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Problem #1: the Ground State

We want to solve the Schrodinger equation for a quantum many-body system of N
Bosonic particles described by the Hamiltonian

H=T+V ZvMZVW
1<J

the ground state wave function can be obtained as

6_7ﬁ¢
volB) = M olr)

for any wT provided that <¢O‘¢T> 7& 0

T = Zt/h imaginary time

L J lim not reachable in a numerical simulation: how to face with?
T—00




An exact approximation o : Integral Ground State methoo

Regardless of a normalization constant, an accurate approximation of the ground state
wave function in given by

Yr = [ dR' G(R, R';7)¢r

the action of (G = e_TH exponentially removes from ¢T any overlap with the
excited states during the imaginary time evolution

* Thelargeris 7 the betteris ’l,bT

provide the basis for any zero—temperature Quantum Monte Carlo method

L J the imaginary time propagator can be accurately written only for

small values of 7 ... but alarge 7 limit is necessary to ensure the
convergence to 1,00




Two typical exit strategies:

the large 7 limit is reached by a recursive procedure: GFMC & DMC

Kalos [PRA 1970]
Reynolds et al. [JCP 1982]

extremely accurate approximation of 1)q)r
the trial wave function has a strategic role: involved in each iteration step

1. we can use the exact factorization property of the quantum propagator
GR,R';T=7 + 1) = /dR” G(R,R";m)G(R",R';7)

to write the large 7 propagator as a convolution of small imaginary time
propagators (standard path-integral formalism)

2. given i1 = % ,the approximated ground state wave function is then

M—1
H G(Ri, Riy1;07) | Y7 (Rwm)
=0

or(Ro) = [ ﬁd&

Sarsa, Schmidt & Magro [JPC 2001]



J why do we claim this method exact? We are obtaining good (but still)

approximations of the ground state wave function...

approx. 1: finite imaginary time 7 (M is large but finite)

approx. 2: accuracy of the small imaginary time propagator at the
chosen 0T

Standard answer: It is possible to reduce all the systematic errors coming from the
involved approximations within the unavoidable statistical
uncertainty typical of Monte Carlo integration method.

The exact expectation values are exact within their statistical
error.

J even PIGS (as all the zero-temperature QMC methods) relies on a

variational wave function (trial wave function)...
Do we have to expect some variational bias in our results?

Standard answer: |n principle NO! The variational ansatz acts only at the starting
point of the imaginary time path, which is governed only by G.
By choosing properly 7, &7 and )/ we can reach the true
ground state within statistical error




That’s fine! But... in practice... can we really reach the exact ground state
of a many-body system during a simulation on our pc?

YES, WE CAN!

To convince ourselves we need just a bit more deeper insight in how PIGS works

A couple of details:
* projection = elementary imaginary time step obtained by acting with G(R, R"; §7)
the effect will be to increase the overlap with the ground state
* convergence is obtained when adding further projections does not produce any
appreciable change in the expectation values (within the statistical error)

« Almost all the most used recipes for G factorize it into a kinetic contribution (exactly known)
and a contribution that accounts for the interaction (approximated at different extent)

G(R,R';61) = ‘GF(R, R’ 57?‘G1(R, R';07)

; (ri = ri)?

4D\0T
Interaction contribution: the explicit 57 ,9\9
Exact density matrix of a system  form dgpen.ds on the.chosen. EV(W)’/ 6T ()
of N non interacting particles approximation: the simplest is the : \ o 7 \Tij
primitive approximation ( 3
T‘j sl (00
i I Dor
1 N \ ([ \
]. /\2 o1 ST /
_ 6—(rj—rj) /4)«57’6—7 i< U(Tij>€_7 [T« v(ryy)
(4 \OT)3N/2 e



(100Otpo) =~ (%IOIIPT) =

M— M
/ HdR HdR [wT (o) T Oy Ry 236 | OCB0) | [ R Rasrs o7 ()
j=1 =1
'| i . ': , }  variational
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correlation ! ' | |
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Formal analogy: ground state averages of the quantum system are equivalent to
canonical averages of a classical system of special interacting linear polymers

quantum/classical mapping

polymer = full imaginary path
of the gquantum particle

guantum particles

the whole imaginary time
evolution of the system is
sampled at each Monte
Carlo step!!!

