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Warning: The Mathy Version

This project is involved. However, since you are audience of
experts, I will go through this project in all of its gory details.

Hold on tight.
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Introduction:
Bose-Fermi Mixtures in Optical

Lattices

Brenda Rubenstein Bose-Fermi Auxiliary-Field QMC



Optical Lattices

Optical lattices offer the possibility of simulating many of the
fundamental models of physics with unprecedented control.
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Optical Lattice Triumphs

Optical lattices have successfully simulated the
Superfluid-Mott Insulator Transition and illustrated the
effects of Fermi pressure.
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Bose-Fermi Mixture Experiments

Successes studying pure Bose and Fermi gases have generated

interest in Bose-Fermi mixtures. The first optical lattice

experiments suggest that fermion impurities decrease boson

coherence.

Key Question:

What can theory bring to the study of Bose-Fermi mixtures?
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A Zoo of Theoretical Bose-Fermi Phases

Perturbation theory predicts a whole zoo of Bose-Fermi phases,

including spin and charge density waves (DW), superfluids (SF),

and Fermi liquids (FL) consisting of fermions paired with varying

numbers of bosons or boson holes.
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Why We REALLY Care About BF Mixtures

Sympathetic Cooling

Dipolar Molecules

B F 

Supersolidity

Enhanced Superfluidity
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This Work’s Motivating Question

Can We Develop a Method Capable of
Determining the EXACT Phase Diagram and
Properties of Bose-Fermi Mixtures at Finite

Temperatures?
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Previous Approaches
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Bose-Fermi Hubbard Hamiltonian

The starting point for most theoretical studies of Bose-Fermi
mixtures is the Bose-Fermi-Hubbard Hamiltonian.

Bose-Fermi-Hubbard Hamiltonian

HBF = −tB
∑
〈ij〉

(
b̂†i b̂j + H.c .

)
− tF

∑
〈ij〉

(
f̂ †i f̂j + H.c .

)
+

1
2UB

∑
i n̂i (n̂i − 1) + UBF

∑
i n̂im̂i − µB

∑
i n̂i − µF

∑
i m̂i

B 

F 

B H 
UBF>0 

H 

B F 

B 
UBF<0 

B B 
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B 

F 
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Previous Approaches

A number of approaches exist, but none are general.
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Previous Theoretical and Computational Approaches

Can a technique be developed that can treat Bose-Fermi
mixtures accurately in a computationally-tractable amount of

time in any number of dimensions?
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A Hint from the Original BSS Papers?

The seminal Auxiliary-Field Quantum Monte Carlo (AFQMC)
paper aimed to study coupled boson-fermion systems...

!!! !!! 

Perhaps, we can develop an algorithm to study Bose-Fermi
mixtures based upon AFQMC?
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Previous Auxiliary-Field Quantum Monte Carlo
Approaches

There are AFQMC algorithms for bosons or fermions, but not
for bosons, and therefore, mixtures at finite temperatures.

T=0 

T>0 

Bosons Fermions 

Projector 
QMC 

Ground State 
Constrained-

Path QMC 

Finite T 
Constrained-

Path QMC   ? 
So, if we developed a finite-temperature boson algorithm,

we’d have a general technique for mixtures.
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Our Approach:
Bose-Fermi Auxiliary-Field Quantum

Monte Carlo
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Basic Auxiliary-Field Quantum Monte Carlo

Classical Monte Carlo
for Ising Model

Fermion AFQMC
for Hubbard Model

Spins: Up or Down (+1/-1)

Acceptance Criterion:

e−βH(~σf )/e−βH(~σi )

Principle Quantity Calculted:

Energy, E (~σ)

Spins: Gaussian-Distributed

Acceptance Criterion:

Det
[
I + e−βH(~σf )

]
/Det

[
I + e−βH(~σi )

]
Principle Quantity Calculated:

Green’s Function, I/I + e−βH(~σ)
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Finite-Temperature AFQMC: A Mathful

First, the partition function is factored.

