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Auxiliary field formalism

Represent importance sampled wave function by a set of
“walkers” |Ri〉 sampled from 〈ΨT |R〉〈R|ψ(t)〉.
To order ∆t

e−(H−ET )∆t = e− P2
2m ∆te−(V−ET )∆t

=

∫
dX

(2π)d/2 e− X2
2 e− i
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q

~2∆t
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e− i
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(1)

Propagation with importance sampling∫
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2 e−(EL(R)−ET )∆te− i
~ PX

q
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m |R〉
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Auxiliary field formalism for other systems

In each case we typically write the Hamiltonian as a sum of
squared operators On.

We typically choose the walker basis such that e−iOn
√

∆t operating
on a walker gives one new walker possibly multiplied by a weight.
For neutron matter the walkers are the positions as in diffusion
Monte Carlo along with a spinor for each particle. The
spin-dependent potential is written as the sum of squares of linear
combinations of Pauli spin operators for each particle.
For lattice Hamiltonians, the walkers are a set of orbitals, one for
each particle, given by the amplitude for finding a single particle
on each lattice site. The hamiltonian is written as the sum of
squares of a linear combination of hopping operators.
Importance sampling, drift, and the local energy are derived as for
diffusion Monte Carlo.
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Fermions can become superfluid

Superconductivity is superfluidity of charged system (H.
Kamerlingh Onnes 1911).
Electronic superconductivity explained by J. Bardeen, L. Cooper,
R. Schrieffer, (BCS) in 1957.
You can think of this as fermions pairing to become Cooper pairs
which are effectively bosons. These bosons Bose condense.
John Bardeen hated this idea. In most superconductors the size
of a Cooper pair is such that there are many other electrons
between the paired electrons.
Cold fermi atoms can be used to explore the regime from large
Cooper pairs (BCS) to small Cooper pairs (BEC).
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Fermion superfluidity in Cold Atoms

Cold Fermi atoms can become superfluid

Time of flight, 40K.1

Superfluid Vortices2
1C.A. Regal, M. Greiner, and D.S. Jin, PRL 92 040403 (2004).
2Zwierlein et al.,Nature 435 1047 (2005).
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Superfluidity in Neutrons

Neutron matter in neutron star crusts should be superfluid.3

3D. Page and S. Reddy, Annu. Rev. Nucl. Part. Sci. 56, 327 (2006).
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Slater determinants and BCS pairing

Most Fermion trial wave functions are built out of Slater
determinants of single-particle orbitals.

ΨT = A[ψ1(r1, s1)ψ2(r2, s2)...ψN(rN , sN)]

Linear combinations.
Backflow correlations ⇒ r i → r i +

∑
j 6=i ξijr ij .

Fermion with pairing correlations are more efficiently described by
BCS pairing wave functions,

ΨT = A[φ(r1, s1; r2, s2)...φ(rN−1, sN−1; rN , sN)]

= A[φ12φ34...φN−1 N ] .
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General Properties

For equal numbers of spin-up and spin-down fermions, the slater
determinant can be written in the BCS form.
An arbitrary BCS form corresponds to a large linear combination
of slater determinants.
Nodal Structure of the BCS form and Slater determinants can be
quite different.
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Relationship to Standard BCS

The BCS form used here is the standard BCS form projected onto N
particles.
For a bulk system of spin singlet pairs,

|BCS〉 =
∏
k

[
uk + vkc+

k↑c
+
−k↓

]
|0〉

φ(r1, s1; r2, s2) ∝
∑

k

vk

uk
cos (k · [r1 − r2]) [〈s1s2| ↑↓〉 − 〈s1s2| ↓↑〉]

In general

|BCS〉 =
∏

n

[
un + vnc+

n c+
n′

]
|0〉

φ(r1, s1; r2, s2) ∝
∑

n

vn

un
[ψn(r1, s1)ψn′(r2, s2)− ψn(r2, s2)ψn′(r1, s1)]
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Pairing wave functions as determinants and Pfaffians

First described by Lhuillier and coworkers, 4

The Pfaffian is

PfA = A[a12a34a45...aN−1,N ]

with the result normalized so that every equivalent term occurs only
once, and aij = −aji .
For N = 4:

PfA = [a12a34 − a13a24 + a14a23]

The Pfaffian is zero if N is odd and has (N − 1)!! terms otherwise.