.41 3

imaginary time

time slice = “picture” of the system at the
corresponding imaginary time




Other approximations for G:
e Pair-product [Ceperley RMP 1995]
* Suzuki-Chin [Chin PLA 1997]

even in its pair form (Pair-Suzuki) [pilati, PhD thesis 2008]
* Multi-product expansion [Zillich, Mayrhofer & Chin JCP 2010]

Imaginary time formulation of PIGS prevent direct access to dynamic properties,
as for example the superfluid fraction...

e atT=0 K ODLRO is a sufficient condition for NCRI [Leggett Phys.Fen. 1973]

* ODLRO: the one body denisty matrix p, has a non zero plateau in the large
distance limit (implies BEC) [Penrose & Onsager
PR 1956]

* p,isthe probability amplitude of destroying a particle in 7 and creating i

pl(??,?:’/) :N/dFQFN Zpo(f’,f’g,...,FN)wo(ﬁ,FQ,...,FN)

In the quantum/classical mapping this
corresponds to cut one of the polymers
and to histogram the relative distance
between the two cut ends (called half
polymers)




Let’s play with the method!!!

We can consider different trial wave functions and see what happens...

1. Jastrow Wave Function (JWF)

The simplest choice for the wave function of strongly interacting bosons
[Feenberg, Theory of Quantum Fluids, 1969]

Historically one of the first wave functions for “He [McMillan PR 1965]
Translational invariant

ODLRO in any phase (it's a theorem... [Reatto PR 1969])

It gives also the solid phase, but at the wrong densities...

2. Jastrow-Nosanow Wave Function (JNWF)

_____ - particle

s b ym N ®

L -<-( ) —c )y (T;—T0; K N

wJN(R) = € tSI Ty X e 2.i(Ti=T0i) ; SN

I o !

. . v Equilibrium /

* translational symmetry explicitly broken \_ position
* no Bose symmetric (but exchange energy in solid phase is el

really small... ¥10-3 K smaller than the typical error-bar... )
* no ODLRO



3. Shadow Wave Function (SWF) [Vitiello, Runge & Kalos PRL 1988]

b

Us(R)=e ZM(W) S e~ CLa(Fi=51) o= Dic; vlsis)

\ ] l i b J

B I !
JWEF for real coordinates Coupling of each real coordinate  JWF for auxiliary coordinates
with its auxiliary one shadow variables
ey >
“o\c/.
 translational invariant (solid phase comes at the right density

. rticl
as a spontaneously broken translational symmetry) particie

correlations included at all the order

Bose symmetric

ODLRO even in the solid phase (as JWF)

SWEF is the best variational description for “He [Moroni et al. PRB 1998]

SWEF + PIGS = SPIGS [Galli & Reatto MolPhys 2003, JLTP 2004]




we can challenge the convergence ability of PIGS starting from a completely “wrong”
description of the system:

4. Gaussian Wave Function (GWF)

N Ideal particle
R) = —C|7—T0:|? 77T
ba(R)=]]e P )
1=1 |'I o '
* Describes an Einstein crystal \ Equilibritym
. N position ,
* no Bose-symmetric . J

S_——-

e Can it converge to a the correct description of the liquid phase?

5. Constant Wave Function

* No correlation at all

wc (R) — ]  ° Describes anideal gas

* Can it converge to the correct description of the solid phase?

If we succeed, it will have proved that:
 The projection procedure - removes the overlap with the excited states

- includes the missing correlations

 we do not need importance sampling with PIGS

... but is better to have it in order to save lifetime



Because of the Bose statistics obeyed by the particles we have to account for
permutations in the propagator

* not strictly requested when the initial wave function has the correct symmetry
* permutation circles improve the sampling ergodicity

® 9] Q ® o
= =
5 ‘i details on the permutation
- —l § sampling with PIGS in:
= an Boninsegni JLTP 2005
o £
B S 5
particles T particles
* swap moves: extremely
efficient in the off-diagonal 9.0 Q.. o
sampling (high acceptance £ E E E
rate) - —] -
[
[Boninsegni et al PRL 2006; B 3 ? éo
PRE 2007] E £
¢ o ¢ 0
 We implement a canonical particles particles

