_{1} \dots \int d\tau_{k} Tr \Big[Te^{-\beta H_{0}} H_{U}(\tau_{1}) \dots H_{U}(\tau_{k}) \Big]$$

Decouple the interaction terms using

$$-H_U = \frac{K}{2\beta} \sum_{s=\pm 1} e^{\gamma s (n_{\uparrow} - n_{\downarrow})}, \quad \cosh(\gamma) = 1 + \frac{\beta U}{2K}$$

then integrate over fermionic Gaussian integrals

CT-auxiliary field QMC (CT-AUX)

Rombouts et al., PRL (1999) Gull et al., EPL (2008)

Configuration space: all possible time-ordered spin configurations

- Monte Carlo updates: random insertion/removal of a spin
- Formally similar to discrete-time Hirsch-Fye method

Interaction expansion CT-INT

Rubtsov et al., PRB (2005)

Impurity model given by

$$H = H_0 + H_U$$

$$H_0 = -\mu(n_{\uparrow} + n_{\downarrow}) + \alpha_{\uparrow}n_{\downarrow} + \alpha_{\downarrow}n_{\uparrow} + H_{hyb} + H_{bath}$$

$$H_U = U(n_{\uparrow} - \alpha_{\uparrow})(n_{\downarrow} - \alpha_{\downarrow})$$

Expand partition function into powers of the interaction term

$$Z = \sum_{k} \frac{(-1)^{k}}{k!} \int d\tau_{1} \dots \int d\tau_{k} Tr \Big[Te^{-\beta H_{0}} H_{U}(\tau_{1}) \dots H_{U}(\tau_{k}) \Big]$$

- Wick's theorem yields weight of vertex configurations
- alpha-terms necessary to avoid sign problem

Interaction expansion CT-INT

Rubtsov et al., PRB (2005)

• Configuration space: all possible time-ordered vertex configurations

- Weight: $w(\tau_1, \dots, \tau_k) = (-Ud\tau)^k \prod_{\sigma} \det G_{0\sigma}^{(\alpha_{\uparrow}, \alpha_{\downarrow})}(\{\tau_i\})$
- Monte Carlo updates: random insertion/removal of a vertex

Hybridization expansion (CT-HYB)

Impurity model given by

$$H = H_{loc} + H_{bath} + H_{hyb}$$
$$H_{loc} = Un_{\uparrow}n_{\downarrow} - \mu(n_{\uparrow} + n_{\downarrow})$$
$$H_{hyb} = \sum_{p,\sigma} t_p^{\sigma} c_{\sigma}^{\dagger} a_{p,\sigma} + h.c.$$

Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007)

Expand partition function into powers of the hybridization term

$$Z = \sum_{k} \frac{1}{2k!} \int d\tau_1 \dots \int d\tau_{2k} Tr \Big[Te^{-\beta(H_{loc} + H_{bath})} H_{hyb}(\tau_1) \dots H_{hyb}(\tau_{2k}) \Big]$$

 Trace over bath degrees of freedom yields determinant of hybridization functions F

$$Tr_{bath}[\ldots] = \prod_{\sigma} \det M_{\sigma}^{-1}, \qquad M_{\sigma}^{-1}(i,j) = F_{\sigma}(\tau_i^{(c)} - \tau_j^{(c^{\dagger})})$$
$$F_{\sigma}(-i\omega_n) = \sum_p \frac{|t_p^{\sigma}|^2}{i\omega_n - \epsilon_p}$$

Hybridization expansion

Werner et al., PRL (2006) Werner & Millis, PRB (2006) Haule, PRB (2007)

• Monte Carlo configurations consist of segments for spin up and down

- Monte Carlo updates: random insertion/removal of (anti-)segments
- Weight of a segment configuration:

$$w(\tau_{1}^{\sigma(c)},\tau_{1}^{\sigma(c^{\dagger})};\ldots;\tau_{k_{\sigma}}^{\sigma(c^{\dagger})},\tau_{k_{\sigma}}^{\sigma(c^{\dagger})}) = \underbrace{e^{-Ul_{overlap}+\mu(l_{\uparrow}+l_{\downarrow})}}_{Tr_{imp}[\ldots]} \prod_{\sigma} \underbrace{\det M_{\sigma}^{-1}}_{Tr_{bath}[\ldots]} d\tau^{2k_{\sigma}}$$
Determinant of a k x k matrix resums k! diagrams
$$\det \left(\begin{array}{c} F_{\sigma}(\tau_{1}^{(c)}-\tau_{1}^{(c^{\dagger})}) & F_{\sigma}(\tau_{1}^{(c)}-\tau_{2}^{(c^{\dagger})}) \\ F_{\sigma}(\tau_{2}^{(c)}-\tau_{1}^{(c^{\dagger})}) & F_{\sigma}(\tau_{2}^{(c)}-\tau_{2}^{(c^{\dagger})}) \end{array}\right)$$
Eliminates sign problem

Tuesday, July 9, 13

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Solver Comparison - Matrix Sizes

Matrix Sizes - coupling dependence

Equation of state of the 3D Hubbard model

What do we want to know about the Hubbard model?