4J. P. Bouchaud, A. Georges, and C. Lhuillier, “Pair Wave-functions for strongly
correlated fermions and their determinantal representation,” J. Physique 49, 553
(1988), and references therein.
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Pfaffian properties

The Pfaffian can be constructed recursively as

PfA =
∑

cyc perms of 2...N

a12A[a34a56...aN−1,N ]

≡
N∑

j=2

a1jPc(a1j)

Pc(a1j) is the Pfaffian cofactor of a1j .
In general a skew-symmetric matrix A

A =


0 a12 a13 a14

−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

 ,

has the Pfaffian given above.
The determinant of A is the square of the Pfaffian.
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Pfaffian computation

I. Exchange of particle i and j corresponds to interchanging rows i
and j and interchanging colummns i and j .

a. The Pfaffian changes sign.
b. The determinant is invariant.
c. We can use this to pivot the matrix for better roundoff.

II. Adding a multiple of row j to row k while adding the same multiple
of column j to column k keeps the matrix in skew-symmetric form.

a. Substituting into the recursion definition of the Pfaffian shows that
the additional terms are not antyisymmetric and cancel.

b. The determinant is also invariant.
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Pfaffian computation

Using the column containing a12 to eliminate a13 and a14. Exactly the
same operations are used with the row containing −a12 to eliminate
−a13 and −a14.
Using these rules, a 6x6 matrix can be reduced to a form

A′ =



0 a′12 0 0 0 0
−a′12 0 0 0 0 0

0 0 0 a′34 0 0
0 0 −a′34 0 0 0
0 0 0 0 0 a′56
0 0 0 0 −a′56 0

 .

The pfaffian is the product a′12a′34a′56, and the determinant is the
square.
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Pfaffian updates

Cayley showed4

Det

0BBBBB@
0 b12 b13 ... b1,N

−a12 0 a23 ... a2,N
. . . . .
. . . . .
. . . . .

−a1N −a2N −a3N ... 0

1CCCCCA

= Pf

0BBBBB@
0 a12 a13 ... a1,N

−a12 0 a23 ... a2,N
. . . . .
. . . . .
. . . . .

−a1N −a2N −a3N ... 0

1CCCCCA Pf

0BBBBB@
0 b12 b13 ... b1,N

−b12 0 a23 ... a2,N
. . . . .
. . . . .
. . . . .

−b1N −a2N −a3N ... 0

1CCCCCA .

4A. Cayley, Sur les déterminants gauches, Journal für die reine angewandte
Mathematik 38, 93 (1849)



university-logo

Pfaffian updates

The Pfaffian obtained by changing the space or spin coordinates of
one particle can be calculated from the inverse, determinant and
Pfaffian of A in order N operations.
Calling B the matrix with the first row and column changed, its Pfaffian
is

PfB =
DetA

∑
j b1jA−1

j1

PfA

or since the square of the Pfaffian is the determinant,

PfB = PfA
∑

j

b1jA−1
j1

which shows that the inverse transpose times the Pfaffian is the
Pfaffian cofactor.
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The determinant as bipartite Pfaffian

If the skew symmetric matrix is bipartite in the sense that if aij 6= 0 and
ai ′j ′ 6= 0, then aii ′ = aj,j ′ = 0, and we can pivot the matrix into the form(

0 B
−BT 0

)
.

Here B is the matrix of nonzero elements of A, BT is the transpose of
B, and 0 is the zero matrix. The Pfaffian of this matrix is the
deteminant of B.
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Pairing Wave Functions

A pairing wave function can be written in the form

a12 = φ(r1, s1; r2s2) .