Finite-Temperature Averages

〈Ô〉 ≡
Tr
(
Ôe−βĤ

)
Tr(e−βĤ)

Short-Time Breakup

Z ≡ Tr
(
e−βĤ

)
= Tr

(
e−∆τ Ĥe−∆τ Ĥ ...e−∆τ Ĥ

)
∆τ = β/L

Suzuki-Trotter Factorization

e−∆τ Ĥ ≈ e−∆τ K̂/2e−∆τ V̂ e−∆τ K̂/2

The kinetic propagators are one-body terms and may be
evaluated explicitly. The potential propagators are two-body
terms and must be reexpressed as one-body terms.
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Finite-Temperature AFQMC: A Mathful

The potential propagators may be transformed into products
of one-body terms times a weight via the Hubbard-
Stratonovich Transformation.

Reexpression of V̂ in Terms of One-Body Operators

V̂ = −1
2

∑
i v̂

2
i

Hubbard-Stratonovich Transformation

1√
2π

∫∞
−∞ dxe−x

2/2e−xy = ey
2/2

e(1/2)∆τ v̂2
= 1√

2π

∫∞
−∞ dσe−σ

2/2eσ
√

∆τ v̂

Reexpression of the Potential Propagator in Terms of
One-Body Operators

e−∆τ V̂ =
∏

i

∫∞
−∞ dσi

e−σ
2
i /2

√
2π

eσi
√

∆τ v̂i =
∏

i

∫∞
−∞ dσip(σi )e

σi
√

∆τ v̂i
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Finite-Temperature AFQMC: A Mathful

The potential propagators may now be recombined with the
kinetic propagators.

Reexpression of the Short-Time Propagator

e−∆τ Ĥ = e−∆τ K̂/2
[∏

i

∫∞
−∞ dσip(σi )e

σi
√

∆τ v̂i
]
e−∆τ K̂/2 + O(∆τ2)

Reexpression of the Partition Function

Z = Tr(e−βĤ) =
∫∞
−∞ d~σL...d ~σ1P(~σL, ..., ~σ1)Tr

(
B̂(~σL)...B̂(~σ1)

)
Hirsch Expression for the Trace over Fermions

Trf

(
B̂(~σ)

)
= Det [I + B(~σ)]

Final Expression for the Fermion Partition Function

Z =
∫∞
−∞ d~σL...d~σ1P(~σL, ..., ~σ1)Det [I + B(~σL)...B(~σ1)]
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What in the World Does This Mean?

Final Expression for the Fermion Partition Function

Z =
∫∞
−∞ d~σL...d~σ1P(~σL, ..., ~σ1)Det [I + B(~σL)...B(~σ1)]

Translation

At each site and imaginary
timeslice, you sample a field,
σi ,l , with a probability, p(σi ,l).
You then insert these fields into
the B(~σ)s and calculate the
determinant.
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Calculating Fermion Observables

With the expression for the partition function in hand, fields
may be sampled. Based upon these fields, Green’s Functions
and most other observables may be evaluated.

Fermion Green’s Function

GF
ij = 〈f̂i f̂ †j 〉 =

[
I

I+B(~σL)...B(~σ2)B(~σ1)

]
ij

Green’s Function 
 
 

Density Matrix 

Kinetic 
Energy 

Potential  
Energy  

n(k) 
Correlation  
Functions 

S(k) 
Density  
Profile 
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Boson Auxiliary-Field Quantum Monte Carlo

The previous expressions yielded the partition function for
fermions. For Bose-Fermi QMC, related expressions for the
boson partition function had to be derived.

Boson Partition Function

ZB ∝ Det
[
(I − e−βH)−1

] Fermion Parition Function

ZF ∝ Det
[
I + e−βH

]
Boson Green’s Function

GB
ij = 〈b̂i b̂†j 〉 =

[
I

I−e−βH

]
ij

Fermion Green’s Function

GF
ij = 〈f̂i f̂ †j 〉 =

[
I

I+e−βH

]
ij

These are similar to their ideal gas forms.

Ideal Bose Gas Parition
Function

Z IG
B =

∏
k

(
1

1−e−β(εk−µ)

) Ideal Fermi Gas Partition
Function

Z IG
F =

∏
k

(
1 + e−β(εk−µ)

)
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Bose-Fermi Auxiliary-Field Quantum Monte Carlo

To treat Bose-Fermi mixtures, the partition function must be
reevaluated for the Bose-Fermi-Hubbard model.

