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  Molecular dynamics has been a dream within  
      QMC until few years ago  not only because  
      it is much more expensive than DFT.     
 i)  A new paradigm wave function is used to 

optimize efficiently within QMC: full ab-initio, 
full many body approach. 

 ii)  Forces with finite variance, how to. 
 iii) Efficient calculation of forces, how to.  
 iii) Damped molecular dynamics enhance  
           efficiency. 

Outline/Motivations 

   Examples: hydrogen and water 



RVB as projected BCS 
1973: Anderson formulation of RVB theory on the 
triangular 2D Heisenberg antiferromagnet S=1/2 
with spin frustration  
P. W. Anderson, Mat. Res. Bull 8, 153 (1973) 
 
The number of bonds grows exponentially with the 
number of sites, but Anderson found a compact 
way to represent the RVB wave function. 

1987: Anderson theory of High temperature superconductivity 
P. W. Anderson, Science 235, 1196 (1987)  

Gutzwiller projector forbids double 
occupancies on the same site 

BCS wave function: singlet 
pairing between electrons 

P. W. Anderson 



Spatial representation of RVB 
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We fixed N, the number of particles (canonical ensemble): 
N/2 singlet pairs (valence bonds) 
 
                   Fourier transform of            is the pairing function 
 
Pairs do not overlap for the action of the Gutzwiller projector  
 
The RVB wave function includes all possible combinations of 
valence bond configurations 
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Snapshot (a single configuration) of the RVB state on 
a 2D triangular lattice introduced by Anderson & 
Fazekas PM ‘74 
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       TurboRVB : the RVB for real N-electrons  

  The Jastrow factor is analogously treated, 
  extending the Gutzwiller projection. 
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Just emphasize the difference with DFT 

 In DFT we have to know only the density 
    one function of one particle coordinate 
                             n(r) 
     Simple  Min{n(r)}  Functional[n(r)] 

 In this new RVB  approach the functional is  
    the energy expectation value and : 

Min{f(r,r’), u(r,r’)}  Functional[f(r,r’),u(r,r’)] 
 

Much more difficult … but not impossible 



Electron-ion Jastrow 

Electron-ion-electron-ion Jastrow (4-body) 

M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. 2004 

El.-el. cusp conditions 

El.-ion cusp conditions 

Most general form for the Jastrow factor 



But why we have to be so complicated with J? 

Consider two closed shell atoms e.g. He2 at large  
distance, then the weak-vdW interactions read: 

 A variational wf allows the second order  
contribution in U to the energy, namely the vdW, 
if  it is compatible  with the   first order in UvdW 



  

But  

vdW  parametrization of the Jastrow J=exp(u) 
contains at least p orbitals on the different atoms 
                 A           and          B 

Contained in the  general Jastrow factor in TurboRVB 



The Berylllium dimer  
binding ~0.1ev bond length ~4.6a.u. 

i) Beryllium (Z=4) atom  2s-2p degeneracy 
     Hybridize in the molecule but…. 
ii) Hartree-Fock is not able to bind (unstable) 
iii)  Big success of DFT (LDA) but binding energy 
                            > 0.5 eV !!! 

Recent attempts to improve DFT by adding vdW  
with (or without) consistent methods (RPA...,+…).  



No success so far  

  
 
 
 

From H.W. Nguyen and G. Galli JCP 2010 



Quantum chemists have succeeded to solve this 
problem by using several (billions!!!) determinants  

CI- J.M.L. Martin Chem. Phys. Lett. 333,399(1999)  

But does it mean they have understood? 

In this molecule there exists an accurate balance  
between hybridization 2s-2p orbitals (uncorrelated) 
and correlated vdW promotion 2s-2p.   



The Beryllium dimer with one determinant and J 
Difference  now-(2010) Jbasis 4s3p2d-(4s3p)converged  



Remarks 

•  Without 4-body Jastrow no way to bind the 
molecule (TurboRVB has this important tool). 