- Quantities of interest
 - equation of state: density, energy, entropy, free energy
 - double occupancy, density and spin correlations
 - momentum distribution function
- Experimentally relevant questions
 - How much does one need to cool to see antiferromagnetic ordering at the Néel temperature?
 - Reference data for thermometry and validation of experiments
 - Finally, use experiments to check simulations and approximations
- Note: these are isolated systems at (ideally) constant entropy and not constant temperature

Cluster Dynamical Mean Field Theory

Maier et al., Rev. Mod. Phys. 77, 1027

$$\Sigma(k,\omega) = \sum_{n} \Sigma_n(\omega)\phi_n(k) \approx \sum_{n}^{N_c} \Sigma_n(\omega)\phi_n(k)$$

Approximation: Systematic truncation by cluster sites N_c

 $\phi_n(k)$

 $\Sigma_n(\omega)$

Basis functions

Energy dependent, kindependent self-energy 'Machinery' for obtaining approximated self energy: Cluster DMFT.

Cluster DMFT is a controlled approximation.

Variants of cluster DMFT: Dynamical Cluster Approximation (used here) and Cellular Dynamical Mean Field Theory: Differ in types of basis functions $\phi_n(k)$ Within DCA: $\phi_n(k)$ chosen to be constant on patches in momentum space.

Going to larger impurity systems

CT-AUX and CT-INT

- effort is polynomial (cubic) in impurity cluster size
- sign problem returns when impurity is bigger than one site
- restricted to Hubbard-like models
- used for up to 100 orbitals

CT-HYB

- effort is exponential in impurity cluster size since we need to diagonalize the local Hamiltonian
- can do arbitrary interactions, e.g. full Coulomb
- used for up to 5-7 orbitals in LDA+DMFT simulations

Extrapolation of DCA results

- Extrapolation of DCA results to infinite cluster size is crucial
 - Large clusters are needed since there is structure in momentum space!

Comparison of DCA to high-T series and lattice QMC

S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, T. Pruschke, M. Troyer, PRB (2011)

Non-local (momentum dependent) physics beyond DMFT is important for many quantities!

DCA results

- Full thermodynamic data available for $U/t \le 12$, $T \ge T_{N}$, all fillings
 - energy
 - entropy
 - density
 - free energy
 - double occupancy
 - nearest neighbor spin correlation
- Can be used for validation and thermometry of fermionic experiments down to lower temperature

Spin correlation thermometry

• The nearest neighbor spin correlation is very sensitive to temperature close to T_N and an ideal thermometer

Matthias Troyer

Entropy in a trap (using a local density approximation)

- Current experiments: $s \approx 1.2$
- Homogeneous system: $s_N \approx 0.41(3)$
- Trap captures entropy in metallic shell: $s_N \approx 0.65(6)$ is sufficient!
- It will be a bit easier to reach the Néel state in a trap!

Recent experiments by the Esslinger group

D. Greif et al, Science (in press), arXiv 1212.2634

- Measurements of nearest neighbor spin correlations on anisotropic cubic lattices
- Stronger correlations in anisotropic lattice: closer to Néel order?

Comparison against QMC simulations

- Good agreement at higher temperatures
- Smaller than expected spin correlations at lower temperature
 - heating during loading?
 - insufficient time to equilibrate?

We are not closer to the Néel temperature

- Temperature is slightly lower in the anisotropic case but the Néel temperature is even lower
- QMC simulations show very short range magnetic correlations

Summary

- CT-QMC algorithms for quantum impurity problems have become the new state of the art
 - faster
 - higher accuracy
 - more flexible
- The Hubbard model can be solved accurately down to $T \approx 0.3t$,
 - much lower than accessible in cold atom experiments
 - provides quantitative validation and interpretation to experiments
- Extensions of existing solvers are of importance in materials simulations
 - frequency-dependent interactions
 - phonons, ...