Bose-Fermi-Hubbard Hamiltonian

ĤBF = K̂B + K̂F + 1
2UB

∑
i n̂i (n̂i − 1) + UBF

∑
i n̂im̂i

Modified Bose-Fermi-Hubbard Hamiltonian

ĤBF = K̂B + K̂F + UBF
2

∑
i (n̂i + m̂i )

2

+UB−UBF
2

∑
i n̂

2
i −

UB
2

∑
i n̂i −

UBF
2

∑
i m̂i

Boson HS Transformation

e−
∆τ(UB−UBF )

2
n̂2
i = 1√

2π

∫∞
−∞ e−σ

2
B/2e−iσB

√
∆τ(UB−UBF )n̂i

Bose-Fermi Coupling HS Transformation

e−
∆τUBF

2
(n̂i+m̂i )

2
= 1√

2π

∫∞
−∞ e−σ

2
BF /2e−iσBF

√
∆τUBF (n̂i+m̂i )
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Bose-Fermi Auxiliary-Field Quantum Monte Carlo

The partition function may be evaluated as an integral over
a weighted product of boson and fermion determinants.

Bose-Fermi Partition Function I

ZBF = TrB

(
TrF

(
e−βĤBF

))
Bose-Fermi Partition Function II

ZBF =
∫∞
−∞ d~σBFd~σBP(~σBF , ~σB)

TrB (BB(~σBF , ~σB))TrF (BF (~σBF ))

Final Bose-Fermi Partition Function

ZBF =
∫∞
−∞ d~σBFd~σBP(~σBF , ~σB)

Det
[

I
I−BB(~σBF ,~σB)

]
Det [I + BF (~σBF )]
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Calculating Mixture Observables

With the expression for the partition function in hand,
multiple fields may be sampled. Based upon these fields,
boson and fermion Green’s Functions and most other
observables may be evaluated.

Fermion Green’s Function

GF
ij =

[
I

I+BF (~σL)...BF (~σ2)BF (~σ1)

]
ij

Boson Green’s Function

GB
ij =

[
I

I−BB(~σL)...BB(~σ2)BB(~σ1)

]
ij

Green’s Functions 
 
 

Density Matrix 

Kinetic 
Energy 

Potential  
Energy  

n(k) 
Correlation  
Functions 

S(k) 
Density  
Profile 
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Sign Problem and Constrained-Path Approximation

Sign Problem

The sign problem arises when
fermion determinants, Det(~X ),
acquire a negative sign as they

traverse a path, ~X , in
auxiliary-field space.

Constrained-Path
Approximation

Discard all walkers whose
determinants become negative
as they sample auxiliary-field

space. These walkers
ultimately contribute to noise.
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Phase Problem and Phaseless Approximation

Phase Problem

If UB > 0, propagator is
complex.

e−∆τ V̂i = e−∆τUB n̂
2
i =

1√
2π

∫∞
−∞ dσie

− 1
2
σi2eσi

√
−∆τUB n̂i

Phaseless Approximation

Modify propagator so that
fluctuations in the weights are

minimized and then project
weights onto real axis.

Projection of Weights, W

Let ∆θ denote the phase angle:

∆θ ≡ Im

[
ln

(
Det[~X(m+1)∆τ ]
Det[~Xm∆τ ]

)]
Assuming |∆θ| < π/2, project

the weights onto the real axis:

W ′ ← cos(∆θ)W
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Further Mitigating the Phase Problem

The phase problem may be mitigated by reducing the
magnitude of the terms that multiply i in the complex
propagators. This may be accomplished by subtracting off
mean-field average densities from the true densities.

Bose-Fermi Hamiltonian with Mean-Field Densities
Subtracted

HMF
BF = K̂B + K̂F + UBF

2

∑
i (n̂i + m̂i − 〈n〉 − 〈m〉)2

+UB−UBF
2

∑
i (n̂i − 〈n〉)2+ Other One-Body Terms

Modified Boson Propagator

e−iφB
√

∆τ(UBF−UB)(ni−〈n〉)

Modified Bose-Fermi
Propagator

e−iφBF
√
−∆τUBF (ni+mi−〈n〉−〈m〉)
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Results:
Comparisons to Alternative

Techniques
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Comparison to ED: 3-Site Bose-Hubbard Model
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Comparison to ED: 3-Site Bose-Hubbard Model

Brenda Rubenstein Bose-Fermi Auxiliary-Field QMC



Comparison to ED: 3-Site Bose-Hubbard Model

 0.85
 0.875

 0.9
 0.925

 0.95

 50  55  60  65  70  75  80

C
on

d.
 F

ra
c.