• DMC in this case goes in the wrong direction … 
overbind by 0.04eV: 

    i) it may be experiments are wrong. 

    ii) DMC does not conserve continuous 
symmetries  (e.g. spin, angular momentum) .  

 Ansatz better than JHF  also in the wrong  

   direction (do not bind) because the atom is 
improved much more than the weak bond (JAGP)  

 



What is its relation with standard HF 
molecular orbitals? 

Let us consider now the determinant part of the  
RVB wavefunction the so called AGP or BCS wf. 
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The eigenvalue spectrum of the AGP  is ‘’like’’ a  
Fermi distribution. Unoccupied  HF-DFT- orbitals 
 are ‘’partially’’ occupied  to gain RVB energy.  

Thus AGP is a generalization of Slater Det., and  
certainly improves energy of uncorrelated wf’s. 

IF fk>0 for k>N/2  in the thermodynamic limit:  
BCS superconductor or RVB paired insulator.  



The matrix  » is the density matrix in a  clean 
 uncorrelated system and represnts a  physical 
description of  a mean-field Slater Determinant or 
a BCS superconductor: 
i) Decays as    1/|el. Distance|   in a metal 
ii) Exponentially in an insulator or a  
      superconductor with a gap. 
iii) in between for a gapless superconductor. 

Correlation (Jastrow) can turn a metal into an  
insulator (Capello .. SS..  PRL 2004)  
A paired state is not necessarily a superconductor 
, rather can be a Mott insulator. 



Optimization strategy in TurboRVB: correlated HF   

Start n=0 with  
0
kψ taken from TurboRVB-LDA (PRB’10) in the same basis. 

a) At iteration n optimize     and J at  fixed    
b) Diagonalize ansatz   
c) Go to (a)  until convergence.  

ijλ

After many iterations  molecular orbitals are obtained 
and best correlated J+Slater det.  ansatz is obtained. 



Main advantages: 

Easy to use symmetries, e.g. translation invariance 
in a solid :    )(, jiji RR


−= λλ

Easy to reduce number of variational parameters, 
e.g.  locality,  optimize only  
from N2 variational parameters to N. 

ξλ <− jiji RR
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Follow up:  we can optimize efficiently  
molecular orbitals of standard J+Slater ansatz. 
Use of locality (above) possible also in metals. 



         Rmax      # parameters   Err Energyy (H) 

         0           330/1542         0.0148(5)/022(6) 

         2         368/1813        0.0103(5)/0.005(1) 

         3         596/3003        0.0034(3)/0.001(1) 

         4        1026/5108        0.0015(3)/0.004(1) 

         5        1483/8443        0.0010(3)/0.000(1) 

         •         1761/34181        0/? 

Test on metallic Hydrogen 54/256 protons rs=1.28 
Total energy = -28.849(2)/128.236(4)H   J+LDA error = 0.02/0.08H 

With few parameters we improve J+LDA, that is  
 good, but difference in forces may be substantial. 
NB  DFT favors metallic atomic phase.  

Chosen 



Forces: How to deal with M>>1  atoms ? 

If we apply finite difference methods we need to 
compute: 

Thus 3M+1 independent calculation of the energy: 
                a too heavy  cost for M large.  



 
 and thanks also to Tapenade: 
http://www-sop.inria.fr/tropics/tapenade.html 
 
Automatic derivation of  the most boring routines  
 are done automatically. 
 
In practice 10000 lines in few seconds of work. 
After that some trivial optimization. 
 

SS & Luca Capriotti, JCP 133, 234111(2010)  

Algorithmic differentiation helped much 
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# Water molecules

Cpu time referenced to simple VMC (only energy) 
for computing all 3M force components in water. 

Use of pseudopotentials & Jastrow possible 
For DMC the overhead to compute all forces is ~0  

x 4  



Now we have efficient forces. 
Structural optimization and dynamics 

possible with QMC? 