-algorith . .
worm-algorithm For further details go back to Massimo’s talk



. HO: b "H Rossi, Nava, Reatto & Galli JCP 2009

* “He atoms are described as structure-less zero-spin bosons, interacting
through a realistic two-body potential (Aziz potential, 1979)

e Periodic boundary conditions (pbc) applied in all the directions
e N =64 atdensity p=0.0218 A3 for the liquid phase
N = 32 at density p = 0.0313 A3 for the solid phase

we don’t want to solve a real physical problem, we want just to challenge the
method

e Pair-Suzuki approximation for the imaginary time propagator G

2 s 0T
é_\:&? (Téj)
(rj —r5)?
AN6T _
e &t=1/320K? for the liquid phase 5 Tovie) + (1 — ) T AV

Ot = 1/480 K for the solid phase



Liquid phase: SWF vs CWF vs GWF

® SWF
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solid phase: SWF vs CWF
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radial distribution function
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Liquid phase: GWF Solid phase: CWF
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P induces Bragg peaks in S(k) Y. gives a less structured S(k) ;
which vanish as t increases the differences vanish as t increases
Permutations play a fundamental role

It really works!!! Even without importance sampling!!!

And what about off-diagonal properties?



Liquid phase: JWF, GWF & SWF

- p=0.0218 A (equilibrium)
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in agreement with previous calculations  [Moroni & Boninsegni JLTP 2004]



) SOIIC Vitali, Rossi, Tramonto, Galli & Reatto PRB 2008

the reduced dimensionality allows us to study correlations up to larger
distances than in 3D (we want also off-diagonal properties...)

it has been largely studied with other exact methods

Fluctuations are expected to be stronger in 2D (more stringent test for
convergence)

2D system is a model that is relevant for adsorbed “He on a planar substrate
like graphite

could be relevant also for supersolidity

e pair-product approximation for G

Ot = 1/40 K1 (compromise between accuracy and computational cost)

t=0.775 K?
(M =32 =>each polymer counts 64 beads)

e simulation box houses exactly a regular triangular lattice and all the sites
are occupied by an *He atom ( = perfect crystal)

N =224



Equation of state

10
8 | o—o =GFMC
' «——-< = SPIGS
~~ 6 i
X
< 4
LLl
2 |
Y .—./././. _

7'0.03 0.04 005 006 007 008 009 0.1
p (A?)
agreement with previous GFMC calculations [whitlock et al. PRB 1988]




Solid phase: SWF vs JNWF
p  =0.0765 A2 (just above melting)

1.70 . . . ‘ ‘ ‘ ‘ 0.3
¢ , h .
A— ®PIGS 7 each expectation
A A- ®SPIGS - value has its own
5 160 Debye'wa“eriadm/-/ convergence time!
) A > |
1 0.22
'y & ’
1.50 | |
Energy per particle ] “ e m
& 1 018 The “quality” of the
= : trial wave function
— 1.40 ¢ | fixes the number of
~ 1 0.14 . . .
LS | projections required
E j for convergence
1.30 \ ! \ ; I ‘ I ‘ I ‘ | e . 0.1
0 0.25 0.5 0.75 1 1.25 1.5 1.75

T (K1)
We can get more: from the T evolution one can get the overlap of the trial wave
function with the ground state [Mora & Waintal PRL 2007]

SWF INWF
overlap per particle =99.8% overlap per particle =97,9%
deviation =0.2% deviation =2.1%

SWEF is closer to {, by one order of magnitude



N
=
=]
7
)
| .
‘©
=
@)
oo
S
D
I=
@)

10°°

there is no BEC in the 2D perfect crystal (it cannot be a supersolid)

Agreement with 3D PIMC (finite temperature) simulations
[Boninsegni et al. PRL 2006, PRE 2006; Clark & Ceperley PRL 2006]
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Defects are able to induce ODLRO in the simulated system [Rossi, Vitali, Galli &
Reatto JPCM 2010] but are they present in the macroscopic crystal?

OPTION 1: study the concentration of defects in the thermodynamic limit. Too
large systems (very long and boring simulations)

OPTION 2: study a crystal in equilibrium with the liquid...

OPTION 2b: by confining a solid we can create an interfacial region rich of
defects, are them injected in the inner crystal?