Often better coordinates would be the relative and center of mass
positions along with the spin singlet and triplet state amplitudes. Notice
that with spin singlet pairing, evaluating the Pfaffian with particles 1
through N/2 up and N/2 + 1 through N down gives a bipartite matrix
as in Eq. 3, and the singlet pairing function can be written as a
determinant.
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Combinations of paired and unpaired orbitals

A general state with n paired and o unpaired orbitals for a total of
N = 2n + o particles can be written as

A[φ12φ34...φ2n−1,2n...ψ1(2n + 1)...ψo(N)]

which is the Pfaffian of the (N + o)× (N + o) matrix
0BBBBBBBBBBBBBB@

0 φ12 φ13 ... φ1N ψ1(1) ... ψo(1)
−φ12 0 φ23 ... φ2N ψ1(2) ... ψo(2)
−φ13 φ23 0 ... φ3N ψ1(3) ... ψo(3)

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.
−φ1N −φ2N −φ3N ... 0 ψ1(N) ... ψo(N)
−ψ1(1) −ψ1(2) −ψ1(3) ... −ψ1(N) 0 ... 0

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.

.

.

.
−ψo(1) −ψo(2) −ψo(3) ... −ψo(N) 0 ... 0

1CCCCCCCCCCCCCCA
,

where the lower o × o section is all zeroes.
Notice that if all the φij = 0, the result is bipartite and reduces to the
usual Slater determinant. Spin singlet pairing again reduces to a
determinant.
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Electronic Structure Examples

Work done by M. Bajdich, L. Mitas, L.K. Wagner, G. Drobny and KES.

Since the coulomb interaction does not flip spins, we can assign spins
to the particles.
A singlet/triplet/unpaired (STU) orbital pfaffian wave function is given
by

ΨSTU = pf

 χ↑↑ Φ↑↓ ϕ↑

−Φ↑↓T χ↓↓ ϕ↓

−ϕ↑T −ϕ↓T 0

 (3)

The bold symbols are block matrices/vectors of corresponding orbitals
and T denotes transposition.
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Single Pfaffian Results

Table: Total energies (a.u.) for N atom and dimer with amounts of correlation
energy recovered, in VMC and DMC methods.

WF N Ecorr [%] N2 Ecorr [%]
HF -9.628915 0 -19.44946 0
VMC/HF -9.7375(1) 83.3(1) -19.7958(5) 80.1(1)
VMC/BCS -9.7427(3) 87.3(2) -19.8179(6) 85.2(1)
VMC/STU -9.7433(1) 87.8(1) -19.821(1) 86.0(2)
DMC/HF -9.7496(2) 92.6(2) -19.8521(3) 93.1(1)
DMC/BCS -9.7536(2) 95.7(2) -19.8605(6) 95.1(1)
DMC/STU -9.7551(2) 96.8(1) -19.8607(4) 95.2(1)
Exact/est. -9.759215 100 -19.88196 100
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Mulitple Pfaffian results

Table: Percentages of correlation energies recovered for C, N and O atoms
by VMC and DMC methods with different trial wave functions. Corresponding
number of pfaffians/determinants n for each wave function is also shown. The
estimated exact correlation energies for C,N,O are 0.1031, 0.1303, 0.1937
a.u., M. Dolg, Chem. Phys. Lett. 250, 75 (1996)

.

WF n C n N n O
VMC(MPF) 3 92.3(1) 5 90.6(1) 11 93.6(2)
VMC(CI) 98 89.7(4) 85 91.9(2) 136 89.7(4)
DMC(MPF) 3 98.9(2) 5 98.4(1) 11 97.5(1)
DMC(CI) 98 99.3(3) 85 98.9(2) 136 98.4(2)
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Nodal Structure Differences – Oxygen Atom

Slater Pfaffian CI
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Superfluid cold atoms

Experiments are 6Li or 40K atoms (fermions) in a trap cooled below the
BCS/BEC (Bose-Einstein condensation) temperature.
Atomic potential is short ranged.
Scattering length can be tuned using a Feshbach resonance.
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Unitary limit

Infinite scattering length
a−1 = 0

is called unitary limit or at unitarity.
Cross section has its maximum value (bigger means S-matrix is
not unitary)
Only length scale in homogeneous gas is interparticle spacing.
Equation of state at unitarity is described by one number ξ,

E
N

= ξEFG = ξ
3
5

~2k2
F

2m
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Our First DMC calculations

Energy at unitarity
Slater determinant nodes give an energy of E/N = 0.54EFG.