The first attempt of  MD+QMC(DMC): 
J. C. Grossman and L. Mitas PRL ’05 
But here we want to use QMC forces… 



With QMC each MD iteration can be done with a   
short and noisy evaluation of forces (much faster…) 
C. Attaccalite and S. S. PRL’08  

In QMC                                  Covariance matrix 

So we have the  noise for free if   



The most important thing is to choose the  
largest possible time step ”  without too much error 

Discretization of the damped Langevin equation 

Since the equation at fixed x are linear in v we can  
integrate exactly the equation assuming x does not  
change much in the interval   t,t+”   no matter how  
large is the value of the friction ³ (x) 



and…. 





At the end of this lengthy but straightforward work 
one improves much the standard Euler integration… 

One water molecule 
in a field at 300K 

”
 



32 water mol.  



This is like a dream in Monte Carlo so far… 
A molecular dynamics with a variational wf. 
 
Forces are computed at each step at the optimal 
minimum of variational parameters,i.e. to enforce  
the Borh-Oppenheimer constraint, namely  
6 optimization steps each iteration.  
 
But it took 3-5 years to understand that…. 
i) Large time steps are necessary to equilibrate. 
ii) Compact (few parameters) and well parametrized 
wf in a local basis  for an efficient optimization.  



And now let’s talk about Hydrogen. 
 
A metallic liquid phase is difficult to simulate  
without a sample system containing several 
 atoms.  
 
In this film we want to show 256 Hydrogen   
even at 425  Gpa and 600K, molecular bonds are 
clearly formed during the simulation. 
Notice we start with the expected atomic liquid  
DFT solution. 





The pressure is strongly size dependent at 600K  

rs=1.28 



10 ” Ä  

DMC vs VMC 



The accepted first order transition is weak at 600K 



But it is a bit more evident if we look the g(r) 

Jump 



At large temperature is instead clear 

2400K 



To show the power of QMCMD  we take     
atomic liquid at rs=1.31 and start MD at rs=1.32  



            Comparison with previous work 
 Old claim same authors CEIMC  no first order 
Now with better DFT larger critical pressure (~200Gpa)  



First order transition at very large P 

Pushed to ~500Gpa 
            at 600K 



We have found a sharp crossover around 400Gpa 
of the average lifetimes of H2 molecules.  

Thus experiments may have just seen the crossover 
not the real metallic phase, still out of reach.  

1st order  



Conclusions 
Realistic simulation of liquids are now possible also 
within QMC, at least  VMC.  256 ions are not so far 
from what has been done within DFT (432H). 

Long range interactions-so difficult for DFT-are very 
accurately described by the Jastrow factor: 

 the Be2 molecule is successfully described. 

 

By using locality (local basis, short range couplings) 
the number of variational parameters becomes 
affordable even for large number of atoms and 
efficient MD QMC is possible.  



• TurboRVB Quantum Monte Carlo package 
http://turborvb.qe-forge.org/index.html 
main developers: 
Sandro Sorella 
Michele Casula 
Claudio Attaccalite 
Leonardo Spanu 

• Funding: 

MIUR-CNR, Riken-Tokio, PRACE… 

• Computational support 

CINECA Bologna 
CCRT at CEA 
SISSA 

http://turborvb.qe-forge.org/index.html


And now let us discuss about  graphene 
the solid state version of benzene. 

Is the RVB energy gain completely irrelevant? 



Graphene layers can be experimentally prepared  



Recent exciting result on the Hubbard model… 
Muramatsu group, Nature 2010.  

No broken symmetry but a full  gap at U/t~4… 
                     this is an RVB phase… 



Graphene  

  

Lanzara group, PRL’10 
Almost perfect Dirac spectrum:  

||)( kvKkE F±=+
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We have minimized the energy in a large  
Basis 11s7p5d2f/atom for up to 112 C atoms 
Within Periodic Boundary conditions. 
 
~2000 variational parameters  
Several iterations of state of the art QMC  
Optimization Jastrow + AGP with fixed number  
 n* of molecular orbitals n*> #el/2. 
 