R

smooth barrier confining “He inside a circle of radius R

(remove also the stabilizing effect of pbc)

R-r..< r <R: integrated and shifted LJ potential

(r i IS the minimum position of the integrated LJ)
effective radius: R-r;,
3rec? 2100 1

~ A ~ VLJ(T) — 8 Pext ?“10 o ,r_4

10 20 30 40 O<r< R_rmin: Vext =0



*  Pair-Suzuki approximation for G
« 3t =1/320 K

« 1=0.775 k! (each polymer contains 250 “real” beads)
 The initial configuration is built starting

from a triangular lattice at p, and
discarding al the particles that fall out the

the disk (N=N,)

o« . =SWF

0.06

8 A

0.05

0.04 -

= 003 | . at low density p.: liquid with small
< | p,=0.0425A2 ' ~10 A) interfacial |
00z | R'=40A I ) interfacial layer
0.01 — N0 =187
00 10 2‘0 30 40

r (A)



At higher densities the system is solid: p, = 0.0765 A2

_ . We can promote the presence of
Different R: R=44.6 A Ny =433 defects by adding or subtracting
R=54.6A N, =685 € particles
R=64.6 A N, =931 N = 671 N = 699
| J How can we visualize defects?

In the regular crystal coordination number is 6, so atoms with coordination
different from 6 can be used as an index of disorder

[Krishnamachari & Chester PRB 2000]

Delaunay triangulation:

The Delaunay triangulation corresponds to the
dual graph of the Voronoi diagram.

The Voronoi cell associated to the site P consists of all the points of di:rg?;c:
the plane closer to P than to any other site.

The number of segments ending on a site is equal to the number of first neighbours
(coordination number).
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The quality of the crystalline order can be quantified via the orientational

order parameter [McTague, Frenkel & Allen: Ordering in two dimension]
ij : angle between the vector
1 N 1 n(k) » 7, — 7; and a fixed direction
Vg = — E — E e00k; in the plane (x axis)
k=1 j=1 n(k) : first neighbors of the k-th

particles

for a static perfect triangular lattice

- [{We)| =1
* the plotof [(Wg)| is a single spot on a
] 7 circumference with unit radius

* because of zero-point motion we ar
expect a broadened spot in solid

Perfect PCB
“He

solid 4He at
p =0.079 A2

* Inthe limit of a liquid system \ <\116>‘ (N = 572)

turns into a distribution centred
into the origin
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Obtain information on dynamic properties of the system: we want to evaluate the
dynamic structure factor S(q, w) of a collection of strongly interacting bosons to
extract information about the elementary excitation spectrum of the system

? o
01 } Q=090A"
3 - i
% 50
~ 0.05 EEEC A
LR
@ o &)
:é%
% °: ;x 10
0 ;E’;mv _gusio 8? $
K /
% o _
i 10 A
< 0.1
. 5%
N Tl
£ ¢t ® w@
= oy ° %&_ﬁ/‘
i )
008 s s
g ol
N ‘ m“’é ;ZX 10
0 5§ %WM °
-1 0 1 2 3

Energy Transfer 7Zm (meV)

the dynamic structure factor is defined as
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The imaginary time formulation of PIGS prevent us the access to real
time dynamic properties as pg(t)

We can work in imaginary time and compute the intermediate scattering function

1

P(d,7) = +=4pa(m)p-4(0))

and the dynamic structure factor is obtained by inverting the Laplace transform

+00
F(q,T) = / dw e “"S(q,w)
0

The Laplace transform is a smoothing operation, moreover PIGS allows to
compute the exact intermediate scattering function only over a set of discrete
values of imaginary time... 1

F(q,7) = Fi(q) = N@q*(wﬂﬁ—q*(o»

N ... each with its own
p_g(0) =D e M7 = statistical error...

The inversion problem
is ill posed !!!

“internal” imaginary-
time evolution

? Whole imaginary-time evolution




We must relax on the possibility of obtain the exact dynamic structure factor:

there are approximate methods for invert the intermediate scattering function

g (&)
*  Maximum entropy method o 1 2

0.2 ) 20
qualitative results when applied to liquid *He
[Moroni & Baroni PRL 1999]
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GIFT : space model explored with a Genetic AN
Algorithm (non-local stochastic dynamics) & NI AN -
no a-priori constraints @ (K)

[Vitali, Rossi, Reatto & Galli PRB 2010]

* liquid *He, at equilibrium density p=0.0218 A3

* sharp peaks in S(q,w) indicating energies of
elementary excitations

* evidence of a multi-excitation component in
S(g,w) in semi-quantitative agreement with
experiments