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100

C
on

d.
 F

ra
c.

!

MFT
ED, Ub/t=1

QMC, Ub/t=1
ED, Ub/t=2

QMC, Ub/t=2

3x1 BH Model, t=0.01, <nb>=<nf>=1 

Brenda Rubenstein Bose-Fermi Auxiliary-Field QMC



Comparison to MFT: 2D Bose-Hubbard Models
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Comparison to Worm: 2D Bose-Hubbard Models
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Comparison to ED: 2-Site Bose-Fermi-Hubbard
Model
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Comparison to ED: 2-Site Bose-Fermi-Hubbard
Model
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Discussion:
Challenges and Outlook
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Key Challenge: “Rogue Eigenvalue Problem”

As the system condenses at low temperatures, it develops a
“rogue eigenvalue” problem, where the dominant eigenvalue
surpasses one, leading to large phase fluctuations.
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Additional Challenges

Finding chemical potentials
requires many graduate
student hours! Is there a
way to readily calculate the
chemical potential for a
given boson occupancy?

For strong interactions,
BF-AFQMC experiences a
bad phase problem that
cannot be mitigated using
the phaseless approximation.
Is there a better way of
handling the phase problem?
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Goals

To develop solutions to the
“rogue eigenvalue problem.”
We are currently testing a few
candidates.

To determine exact mixture
phase boundaries. Where do
the exact boundaries differ
from those produced using
MFT and DMFT?

Can our technique say anything
about enhanced superfluidity,
sympathetic cooling, or
supersolidity?
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Summary

Review
Bose-Fermi AFQMC is a new Quantum Monte Carlo
technique capable of simulating Bose-Fermi mixtures in
any dimension and for any system size.

BF-AFQMC is based upon a new finite-temperature
QMC algorithm for bosons that can be combined with
previous techniques for fermions.

Results have been tested against those produced using
Exact Diagonalization and Mean-Field Theory.
Agreement was achieved in all cases.

Challenges
BF-AFQMC is challenged at low temperatures and for
strong interactions.
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Accuracy of Constrained-Path and Phaseless
Approximations
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Derivation of Boson Partition Function I

Desired Expression for the Boson Partition Function

TrB

[
e−b

†
i Aijbj e−b

†
i Bijbj

]
= Det

[
I

I−e−Ae−B

]
In deriving this expression for bosons, we follow the
analogous derivation for fermions by Hirsch (1985).

Identity We Seek to Prove

e−b
†
i Aijbj e−b

†
i Bijbj = e−

∑
ν b
†
ν lνbν , λν = e−lν

Desired Result from This Identity

TrB

[
e−

∑
ν b
†
ν lνbν

]
= TrB

[∏
ν e
−b†ν lνbν

]
=
∏
ν

∑
nν

e−nν lν

=
∏
ν

[
1− e−lν

]−1

= Det
[[
I − e−Ae−B

]−1
]
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Derivation of Boson Partition Function II

First Consider the Trace of a General One-Body Operator

TrB

[
eb
†
i Cijbj

]
= TrB

[
e−

∑
i b̄
†
i ci b̄i

]
=
∏

i

∑
ni
e−nici

=
∏

i [1− e−ci ]−1

= Det
[[
I − e−C

]−1
]

We then show that e−b
†
i Aijbj e−b

†
i Bijbj acts on all excitations

the same way that e−b
†
i Cijbj does.

Acting a One-Body Operator on a Single Excitation

e−b
†
i Cijbj

∑
n cnb

†
n|0〉 =

∑
n cn

[
e−b

†
i Cijbjb†n

]
|0〉

=
∑

n cnb
†
n − cnb

†
i Cijbjb

†
n + 1/2cnb

†
i Cijbjb

†
αCαβbβb

†
n + ...+ |0〉

=
∑

n cn
[
b†n − b†i Cin + 1/2b†i CiαCαn + ...+

]
|0〉

=
∑

i

∑
i ′
[
e−C

]
ii ′
ci ′b
†
i |0〉 =

∑
i c̃ib

†
i |0〉
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Derivation of Boson Partition Function III

Acting a Product of
One-Body Operators on a Single Excitation

e−b
†
i Aijbj e−b

†
i Bijbj

∑
n cnb

†
n|0〉

=
∑

n cn
[
e−b

†
i Aijbj

(
b†n −

∑
i b
†
i Bin + 1/2

∑
iα b
†
i BiαBαn + ...