Huge cpu time ~100000 core hours. 



The  projected pairing function   band−π

xy-plane 
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Instead for the valence projected pairing function 
             in the  HTc-parent-compound CaCuO2 

Huge energy gain ~ 1eV/Cu atom !!! 
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Iterations

We started with a mixed s-wave/d-wave 10/1  
pairing and … 

After ~2000 iterations the s-wave is gone and 
 d-wave is definitively the right pairing in cuprates 



Back to graphene 

How can we determine a BCS effective low energy 
Hamiltonian for our pairing function that we  
have obtained by energy minimization?  

Remind, after the minimization we have  direct  
access to the eigenvalues fk of the pairing function 
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Due to the presence of next-neighbor s-wave 
pairing, a small gap ~0.01eV (t=2.8eV)  is found. 

No broken A-B symmetry no time-reversal, 
Just an RVB spin-liquid makes the effect. 



Conclusions 

The energy gain is tiny (<0.01ev/C) much smaller  
than in cuprates (~1eV/Cu), thermodynamic limit?.  

Back to RVB theory for graphene? 

The RVB wave function has been tested on   
several compounds up to graphene (112 C supercell) 

In graphene we have evidence of an s-wave RVB, 
Marginally gapped due to second neighbor BCS.   

Contrary to lattice simulation (Baskaran PRB’10) 
the Coulomb repulsion favors s-wave pairing. 
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The generalized Langevin dynamics 



Discretization of the Langevin dynamics 





The 16 H case with PBC, MD with friction 

21 RVB liquid phase possible at high pressure  



(a.u.) 0R 3.82(20) 4.1 (1) 3.721   ? 

  ?  Type  

299.7 285(18)  468   ? 

Exp. RVB DFT HF Method 

)cm( -1
0ω

u∆
7 −∑g

9 −∑g
9

A benchmark correlated dimer  
            

2Fe

It is possible to explain  the  
photoemission spectrum in the anion          
Leopold JPC (1988)  

−
2Fe

22 



DFT  occupation molecular orbitals  

23 



The right  occupation is due to correlation 

Confirmed also by recent CI, Hubner  JPC’02 

higher  eV 0.7  is   

  wfour RVB Within
7

u∆

−∑u
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Explains the         exp. −
2Fe



Iron dimer (II) 

9
g
−Σ

LRDMC equilibrium distance: 4.08(5) 
(Indirect) experimental value: ~ 3.8  
Harmonic frequency: 284 (24) cm-1 
Experimental value: ~ 300 (15) cm-1 



Conclusions and Perspectives  

Final goal: 
simulation of complex correlated electron systems 

by Monte Carlo calculation  and beyond DFT  

-exploiting the RVB=BCS+J for molecular calculations  
M. Casula and S. Sorella JCP ’01 
M. Casula C. Attaccalite and S.S. JCP  ‘04   
The Iron dimer a successful test case relevant for biophysics                               

-Possible stable low-temperature high-pressure  liquid phase for hydrogen  

-d-wave superconductivity in strongly correlated models  

26 



Lattice GFMC  

Green function: 

Lattice hamiltonian: ∑∑ ++−= +
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From continuous to lattice 

Kinetic term 
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Separation of core and valence dynamics for heavier atoms 
and molecules  ⇒ two hopping terms in the kinetic part 

)()()1()()( 2aOxpxpx ba +Ψ∆−+Ψ∆≈∆Ψ

p can depend on the distance from the nucleus      

0)(    and    1)0(    , if =∞=< ppba

Moreover, if b is not a multiple of a, the random walk can 
sample all over the space!  

Our choice: 2 1
1
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r

rp
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From lattice to pseudo lattice (dense continuum) 



Comparison with the ‘’best’’ DMC 
(Umrigar,Nightingale,Runge ’93) 

)(  aτ∆

electrons all atom   C



Non local pseudo possible!!! 

