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2. Università degli Studi di Milano, Italy

Seattle, 1 July 2013



Motivation

Weakly Interacting regime

Quasiparticle-like
excitations: at T = 0,
S(q, ω) = S(q)δ(ω − ωq)

Bogoliubov spectrum:
ωq = ~

2mξ2

√
(qξ)4 + 2(qξ)2

Strongly Interacting regime

Experimental measurements on
superfluid 4He:

To study the crossover between these regimes, ab-initio
numerical techniques are needed
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Genetic Inversion via Falsification of Theories

Path Integral Ground State (PIGS)

Projector methods

Ψ0(RM) = limτ→∞
∫
dR0G (RM ,R0; τ)ΨT (R0) if 〈Ψ0|ΨT 〉 6= 0

The imaginary time propagator projects the trial wave function ΨT

onto the ground state wave function Ψ0.

Ri = {~ri ,1;~ri ,2; . . . ;~ri ,N} is a set of coordinates of the N particles

G (RM ,R0; τ) = 〈RM |e−τ Ĥ |R0〉 is the imaginary time propagator

(notice that e−τ Ĥ is the same as e itĤ with t = iτ)

The imaginary time propagator is known only for small τ

Convolution property
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Path Integral Ground State (PIGS)

Projector methods

Ψ0(RM) = limτ→∞
∫
dR0G (RM ,R0; τ)ΨT (R0) if 〈Ψ0|ΨT 〉 6= 0

The imaginary time propagator projects the trial wave function ΨT

onto the ground state wave function Ψ0.

The imaginary time propagator is known only for small τ

Convolution property

Path Integral representation of the Ground State wave-function

Ψ0(RM) '
∫ ∏M

i=1 dRiG (Ri ,Ri−1; ε)ΨT (R0) with τ = εM

“Exact” method: by studying the convergence at large M and
small ε, we reduce the systematic error within the statistical one.
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PIGS: calculation of the physical observables

〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉

=

∫ M∏
i=1

dRi O(R1, ...,RM)
ΨT (R2M)G (Ri ,Ri−1; ε) ΨT (R0)

〈Ψ0|Ψ0〉︸ ︷︷ ︸
p(R1,...,RM)

Integral suitable for Monte Carlo calculations

Every configuration Ri represents the evolution of the system
for a different imaginary time

Choosing O = ρq(RM)ρ−q(RM+τ/ε), where ρ̂q =
∑N

i=1 e
iq·ri is the

density fluctuation operator, we can calculate the density correlation
function in imaginary time

F (q, τ) =
1

N

〈Ψ0|eτ Ĥ ρ̂qe
−τ Ĥ ρ̂−q|Ψ0〉

〈Ψ0|Ψ0〉
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From imaginary time correlations to real time response

Laplace transform

F (q, τ) =

∫ ∞
0

dωS(q, ω)e−τω

The inversion of the Laplace transform is an ill-posed
problem: many very different S(q, ω) can reproduce similar
curves for F (q, τ).

Bayesian approach (e.g. Maximum Entropy Method,
Average Spectrum Method): a prediction for the spectral
function S(q, ω) is inferred estimating the compatibility
between a model for S(q, ω) and the Quantum Monte Carlo
data for F (q, τ)
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Genetic Inversion via Falsification of Theories (GIFT)

Main features of GIFT algorithm

Space of model S containing a wide collection of spectral
functions S(q, ω)

Use of genetic algorithm to sample the space S
Falsification procedure: we do not search the “best” spectral
function but a collection of “good” spectral functions which
will be averaged to obtain the final estimation of S(q, ω)

⇓

Common features shared by the majority of “good” spectral
functions will survive to the average procedure and can be ascribed
to the true dynamic structure factor.
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Genetic Inversion via Falsification of Theories (GIFT)

Dynamic structure factor of superfluid 4He: GIFT vs Experiment

from Vitali et al., Phys Rev B, 82, 174510 (2010)
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The Quantum Hard-Sphere (HS) model

Hamiltonian of the system

Ĥ = − ~2

2m

N∑
i=1

∇2
i +

∑
i<j

V (|ri − rj |)

V (r) =

{
∞ (r < a)
0 (r > a)