For more details go back to Ettore’s talk discussion



A H3- Overnpressurized : Rossi, Vitali, Reatto & Galli PRB 2012

e superfluid — solid transition: instability of superfluid against density fluctuations
with k corresponding to the roton excitations [Schneider & Enz PRL 1971]

* Experimental results for excitation in metastable “He...
[Chavanne et al PRL 2001; Ishiguro et al JLTP 2007; Pearce et al PRL 2004]

.... But few QMC studies, mainly devoted to off diagonal properties [Moroni &
Boninsegni JLTP 2004; Boninsegni et al PRL 2006] & only one study of excitations in
overpressurized “He (with large uncertainties) [Vranjes et al PRL 2005]

 pair-product (8t = 1/160 K1) & pair-Suzuki (8t = 1/320 K1) approx. for G
T = 0.5 K (very large, but we have to compute F(q)...)

* two different Aziz potentials [Aziz et al MolPhys 1987, Aziz e al JCP 1979]
N =256 “*He atoms with pbc

« 0.0200< p<0.031 A3(-6<P<87atm)

the starting configuration is obtained from an equilibrated configuration at the

equilibrium density (p = 0.0218 A3, P = 0 atm) rescaled to match the desired
density.

Yy = SWF



liquid until P = 87 atm, for higher pressures (densities) it readily starts a nucleation
process

° liquid “He
° bec *He
° foc *He
* hcp “He

We have monitored the phase of the system via
the averaged local bond order parameters
[Lechner & Dellago JCP 2008]

Steinhardt parameters
Qim (1) = == D @im(k)
W)

Ny (7)

Z Y;m(ﬁj)

j=1

B 1
-~ Ny(3)

Ny () : neighbous of the i-th particle
Ny (i) = Nyfi) + i itself

!

(i) = \ 2;1% D am(i))?

m=—I

For recognize between liquid, bcc, fcc, hcp phase
is enough to consider the g4 — @g plane
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The well defined maxon peak disappears at densities above freezing

- A-3
(p =0.027 A7) Agreement with experiments [Pearce et al PRL 2004]



roton minimum decreases with increasing P
* Fitted with Landau formula

* A hasalinear trend with pressure

p=0.0290 A
p=0.0300 A -
p=0.0310 A*®

' | x A » ¢ m @

¢ Ag Exp. data |
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v \
x4 » .
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- A extrapolates to [ I
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0 | | | | | ] | | | | | ]
0 50 100 150 200 250

P (atm)

300

1.8 1.9 2

Agreement with
experiments

[Pearce et al PRL 2004]
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[Moroni & Boninsegni JLTP 2004]



excrtatuons

* C(Class of excitations of fundamental interest in many ordered systems in
cond.mat.

* One of the most studied is a vortex in a Bose superfluid
* Intimately related to the superfluidity iteslf (related to critical velocity...)

* Relevant for quantum turbulence
e Reconnection of vortex lines
* Pinning of impurities...

L J Can we give a microscopic description of a vortex line with PIGS?

The wave function must be an eigenstate also of the angular momentum Lz

with eigenvalue AN/ (/= 1, 2,... quanta of circulation)

We need an explicit many-body phase €2 (R) ¥(R) = EﬁQ(R)

related to the velocity field m

| J If we try to project with PIGS ZDT(R) — eiQ(R) WT(R)‘ we are led
to face very soon sign problemes...

We need an exit strategy!



The Madelung transformation @DT(R) — €iQ(R) |¢T(R)|

leads to two coupled differential equation equivalent to the Schrédinger one
N

o0 h2 —5 o =
L Olvr| - n? EN: = 6)°
ih ot = H|¢r|+ 2m pt (VJQ) V7]

Fixed Phase approximation: chose a functional form for Q, and solve only the
equation for "QDT‘

* The equation for |¢T‘ is the Schrodinger equation for our many body
system with a static external potential: can be exactly solved with PIGS!

J It is an approximation! The result is not exact, since it relies on a
variational ansatz on the phase...

e variational upper bound for the energy
* |owest energy consistent with the prescribed

...there are other approximations (like Fixed Nodes...) [Giorgini et al PRL 1996]



The simplest choice for the phase () that fulfills the prescriptions on the wave
functions is the Feynman — Onsager one

particle

N
I=1,2,... quanta of circulation
QOF (R) — l E 92 G angular polar coordinate of the i-th
1=1

* introduces the standard centrifugal flow field
* the external static potential potential reads

1 p; radial polar coordinate of the i-th particle

The OF-phase is largely used not only in QMC studies of vortex
lines, but is at the basis also of all the mean field studies
(Gross-Pitaevskii, Density Functional...)