1) No localization approximation employed 
2) Still variational upper bound theorem holds 
    exactly as in the lattice fixed node 
3) It works also without Jastrow optimization 
4) The fixed node energy depends only on the  
nodal  structure and  weakly on the amplitudes 

For heavy atoms Z>20  it is impossible to avoid them 
(see L.Mitas PRB 49(6), 4411 (1994)) 



The disease of the localization approximation 
core) ( electrons    withpseudoatom   24C



Why is that? 

−
+

Nodal surface 

non local move 

By neglecting the allowed non local moves the 
localization approximation   infinitely negative 
attractive potential close to the nodal surface.  
It  works only for very good trial function. 

+



Targets 

AIM 
• look for Monte Carlo algorithms that can deal with atoms 
beyond the first row (all electrons) 
• find a “good” trial wave function able to get correlation and 
to treat molecular bonds 

 The pseudo-lattice approach can improve the efficiency? 
Possible  use of pseudopotentials within fully   variational 
DMC calculations even for heavier atoms?  



HF 38% 

HF+J 14% 

AGP+J 6.5% 

DMC+AGP+J 1% 

Accuracy in the total energy (~76Ry) of   C 
 as compared with the ionization energy 11.26eV 

For poor accuracy also the HF is enough 



1) For given  energy accuracy  per ion a  simple  
algorithm (N^3)  is enough: no (sign) problem 

2) For correlation functions we need  an  
   accuracy ~1/N (below the gap) unfortunately  

3) I do not see any hope for this, so far any  
    improvement (like DMC) reduces the  
    energy accuracy by a factor at most.     

4) The realistic hope is the effective Hamiltonian 



A short review of  fixed node approximation 
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1) It works in configuration space x: electrons and spins given  

2) Given any wave function          an Hamiltonian  is found  ( )G xψ
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3) An effective hamiltonian is studied  ‘’closer’’ to H: 
             ( )   with constraint x | 0eff

G GH H V xδ ψ= − >

Note: exact for bosons and in the classical limit 0h →



‘’Philosophy’’ of the approach 

Assume there are physical Hamiltonian that describe   
 a phase   and are therefore stable away from critical points: 

H H Vδ→ +
The phase  remains stable  for physical perturbation   Vδ
With lattice fixed node we can simulate  H with several              Vδ

If           is stable than we can say that         may represent 
a ground state of some stable hamiltonian (not necessarily H)   

Gψ Gψ

For practical purposes           is taken by minimizing the energy of H  Gψ



Ground state Properties 
 of  stable  Hamiltonians Solution of model Hamiltonians 

Properties of ‘’reasonable’’ 
        wave functions  

? ? ? 

? ? ? 

? ? ? 

? ? ? ? ? ? 

? ? ? 



Effective hamiltonian approach for 
 strongly correlated lattice models            

 Outline of the lecture: 
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The Lanczos algorithm in QMC: 
From lattice model  to continuous models? 
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Lanczos with QMC on lattice models (L sites): 
                                                                      p+1 
For p>1 Lanczos steps   #operation /MC ~ L 
 
 
Always polynomial at fixed p. 
Probably  improvement  to p! # operations 

The question is how much computer effort is  
required for prescribed accuracy at given L. 
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<H2>-<H>2 

 Variational
 Fixed node
 Stochastic Reconf.

Variational energy for various QMC vs.  variance by  
 VMC wavefunction with p=0,1,2 Lanczos iterations 

The improvement in energy for both fixed node and  
present method (best) is irrelevant as far as energy …. 



 On a 6x6 (not possible exactly) SR convergence is evident for p=2 

2 4 62 4 6
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BCS

 p=2   p=3 VMC  p=1

 

 

Manhattan Distance=|x|+|y|
SR p=3  pairing   consistent within  3% (error bars) 
FN+2LS   ============             20%  
VMC + 2LS    =========            70%    



Lanczos method for continuous models? 