Good model both for dilute systems with positive scattering
lenght and for dense systems with repulsive hard core
dominating over attractive tail

Cao-Berne approximation for imaginary time propagator

Different regimes investigated modifying only one parameter
(i.e. the reduced density n in units of HS range)
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HS model: the gas-solid transition

Equation of state for gas and solid phase:

Freezing density nf a
3 = 0.265(1)

Melting density nma
3 = 0.290(1)
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HS model: the one-body density matrix

Condensate fraction
of the gas:

na3 n0

10−2 (79.0± 0.4)%
5 10−2 (49.4± 0.1)%
10−1 (27.5± 0.1)%

3 10−1 (0.695± 0.004)%

Above the freezing density, n0 > 0 if the system is in a disordered
configuration, n0 = 0 if the system is in a crystalline configuration:

analogy with 4He at T = 0K
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Weakly interacting regime: na3 = 10−4

S(q, ω) = S(q)δ(ω − ωq)⇒
F (q, τ) = S(q)e−τωq

PIGS data for
F (q, τ) show an
exponential
behavior

S(q, ω) shows a
narrow peak at
the frequncy ωq in
agreement with
Bogoliubov theory

Riccardo Rota QMC study of dynamic structure factor of Bose Hard Spheres



Numerical methods
Results

Conclusions

Quantum Hard-Sphere model
S(q, ω) for the gas phase
S(q, ω) for the solid phase

Weakly interacting regime: na3 = 10−4

PIGS data for
F (q, τ) show an
exponential
behavior

S(q, ω) shows a
narrow peak at
the frequncy ωq in
agreement with
Bogoliubov theory

Riccardo Rota QMC study of dynamic structure factor of Bose Hard Spheres



Numerical methods
Results

Conclusions

Quantum Hard-Sphere model
S(q, ω) for the gas phase
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Not so weakly interacting regime: na3 = 10−2

PIGS data at
small τ show
deviations from
exponential fit

As q increases,
S(q, ω) broadens
and displays
multiphonon
contributions

Feynman
approximation

ωq =
~q2

2mS(q)
works only for
small q
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The interaction increases : na3 = 5× 10−2

Exponential fit
captures only the
tail of F (q, τ)

Secondary
multiphonon
peaks become
more evident

Spectrum of
excitations
presents a
shoulder for
qξ ∼ 1.5− 2
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Quantum Hard-Sphere model
S(q, ω) for the gas phase
S(q, ω) for the solid phase

The roton appears: na3 = 10−1

Spectrum of
excitation with a
non monotonic
behavior: the
roton appears
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Quantum Hard-Sphere model
S(q, ω) for the gas phase
S(q, ω) for the solid phase

The roton appears: na3 = 10−1

At small q, we recover the phonon dispersion ωq = cq, with c (i.e.
speed of sound) obtained from the equation of state of the HS gas

(Ref.: Boronat, Casulleras and Giorgini, Physica B (2000))
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Quantum Hard-Sphere model
S(q, ω) for the gas phase
S(q, ω) for the solid phase

Above the freezing point: na3 = 3× 10−1

S(q, ω) presents a
narrow peak only
for momenta in
the region of the
roton.
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Quantum Hard-Sphere model
S(q, ω) for the gas phase
S(q, ω) for the solid phase

Above the freezing point: na3 = 3× 10−1

S(q, ω) is broad
when the energy
of the excitation is
higher than 2∆
(with ∆ energy of
the roton)
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Above the freezing point: na3 = 3× 10−1

The momentum of
the roton
correspond to the
smallest vector of
the reciprocal
lattice of a FCC
crystal at the
same density
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Conclusions

We compute the dynamic structure factor of Bose hard-sphere
systems at zero temperature with Quantum Monte Carlo
techniques.
GIFT algorithm allows us to show the emergence of the
multiphonon contribution and the appearance of the roton as the
strenght of the interaction increases.

Mean field approaches start to fail at na3 ∼ 10−2

The roton appears at na3 ∼ 10−1

At high densities, the spectral functions broaden at energies
higher than two times the energy of the roton
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THANKS FOR YOUR ATTENTION!
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