[Pitaevskii JETP 1961; Gross NC 1961; Fetter PR 1965; Dalfovo PRB 1992;...]




To avoid energy divergences at the vortex line, Feynman suggested the
introduction of a one-body term in the wave function that vanishes as p; — 0,
thus, by construction, the OF-phase gives an hollow vortex core

Feynman — Onsager prescription for the wave function

the same as for

N
7 N : & ground state studies
IQF(R) — e lezl 9.7 H f(p])wT(R) g d d

j=1
flp) =1 /o

Variationally optimized functional form for f

a: core parameter
) [Chester et al PR 1968]
Used with:

* Variational Monte Carlo (SWF) for a vortex in “He [Vitiello et al PRB 1996]
* Variational Monte Carlo (JWF) for a vortex in a Bose gas [Nilsen et al PRA 2005]
* Diffusion Monte Carlo (DMC) for a vortex in a *He droplet [Sola et al PRB 2007]

Can be used also at finite temperature
* PIMC for a vortex in a a *He droplet [Draeger PhD thesis 2001]

* PIMC for a vortex in *He [Takagi, PhysicaB 2003]

there is a diffuse conviction that the core of a quantum vortex must be hollow



The empty core is an artifact of the variational ansatz on the phase or is

a real feature of a quantum vortex?

With SWF it was possible to obtain a partially filled core with a (little) gain in energy
[Vitiello et al PRB 1996; Sadd et al PRL 79; Sadd et al PRL 1999]

density profile

15 . : : : : ,
Delocalized vorticity by writing the

OF phase on the auxiliary variables

o

0
<L ol
o
& g
*5:1 e — $Dp3.322ég§j Within the variational point of view
=l /I Lo i .
S st $§Fpig.g§;g§4 : this is a better ansatz
/ —-—= Yo p=0.
4>,' ’/
0.0 L&— ' . : : :
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J Can we go beyond the OF phase?




Ortiz & Ceperly have devised a scheme to improve iteratively the phase of a
many-body wave function: applied to the OF it generates backflow corrections
[Ortiz & Ceperley PRL 1995]

N reod (i i, . z
wT(R)BF:H[C]_I_ Zk#]‘f;j]j_s pk)(C Ck)] wT(R)

g=1 /\

the same as for
. round state studies
where (; = x; + 1y, &

F(rik, pi, pr) = 6—[04T32~k+’7(pj+pk)2] backflow function

a, k,qa,y Vvariational parameters

There exist two exact QMC studies with BF wave function

 Green Function Monte Carlo [Ortiz & Ceperley PRL 1995]

e Diffusion Monte Carlo (but with Fixed Node Approx.)
[Giorgini, Boronat, Casulleras PRL 1996}

both for a 2D vortex in “He

* small gain in energy (few percent)
BUT - GFMC has a partially filled core, DMC an hollow one 2?7



Rossi, Galli, Salvestrini & Reatto, JPCS 2012
Galli, Reatto & Rossi... under progress

“Exact” (for the modulus) QMC simulations for vortices in “He only in 2D
(where the vortex is a point defect) with conflicting results

QMC simulation in 3D only at a full variational level (both on phase and on
modulus) with SWF suggesting a partially filled core

Possible importance of vortices also in the solid phase in connection with
supersolidity [Anderson Nature 2007; PRL 2008; Penzev et al PRL 2008]
No studies of vortices in the solid phase in literature...

o« . =SWF
 pair-Suzuki (&t = 1/320 K1) & primitive (&t = 1/ K1) approx. for G
e 1=0.125K1

* Both OF & BF phases
e 0.0200< p<0.03A3(-6<P<70atm)

N =336*He atoms with.... pbc???