Unfortunately for the first Lanczos step: 

TT

TT

HH

HHH

Ψ++Ψ
Ψ++Ψ

)1)(1(

)1()1(

αα
αα

0      and 3
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Only a statistical  method known with 
    Caffarel & Ceperley  … or  
 ‘’backflow wavefunctions’’ (poor scaling) 
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 Projected BCS wave function on triangular lattice 


GP-BCS BCSP= : projected BCS state 

: ground state of BCS Hamiltonian 
/ 2
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 Marshall sign rule (W.Marshall, Proc.R.Soc.London 
Ser. A 232,48 (1955)) 



,
ij i j

i j

H J S S= ⋅∑
 

0ijJ ≥
0ijJ ≤

: if i and j on the same sub-lattice 
: if i and j on the different sub-lattice 

i
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 Fixed node approximation 
(D.F.B.ten Haaf et al., PRB 51, 13039 (‘95)) 

 Effective Hamiltonian with no negative sign 
problem 

( )

eff

sf

                         if  0 and 

                   if  0 and 

+ 1+ ( )    if  

x x x x

x x x x x x

xx

H H x x

H H H x x

H x x x

γ

γ ν

′ ′

′ ′ ′

 ′< ≠
 ′= − > ≠
 ′ =

x
( ) ( )G Gx x x xH x H x′ ′′≡ Ψ Ψ

( )G Gx xΨ ≡ Ψ


x xH x H x′ ′≡: spin configurations : matrix elements 

: variational (guiding) wave function 

 A standard Green function MC for effective Hamiltonian 

γ : positive constant 

( ) ( ) ( )eff eff
init G 0

n
nx G x xϕ →∞→Ψ Φ

eff
0Φ : ground state 

of effHeff eff
x xx x x xG Hδ ′′ ′= Λ −



 Fixed node approximation (II) 
 

1.            same phase as  
 

2.           variational state for      better than  
      
 
 

( )eff
0 xΦ

( )G xΨ

H

 eff
eff eff eff
0 0 0H EΦ = Φ


0 0 0H EΦ = Φ

 eff eff eff
G G 0 0 0 0H E H EΨ Ψ ≥ ≥ Φ Φ ≥

( )eff
0 xΦ

( )G xΨ



1D limit (J’=0) 
 Projected BCS wave function:  
 |BCS>: ground state of BCS Hamiltonian 


GP-BCS BCSP=

      up to 3rd neighbors,  
Ground state properties well described (Gros et.al.) 
Low-lying excited states (spinon):   †

G ,k BCSkP γ ↑=

( )

( )

†
BCS , ,

, ,

† † † †
, , , ,

1
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        h.c.
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l i i l i i l
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RVB variational wavefunction for lattice models 
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iN rrfAAGPBCSP

General:  
  
 metal (no pairing)    
 Band Insulator  

 
Superconductor   

)( Fkkf εε <Θ=

Fkf εε ~   0 k≠

dispersion particle  Single =kε

JAGP = J x AGP    RVB     
Fkf εε ~   0 k≠

But insulator 

New phase 

)),(exp( j
ji

i rrvJ ∑
<
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Definition of spin liquid 
 
A spin state with  
 
  no magnetic order (classical trivial) 
  no broken translation symmetry (less trivial): 
 
  no Dimer state 
(Read,Sachdev) 
 
 is a spin liquid  

Neel 



Experiments from: 
Coldea et al (PRL ’01) 
       PRB ‘03 

J’/J=1/3  
J=0.375meV 
 
“J” between planes ~1K 



κ −

2 2 3(ET) Cu (CN)κ −

Spin Liquid ? 

Shimizu et al. PRL ‘03 

/ 1.8J J′ ≈/ 0.9J J′ ≈

J=250K !!! 



 Methods 

0,
,,,∑

=
+
↓

+
↑

ji
jiji CCf

eBCS

 Variational quantum Monte Carlo (QMC) method 
 Projected BCS wave function:  

 
                                             : GS of BCS Hamiltonian 

  Resonating valence bond states from PBCS  
 QMC with Fixed node appr., (D. ten Haaf et al. PRB’95) 
   to study the stability of the spin liquid state. 