From J. Carlson, S-Y Chang, V.R. Pandharipande, and KES
PRL 91 050401 (2003).
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Our First DMC calculations

Energy away from unitarity

From S-Y Chang, V.R. Pandharipande, J. Carlson, and KES, PRA
70,043602 (2004)
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Our First DMC calculations

Energy away from unitarity

From S-Y Chang, V.R. Pandharipande, J. Carlson, and KES, PRA
70,043602 (2004)
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Energy per particle near unitarity
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ξ = 0.383(1), ζ = 0.901(2), ν = 0.49(2).
S. Gandolfi, KES, J. Carlson, Phys. Rev. A 83, 041601 (2011).
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Excitation spectrum

We add an extra particle with momentum ~k .

A. Gezerlis, S. Gandolfi, KES, and J. Carlson, Phys. Rev. Lett. 103,
060403 (2009).
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Superfluidity with auxiliary field quantum Monte Carlo

Diffusion in space of Slater determinants.
With attractive interactions up-spin determinant and down-spin
determinant are always identical – no fermion sign problem!
Uses a truncated plane-wave basis – Equivalent to a lattice in real
space.
Use a BCS wave function to help sample the random walk. Same
mathematics as in electronic structure.
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Lattice Hamiltonian

A kinetic energy for the particle εk for momentum ~k . Get correct
continuum limit if it goes to ~2k2

2m for wavelengths much greater
than lattice spacing.
An attractive onsite interaction U < 0.
Becomes attractive Hubbard model for a particular choice of εk .
Previous best Hubbard calculations used 14 particles and an 83

lattice ,D. Lee, Phys. Rev. C 78, 024001(2008). We find more than
a 100 fold speed up for this system with a BCS guiding function.
This speed up grows exponentially for larger systems. Our largest
simulations have 273 lattices. We use up to 66 particles.

H =
1

N3
k

∑
k ,j,m,s

ψ†
jsψmsεk eik ·(r j−rm) + U

∑
i

ni↑ni↓ . (4)
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Different kinetic energy forms at unitarity

α is lattice spacing.

ε
(h)
k =

~2

mα2 [3− cos(kxα)− cos(kyα)− cos(kzα)]

ε
(2)
k =

~2k2

2m

ε
(4)
k =

~2k2

2m

[
1− β2k2α2

]
(5)

Energy U 2mα2

~2 β reα
−1

ε
(h)
k -7.91355 - -0.3057
ε
(2)
k -10.2887 - 0.3369
ε
(4)
k -8.66605 0.16137 0
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Energy results

0 0.1 0.2 0.3 0.4

ρ1/3
 = αN
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 ξ
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(4)

εk
(h)

εk
(2)

J. Carlson, S. Gandolfi, KES, S. Zhang, Phys. Rev. A 84, 061602
(2011).
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Universality of the equation of state on effective range

0 0.1 0.2 0.3 0.4
k

F
 r

e

0.36

0.37
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0.42

ξ
N = 66
N = 38 DMC

E
EFG

= ξ + Skf re + ... with ξ = 0.372± 0.005, S = 0.12± 0.03, universal
parameters at unitarity.
J. Carlson, S. Gandolfi, KES, S. Zhang, Phys. Rev. A 84, 061602
(2011).
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Argonne v18 family

The Argonne5, were developed for integral equation methods.
They have weak nonlocality and substantially more local repulsion
at short distances than other potentials. This makes them popular
for integral equations and Monte Carlo calculations, but less
popular for shell model and coupled-cluster calculations.
They have the form:

V =

Nop∑
p=1

vp(rij)O
p
ij (6)

The first 14 operators are
(1, σi · σj , tij , Lij · S ij , L2, L2(σi · σj), (Lij · S ij)

2 and these multiplied by
τi · τj . The last 4 operators break isospin invariance. Defining
Tij ≡ 3τizτjz − τ i · τ j , they are Tij , Tijσi · σj , Tij tij , τiz + τjz .
L · S is the spin orbit operator Lij = 1

2 r ij × (∇i −∇j), S ij = 1
2 (σi + σj).