The external potential is long ranged (1/r?), we cannot resort to
standard pbc

... the velocity field will have a sudden jump at the boundary

Possible solutions: « Confine the system [Ortiz & Ceperley 1995; Vitiello et al 1996;
Nielsen et al PRA 2005; Sola et al PRB 2007]

e Simulate a vortex lattice [Sadd et al PRL 1997; PRL 1999]

 Use same tricks on the phase [Giorgini et al PRL 1996]

Our solution: smooth the flow field

We multiply the leading term 1/r in the phase Q by the smoothing function

1 p <A
X(p) =14 e GZ2) A< p< L2
0 p>L/2

L being the side of the simulation box, and A =8 A



J o

With this choice our wave function is no more an exact eigenstate
of the angular momentum, but it is close to it in the region of
interest (around the core)
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As in SWF previous study, we do not have any core parameter at
all, we project the same SWF that we usually use in bulk
simulations (no extra factor are added).



Integrated energy per unit length of a straight vortex line
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BF phase is variationally better
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With BF the core is no more hollow (as for GFMC in 2D and SWF in 3D)
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J What happens in the solid phase?

Little parenthesis:

Vortex in solid 2D *He with FO phase ansatz

vortex core

0.003 . . | : :
— perfect crystal
0.0025 — crystal+vortex i
I dislocation
— dislocation+vortex
0.002 | |

0.0015

0.001

0.0005

N=572

A=30A

Pair-Suzuki approx. for G
T=0.83 K1

Ot = 1/240 K1

density: 0.0765 A2

vortex core found in interstitial position
vortex does not sensibly affect crystal structure
true even with defects: no effect on the density

of ill-coordinated atoms

A\ T 1 * Vortex does
N — perfect -
- — perfect + vortex 3 not affect
3 crystal + dislocation E either the oﬂ:_
_35 — crystal + dislocation + vortex| ]
O E diagonal
10 E properties
10-52_ E
10°k ~ ., . - Wi
: 0,(F.F) { REM: with no BEC
107
g along first 1 we cannot speak
19" neighbour direction 3 about quantized
10% 20 % 40 vortices...

r-r' [A]



3

— e — Two different orientations for the
vortex line:
— Eikgw%% “ * Perpendicular to the basal
— backflow parall plane (c-direction in hcp
' E crystal)

* Parallel to the basal plane

E(r) [K]

In both the cases BF corrections
provide a gain in the energy

15

p(r)/p
T

Even in the solid phase the core is

05— - _
— perpendicular no backflow
n Ot h O I I OW —— perpendicular backflow
L —— parallel no backflow |
| — parallel backflow
1

s | s |
0 5 10
r (Al




What about off-diagonal properties?
p=0.0293 (A™)
1 I I l I I l I l T
——— OF (perpendicular) NO BEC !!!
L OF + 1 vacancy =
= Ivacancy 3 .
u BF (perpendicular) 1  Thevortexis not
0011 BF (parallel "1 able toinduce BEC,
2 | thusis not able to
; 3 self-sustain in the
_ V0001 ~| solid phase
T
N = 5
= - ]
le-06 — —
= = Not concluded yet...
- ] But these lines come
le-08 1= ~| from months of
o sasaneeenee | simulations, and we
= - 5 believe that (even going
- | | 1  on) no plateau will be
le-10 ' ' L
0 20 25 30 reached atall.




_ Conclusions

* PIGS is really free from any variational bias due to the choice of 1
* the “only” role of ¢ is to fix the length of the imaginary time projection
* projection procedure removes wrong correlations and inserts the missing
ones
* each observables has its own convergence time

* PIGS + GIFT provide also the excitation spectrum via the inversion of imaginary

times correlation functions
* theresultis not “The Result” because of the servere ill-posedness of inversion
problems
* good agreement with experimental results

* PIGS + FA allow to study vortices

« perfect crystal cannot be superfluid (no BEC)

« the effect of confinement extends mainly in a layer of width about 15A

 theinner region displays a crystalline order similar to the bulk crystal with pbc
& even if defects are placed in, they are expelled into the interfacial region

e actual simulations put an upper bound of 3 103 to the concentration of defects
in the inner region... larger systems?



liquid “He up to 87 atm
- beyond this pressure the solid nucleates rapidly in system...

Maxons disappear above the freezing density

Roton minumum decreases with increasing pressure with a linear trend
- extrapolates to zero at about 170 atm

The condensate fraction n, extrapolates to zero at the same pressure

Backflow corrections are a variationally better ansatz than the Onsager-
Feynman prescription

The vortex core is not hollow

The filling fraction increases with increasing density

vortex in solid “He ¢ Does not affect structural properties
* No correlation with defects
e No BEC induced: such a vortex cannot self-sustain

Thanks for your attention