GP-BCS BCSP=

(S. Sorella, PRB 64, ‘01) 
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 2D with J’/J=0.33  

Gapless excitations 
       S=1/2   
Fractionalization in 2D! 
see e.g. X.G. Wen or M. Fisher  

Bogoliubov QP spectrum: 

k kξ ε µ= −

2 2
k k kE ξ= + ∆

No particular d-wave or s-wave symmetry due to anisotropy 



 Isotropic triangular lattice with J’/J=1.0 

 Green function Monte Carlo 
 Spin correlation function: 

( ) ( ) ( )i Z Z iC l S r S r lτ= +
 

 Spin liquid state unstable  
    toward classical Neel state 

8 

18x18 



 Spin structure factor for J’/J=1.0 

max/ 0.351 0.003m m = ±

Order parameter: 

 Starting from a spin liquid : 

[1] Capriotti, Trumper, SS, PRL 82, 3899 (‘99) 

? 

Exp. ~0.45 (organic) at J’/J=1.8 

Linear spin wave  0.4773 

GFMC   [1] 0.41(2) 

 Starting from ordered state : 

           GFMC 



 Spin structure factor for J’/J=0.7 

 Incommensurate  
   peaks at Q*=(q*,0) 

No long range order 

5 



Stability against dimerization 



 Summary 
 Possible spin liquid (SL) state in 2D 
 Two different SL?  
 Gapless vs. gaped? 



 Correlation plays a  crucial role: 

1) No way to have superconductivity in a model 
    with repulsive interaction.  
 HTc  not explained, HeIII,  spin liquid (organic) 

We should optimize the RVB wavefunction 
 in presence of its Jastrow. 
 QMC only for correcting the HF is meaningless 

12 

2) No way to obtain insulating behavior with  
    a model with 1el/unit cell (Mott Insulator). 
This is instead possible with correlated Jastrow 



Why RVB wavefunction should 
work for molecules?  

Van der Waals  forces are included  by Jastrow 

In a complex system the molecular orbitals  
are often nearly degenerate   
Resonance  Valence Bond approach  OK  

13 

A molecule has a gap  ‘’insulator’’ 
          Why not RVB insulator ? 



Computational complexity now N^4 

In QMC for given accuracy (e.g. Kcal/Mol) 
Cost=  N^4 ,  as sampling length=M~N. 

 N^2dimension linear  has      where    

:solve  tohas One

sfsx =

N^6 ???   

),~(   where  s 

: thatand grad. conj.exploit  can  One !!No!
2NNMMMM == +



DMC on the lowest energy JAGP wf. 

Old technique non variational (often unstable) 
    with nonlocal pseudopotential 
 
New (M.Casula C.Filippi and S.S.) PRL05 

 
 LatticeRegularizedDiffusionMonteCarlo 
  
Very stable variational upper bounds of the  
 pseudo Hamiltonian energy. 
Key idea: on a lattice all interactions are nonlocal 



Linus Pauling: the concept of resonance is old 

6 6Benzene    C H

+

z  valence electrons occupy the 2p  orbital

 then strong correlation   Heisenberg model→ ≈
6

2 2

              a,b  nearest Carbon sites

1
                          = ( ) ( )

2 z z

a b

a b
p p

H JS S

r r a bψ ψ

= ⋅

   ′↑↓ − ↑↓ + ↔  

 



In the old formulation RVB was  expensive 
 
1) Use of non orthogonal configurations 
2) The number of VB grows exponentially 
 with  the number of atoms  
 
 
The molecular orbital approach won…but 

Now (after Htc) we have a better tool 



On a given electron  configuration: 

{ }1 2 3 1 2 3, ,   , ,x r r r r r r↑ ↑ ↑ ↓ ↓ ↓=

The pairing function can be computed: 

With a single determinant  N/2 x N/2, N=# el. 
 even when RVB  = many Slater Determinants 

7 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3
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f f f
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f f f

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

↑ ↓ ↑ ↓ ↑ ↓

= =             



2 4
0

10

20

30

40

50

Strong correlation

 

 

E
ff

ec
tiv

e 
pa

ra
m

et
er

R (a.u.)