5R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential
with charge-independence breaking, Phys. Rev C 51, 38-51, (1995).
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Argonne v18 terms

Physics:
1 (central) potential
(σi · σj ) is 1 in spin triplet | ↑↑〉, | ↓↓〉, | ↑↓〉+ | ↓↑〉 states, -3 in spin
singlet | ↑↓〉 − | ↓↑〉 states.
tij tensor (spin dipole-dipole) operator as in one pion exchange.
L · S, couples spin and orbital angular momentum – interaction
conserves total J = L + S. This term is momentum dependent.
(τ i · τ j ) acts like (σi · σj ) except on proton-neutron states.

Other terms are weaker and can often be included with perturbation
theory.
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Potential graph
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Basic Hamiltonian

The Hamiltonian that nuclear Monte Carlo uses contains:
Nonrelativistic kinetic energy

∑
i

p2
i

2m

Sum over pairs of a two-body potential such as Argonne v18

Sum over triplets of a three-body potential ...



university-logo

Neutron energy gap calculations
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Beyond pairing; Three- and four-body clusters of
fermions

Both of these require the hyperdeterminant (or hyperpfaffian) of a
4 index hypermatrix.
Examples are:

A [φ(r1, r2, r3, r4)φ(r5, r6, r7, r8)...]

or
A [φ1(r1, r2, r3)φ2(r4, r5, r6)...]

If all the variables are antisymmetrized it is a hyperpfaffian.
If the particles in the different slots are distinguishable (like
different spins with a central potential) it is a hyperdeterminant.
These were studied by Cayley and others but I know of no
polynomial method for their evaluation.
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Beyond pairing; Three- and four-body clusters of
fermions

The 4 index hyperdeterminant can be evaluated in N!2N3

operations. That is direct summation over the permutations of 2
indices leaves the last two indices a determinant.
There are possibly efficient stochastic methods for the evaluation.
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Beyond pairing; Three- and four-body clusters of
fermions

QMC with 20 or 24 particle clusters possible by brute force.
Work in progress...
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Conclusions

Pairing wave functions can be efficiently calculated for a variety of
quantum systems.
Adding pairing correlations can dramatically speed up quantum
Monte Carlo calculations
Pairing correlations can reproduce the nodal structure in
electronic systems.
Carefully optimized fixed-node DMC calculations and selected
AFQMC calculations can extract the universal parameters for Cold
atoms.
Agreement with condensed matter experiments gives us some
confidence that our neutron star matter calculations are accurate.
Small systems with three- and four-body clustering can be
simulated. More efficient methods for
hyperdeterminants/hyperpfaffians are needed for larger systems.
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Figure Description

A three-dimensional cut through the fermion node hypersurface of
oxygen atom obtained by scanning the wave function with a spin-up
and -down (singlet) pair of electrons at equal positions, while keeping
the rest of electrons at a given VMC snapshot positions (small green
spheres). Nucleus is depicted in the center of the cube by the blue
sphere. The three colors (from left to right) show nodes of:
Hartree-Fock (red/dark gray); multi-pfaffian nodes (orange/medium
gray); and the nodes of the CI wave function (yellow/light gray) in two
different views (upper and lower rows). The CI nodal surface is very
close to the exact one (see text). The HF node clearly divides the
space into four nodal cells while pfaffian and CI wave functions
partitioning leads to the minimal number of two nodal cells. The
changes in the nodal topology occur on the appreciable spatial scale
of the order of 1 a.u.