)]
|0〉

=
∑

n cn
[
b†n +

(
−
∑

i b
†
i Bin + 1/2

∑
iα b
†
i BiαBαn + ...

)
+ ...

]
|0〉∑

i

[∑
i ′ [e
−Ae−B ]ii ′ci ′

]
b†i |0〉 =

∑
i c̃ib

†
i |0〉

This is the same result as when a single one-body operator
was applied to the same excitation. Applying to any number
of excitations, one finds that this result holds generally.

Conclusion

If e−b
†
i Aijbj e−b

†
i Bijbj = e−b

†
ν lνbν , then

TrB

[
e−b

†
i Aijbj e−b

†
i Bijbj

]
= Det

[[
I − e−Ae−B

]−1
]
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Derivation of Boson Green’s Function

Definition of Boson Green’s Function

GB
ij = 〈bib†j 〉 =

TrB

[
bib
†
j

∏
ν e
−b
†
ν lνbν

]
∏
ν(1−e−lν )−1

Final Form for Boson Green’s Function

GB
ij =

TrB

[
(δij+b†i bj )

∏
ν e
−b
†
ν lνbν

]
∏
ν(1−e−lν )−1 = I +

TrB

[
b†i bj

∏
ν e
−b
†
ν lνbν

]
∏
ν(1−e−lν )−1

= I +
∑

ν′〈ν ′|i〉〈j |ν ′〉
TrB

[
b†
ν′bν′

∏
ν e
−b
†
ν lνbν

]
∏
ν(1−e−lν )−1

= I −
∑

ν′〈ν ′|i〉〈j |ν ′〉
d

dlν′
lnTrB

[
e−b

†
ν lνbν

]
I +

∑
ν′〈ν ′|i〉〈j |ν ′〉

e−lν′

1−e−lν′
= I +

[
e−C

I−e−C

]
ij

=
[

I
I−e−C

]
ij
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Discrete vs. Continuous HS Transformations

Discrete HS Transformation (Assumes Spin Up or Down)

e−U∆τ(m̂↑−1/2)(m̂↓−1/2) = 1
2e
−U∆τ/4

∑
σ=±1 e

νσ(m̂↑−m̂↓)

cosh(ν) = eν + e−ν

Continuous HS Transformation

1√
2π

∫∞
−∞ dxe−x

2/2e−xy = ey
2/2

e(1/2)∆τ v̂2
= 1√

2π

∫∞
−∞ dσe−σ

2/2eσ
√

∆τ v̂
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Local Updating for Bosons

Previous and Updated Matrices

M1 = I − FV1

M2 = I − FV2

Difference Between Matrices

V−1
1 V2 = I + αe1e

T
1

α ≡ V2(1,1)
V1(1,1) − 1

Expressing Updated Matrix in Terms of Previous

M1 = I − FV1 − FV1(V−1
1 V2 − I )

= M1 − αFV1e1e
T
1

= M1[I + α(I −M−1
1 )e1e

T
1 ]
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Local Updating for Bosons (Contd.)

Ratio of Determinants

rb = Det[I/M2]
Det[I/M1] = Det[M1]

Det[M2]

1/rb = Det[M2]/Det[M1]
= Det[I + α(I −M−1

1 )e1e
T
1 ]

= 1 + α(1− eT1 M−1
1 e1)

rb = 1
1+α(1−eT1 M−1

1 e1)

Updated Matrix Inverse

M−1
2 = [I + α(I −M−1

1 )e1e
T
1 ]−1M−1

1

=
[
I − α(I−M−1

1 )e1eT1
1+αeT1 (I−M−1

1 )e1

]
M−1

1

= M−1
1 − α

rb
(I −M−1

1 )e1e
T
1 M−1

1
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Boson Dynamical Mean Field Theory
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Bose-Fermi Experiments
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