 U/t

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

50000

100000

150000

200000

 

 

E
ff

ec
tiv

e 
pa

ra
m

et
er

 (K
)

R (a.u.)

 J=4t2/U

Mapping to a simple  model: the 2-site Hubbard U 
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                The crucial  difference between  
 an Htc superconductor and a RVB insulator is:  

The long distance Jastrow factor 1/R or log(R)  



Phase Diagram of Hydrogen 

  

LogT 
[K] 

 4  

 3 

 2 

Electron Proton Plasma 

Electron 

Proton 

Liquid 

 

Molecular 

Liquid 

Molecular Solid Proton Solid 

Clustered liquid 

   1         2        3 LogP[GPa] 
Superconductivity? 
Ashcroft Nature 2004 
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Indications of an anomalous melting line  
S.A. Bonev, ..,G. Galli Nature 2004 

Another quantum T=0 liquid phase?  



Energy per H at  high-pressure (Hartree)  

Simple test case:  solid-metal (bcc)                               31.1=sr

length bond  2Hrs ≈

18 
(b) C. Pierleoni at al. PRA 2002 
(a) 

2 Gaussians per protons (Det)                   
1 Gaussian   per proton (Jastrow) 
     Comparison with previous works  



  Forces  can be computed efficiently with VMC 
       we use Caffarell et al. JCP 2000 
   Optimization of the electronic VMC parameters: 
    1s Gaussian for Geminal and Jastrow 
    ~200  parameters for 16 H  
 We use Hessian, much progress done in QMC: 
 C.Umrigar & C. Filippi PRL (2005), S.S. PRB (2005) ,  

  C. Umrigar et al (also SS) PRL, (2007)  
At each step we move ions with MD and  
VMC parameters (with hessian), ab initio 

The basic steps for moving atoms 



New ab-initio Molecular-dynamics with QMC 

Proton  Classical 

Internal energy  
decreases at 1300K!!! 

With RVB wf  
QMC possible for  
~100 atoms 

1step = 
 QMC  opt. 
 ~10000 par.! 

fst 1=∆
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Why MD can be so efficient for QMC? 

The simulation at finite T requires some  
external noise to the forces e.g.  Langevin dynamics 

)(2)()(  with  '' ttTttfR −>=<+= δηηη


But the noise is given for free within QMC!!! 

Expected at least a factor N speed-up improvement  

 Compared with methods based only on energy  
     we use 3N entries (forces) with the same cost. 
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Snap-shot of the protons at the last iteration 
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Optimization with the s-wave constraint 

Our energy is below any published one for the solid 



HTc  in Hydrogen at 300Gpa ?  
 
J at the broad peak of g(R) is about 10000K 
In Copper Oxide J is 1500K, Tc~100K 

Tc >  Room temperature ? 

At rs=1.31 the solid phase simple hexagonal  
is competing in energy (Natoli et al. PRL ’93) 
…under current investigation. 
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Conclusions 
 

 The Jastrow+RVB (AGP) gives an accuate description 

of the chemical bond. 

 It is described by a single determinant and is 

   computationally convenient for QMC.   

Reproduced several experiments on simple molecules, 

benzene and its dimer, water, C2…. 

Due to important achievements in the energy     

optimization. Realistic MD with most of the correlation  

 HTc physics in hydrogen at 300Gpa? 
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 800
 1600
 3200
 6400

The drawback of many VMC parameters…. 

‘’Sick’’ when #parameters > # QMC Samples 



The Berillium dimer: a challenging molecule 



The F2 molecule and the problem of size-consistent results 
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